
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVI, Number 1, 2011

“PADSYNTH” SOUND SYNTHESIS ALGORITHM

PAUL NAŞCA

Abstract. The sound synthesizer has changed the way the musical sound
is produced by offering nearly unlimited amount of musical timbres. Un-
fortunately, many of the current synthesizers lack the subjective ”warmth”
of the acoustic instruments. The current paper describes a new algorithm
which produces aesthetically pleasant sounds. There is also described a
simple approach for synthesizing sounds, optimized for the generation of
the ensemble sounds. This approach can be used in other sound syn-
thesis/sound processing algorithms to acheive a great degree of perceived
quality.

1. Introduction

Nowadays there are many sound synthesizers and sound synthesis algo-
rithms. Most of the synthesis algorithms are based on a handfull of approaches,
like addition of many simple components or by simulating with the mathemat-
ical equations the acoustic instruments.

The music theory considers the musical sound as being composed of many
sine waves with a frequency multiple of a fundamental frequency. For example,
the note A with a fundamental frequency of 220 Hz has the harmonics with
the frequencies of 440 Hz, 660 Hz, 880 Hz, and other frequencies multiples of
220 Hz. Each of these sine-wave components are called ”harmonics”.

The most used approach to generate harmonics is based on amplitude
modulated by a stochastic process (called ”micromodulations” [3]). However,
using this approach it is very difficult to simulate the ensembles of instruments
or choirs.

It seems it is complicated to use modulation because that the speed of
modulation needs to be increased on higher harmonics [4] in ”Simulating the
ensemble effect”.

Received by the editors: February 1, 2011.
2010 Mathematics Subject Classification. 00A65.
1998 CR Categories and Descriptors. H.5.5 [Information Systems]: Sound and Music

Computing – Signal analysis, synthesis, and processing .
Key words and phrases. sound synthesis, harmonics, fast Fourier transform.

35



36 PAUL NAŞCA

This paper describes a simple sound synthesis approach solves the above
mentioned problem.

This approach adds another level between ”harmonic”/”overtone” and the
sine component of the sound. The proposed algorithm models a difficult cat-
egory of sounds like those generated by the ensembles of instruments and
choirs.

The basic idea is to consider the harmonics as being a narrowband signal
instead of simple (or frequency/amplitude modulated) sine components.

The frequency-domain property of choirs is described in Jordi Bonada[1]
paper, in which he tries to describe a technique to transform a solo sound to
”unison choir” sound. His paper acknowledges that using sine components
with pure amplitude modulation is not a good idea, because at higher fre-
quency the harmonics overlap. His paper does not explain the cause, the how
or the why, for example, the harmonics become wider and wider on higher
frequencies according to a linear function. Also, even if he acknowledges that
higher harmonics need to be smoothed in frequency, he does not explain how
the slight detuning of lower sine components become a continuous frequency
band on higher frequencies.

The algorithm described here considers that the harmonics become wider
and wider (according to linear function) on higher frequencies, until they merge
together into a single continuous band. If the fundamental frequency has a
certain width (measured in Hz), the Nth harmonic contains multiples of the
each sine frequency component of it. This causes the harmonic to have a
bigger bandwidth.

Another paper [5] which describes that voices in a choir do not have exactly
the same frequency (called ”pitch scatter”) and that voice’s frequency changes
very fast for the same perceived note (called ”voice flutter”).

In this paper I will present the algorithm ”PADsynth” based on Ternstrom
[5] definition of ”pitch scatter” which - for more clarity - I will call from now
as ”bandwidth of each harmonic”.

The first requirement of this algorithm is a frequency distribution of a
single harmonic (usually a Gaussian distribution). Using this distribution,
the desired harmonic are added to a large array which represent the signal
amplitudes in the frequency domain. After this, it is done a single inverse
Fourier transform (IFFT) by considering the phases of the signal as being at
random. A long sample will result (usually few seconds long) which can be
played at different speeds in order to obtain the desired pitch. This algorithm
has been included in several software synthesizers, because of its simplicity
and especially because of the high quality of musical instruments generated
by it. It is also mentioned in other paper[2] where the algorithm is used in a
low cost system-on-chip embedded system.



“PADSYNTH” SOUND SYNTHESIS ALGORITHM 37

2. What PADsynth algorithm does

Most people perceive the sounds of ensembles, choirs and the sounds pro-
duced by slight detuning of instruments as being ”pleasant” or ”warm”. But
it is often believed that the pitched part of the instruments’ timbre are com-
posed only by a fundamental frequency and harmonics (another pure sine
signals with different frequencies, usually on multiple frequencies).

The approach presented in this paper considers the harmonics (and over-
tones, in general) as being a ”collection” of many sine components with very
close frequencies and the phases of these components are random. This ran-
domness of the phases makes the instrument have qualities that resemble the
natural/acoustic instruments and ensembles.

Due to this result, it must be defined a parameter of the sound, called ”the
bandwidth of each harmonic” (BoEH) which represents the frequency spread
of the sine components into each harmonic. For example, if we define BoEH
as the highest frequency minus lowest frequency from a certain harmonic, for
note A-4 (440 Hz) if there are sine components of 435Hz, 438Hz, 442 Hz and
445 Hz the BoEH is 10 Hz. If one harmonic contains many sine components,
there are other ways to define BoEH, for example as the standard deviation
of frequency values of the components.

In natural ensembles one of the property of the BoEH is that it is propor-
tional to the overtone’s frequency. For example the A-4 has harmonics 880
Hz and 1320 Hz, the bandwidth of them will be 20Hz and 30Hz. As a result,
BoEH can be described as a single number: the bandwidth of the fundamental
frequency, expressed in cents (where 1 cent is one hundredth of a halftone).
From this parameter, we can express the BoEH in Hz for each overtone.

From this approach it is not difficult to realise what the implication of
the ensembles and detuning on higher harmonics are. Also, BoEH approach
predicts that ensembles of pitched sounds with many harmonics(like a huge
choirs of singers) can result a hissing sound on the high part of the spectrum.
This prediction was confirmed by analyzing the recording of a large number
of singers when they pronounced different wowels (”10,000 Voices, The World
Choir” - EMI Classics, 1992). The next spectrograms (Fig.2) shows vowel ”A”
analyzed using PRAAT [6] software.



38 PAUL NAŞCA

Frequency (Hz)
0 8000

So
un

d 
pr

es
su

re
 le

ve
l (

dB
/

H
z)

0

20

40

Figure 1. Spectrum of ”A” vowel

Frequency (Hz)
4000 7000

So
un

d 
pr

es
su

re
 le

ve
l (

dB
/

H
z)

-40

-20

0

Figure 2. Closeup of the spectrum, to show the ”hissing” part
of the vowel

If the wovel ”A” from this recording is passed through a highpass filter,
the ”hissing” becomes very noticeable for the listener.

3. How PADsynth algorithm works

The PADsynth algorithm generates subjectively pleasant sounds, even if its
idea is more simple than of the other sound synthesis algorithms. It generates
a perfectly looped wave-table sample which can be played back on different
speeds in order to obtain the desired musical pitch. It easily generates sounds
of ensembles, choirs, metallic sounds (bells) and many other types of sound.
Also, this algorithm is a direct consequence of the BoEH approach. It was
created by me at the end of 2003, and it was released on-line with example



“PADSYNTH” SOUND SYNTHESIS ALGORITHM 39

implementations [7] under Public Domain. One of the interesting property of
PADsynth is that it generates the ”hissing” sound for large BoEH, similar to
the ”hissing” discussed before.

3.1. PADsynth steps. The basic steps of this algorithms are:

(1) Make a very large array which represents the amplitude spectrum of
the sound (default all values are zero)

(2) Generates the distribution of each harmonic in frequency and add it
to the array

(3) Randomize the phases to each frequency of the spectrum
(4) Do a single Inverse Fourier Transform of the whole spectrum. Usage of

overlapping windows is not necessary, because there is only one single
IFFT for the whole sample.

The resulting sample can be used as a wave-table to generate the desired note.
These four steps are represented graphically in fig.3.

Figure 3. PADsynth Steps

There are some important facts of the PADsynth algorithm:

• The bandwidth of each harmonic which was described earlier into this
paper is the parameter which gives the subjective quality of ”warmth”
or ”ensemble”.



40 PAUL NAŞCA

• Another important parameter is the frequency distribution of each
harmonic. For example, the sine components of the harmonic can be
evenly spread or a Gaussian distribution can be used.

3.2. PADsynth algorithm described in pseudo-code. For a better un-
derstanding and for helping the implementation of this algorithm, the steps
will be described in pseudo-code:

Input:

N - wave-table size. It’s recommanded to be a power of 2. This is,

usually, a big number (like 262144)

samplerate - the sample-rate (eg. 44100)

f - frequency of the the fundamental note (eg. 440)

bw - bandwidth of first harmonic in cents (eg. 50 cents); must be

greater than zero

number_harmonics - the number of harmonics; number_harmonics<(sample-rate/f)

A[1..number_harmonics] - amplitude of the harmonics

Output:

smp[0..N-1] - the generated wave-table

Internal variables:

freq_amp[0..N/2-1] = {0,0,0,0,...,0}

freq_phase[0..N/2-1], etc...

Functions:

RND() returns a random value between 0 and 1

IFFT()it is the inverse Fourier transform

normalize_sample() normalizes samples between -1.0 and 1.0

profile(fi,bwi){

x=fi/bwi;

return exp(-x*x)/bwi;

};

Steps:

FOR nh = 1 to number_harmonics

bw_Hz=(pow(2,bw/1200)-1.0)*f*nh;

bwi=bw_Hz/(2.0*samplerate);

fi=f*nh/samplerate;

FOR i=0 to N/2-1

hprofile=profile((i/N)-fi,bwi);

freq_amp[i]=freq_amp[i]+hprofile*A[nh];



“PADSYNTH” SOUND SYNTHESIS ALGORITHM 41

ENDFOR

ENDFOR

FOR i=0 to N/2-1

freq_phase[i]=RND()*2*PI;

ENDFOR

smp=IFFT(N,freq_amp,freq_phase);

normalize_sample(N,smp);

OUTPUT smp

The frequency domain array (”freq amp”) data is represented below in
fig. 4. Notice that on the highest frequencies the overtones merge and this
cause the ”hissing” discussed above.

Figure 4. Frequency domain data (full and closeup)

3.3. Suggestions regarding usage of PADsynth algorithm. For best
results, there are some recommendations of using PADsynth algorithm into a
synthesizer.



42 PAUL NAŞCA

• The algorithm produces a sample which is perfectly looped. It is
recommanded to make the samples few seconds long to avoid mak-
ing noticeable the repetition of the sound.

• For each new musical note the playing should start from a random
position of the sample.

• For generating stereo sounds, a single sample is enough, but the sample
have to be played from different positions for left/right channels.

4. Implementations of PADsynth

Since the day this algorithm was made public it was implemented into sev-
eral open-source and commercial synthesizers. The first synthesizer which used
this algorithm is ZynAddSubFX[16], an open-source audio synthesizer, mostly
written by me. This synthesizer is widely distributed in most Linux software
repositories. It has a large number of users, for example, on YouTube[15] there
are available hundrieds videos related to ZynAddSubFX. PADsynth algorithm
is used into one of its three synthesizer engines (other engines are based on ad-
ditive and substractive synthesis methods). Other software synthesizers which
use this algorithm are WhySynth[14], Kunquat[11], BR404[8], KarmaFX[10]
and discoDSP Discovery Pro[9]. There is also, available a module [12] for
SynthMaker [13] which implements PADsynth algorithm.

5. Conclusions

PADsynth algorithm is a simple but very versatile synthesis method. De-
spite of its low complexity, the sounds generated by it are subjectively pleasant
and ”warm”, a characteristic seldom met in many digital synthesizers. Also,
the ”Bandwidth of each harmonic” approach to the musical instruments is a
productive approach for creating new sound synthesis and sound processing
algorithms.

References

[1] Jordi Bonada, Voice solo to unison choir transformation, Music Technology Group,
Institut Universitari de lAudiovisual Universitat Pompeu Fabra, Barcelona, 2005

[2] Akansha Pilley, N.G.Bawane, Jagruti Sanghavi A Stand-alone and Less Power Con-
sumption Digital Music Synthesizer using a Low Cost SoC, International Journal of
Electronics Engineering, 2010

[3] J. C. Risset, Stochastic Processes in Quantum Theory and Statistical Physics, chapter
”Stochastic processes in music and art”, Springer Berlin / Heidelberg, 1982

[4] Ternstrom S, Choir acoustics - an overview of scientific research published to date,
TMH-QPSR vol.43, 2002

[5] Ternstrom S, Perceptual evaluation of voice scatter in unison and choir sounds, STL-
QPSR vol.32, 1991

[6] PRAAT, http://www.fon.hum.uva.nl/praat, retreived Jan 2011



“PADSYNTH” SOUND SYNTHESIS ALGORITHM 43

[7] PADsynth algorithm with example implementations, http://zynaddsubfx.

sourceforge.net/doc/PADsynth/PADsynth.htm, retreived Jan 2011
[8] BR404, http://www.kvraudio.com/get/3679.html, retreived Jan 2011
[9] discoDSP Discovery Pro, http://www.discodsp.com/discoverypro/, retreived Jan

2011
[10] KarmaFX Synth Modular, http://www.karmafx.net, retreived Jan 2011
[11] Kunquat, https://blueprints.launchpad.net/kunquat/+spec/

kunquat-padsynth-generator, retreived Jan 2011
[12] Padpal, http://rekkerd.org/rock-hardbuns-updates-padpal-3/, retreived Jan 2011
[13] SynthMaker, http://synthmaker.co.uk/, retreived Jan 2011
[14] WhySynth, http://www.smbolton.com/whysynth.html, retreived Jan 2011
[15] YouTube, http://www.youtube.com/, retreived Jan 2011
[16] ZynAddSubFX, http://zynaddsubfx.sourceforge.net, retreived Jan 2011

“Petru Maior” University, Faculty of Science and Letters, Targu Mures,
Romania

E-mail address: nascapaul@yahoo.com


