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AN EXPERIMENT ON PROTEIN STRUCTURE

PREDICTION USING REINFORCEMENT LEARNING

GABRIELA CZIBULA, MARIA-IULIANA BOCICOR AND ISTVAN-GERGELY
CZIBULA

Abstract. We are focusing in this paper on investigating a reinforcement
learning based model for solving the problem of predicting the bidimen-
sional structure of proteins in the hydrophobic-polar model, a well-known
NP-hard optimization problem, important within many fields including
bioinformatics, biochemistry, molecular biology and medicine. Our model
is based on a Q-learning agent-based approach. The experimental evalua-
tion confirms a good performance of the proposed model and indicates the
potential of our proposal.

1. Introduction

Combinatorial optimization is the seeking for one or more optimal solutions
in a well defined discrete problem space. In real life approaches, this means
that people are interested in finding efficient allocations of limited resources for
achieving desired goals, when all the variables have integer values. As workers,
planes or boats are indivisible (like many other resources), the Combinatorial
Optimization Problems (COPs) receive today an intense attention from the
scientific community.

The current real-life COPs are difficult in many ways: the solution space
is huge, the parameters are linked, the decomposability is not obvious, the
restrictions are hard to test, the local optimal solutions are many and hard
to locate, and the uncertainty and the dynamicity of the environment must
be taken into account. All these characteristics, and others more, constantly
make the algorithm design and implementation challenging tasks. The quest
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for more and more efficient solving methods is permanently driven by the
growing complexity of our world.

Yet, for COPs that are NP-hard, no polynomial time algorithm exists.
Therefore, complete methods might need exponential computation time in
the worst-case. This often leads to computation times too high for practical
purposes. Thus, the use of approximate methods to solve COPs has received
more and more attention. In approximate methods we sacrifice the guaran-
tee of finding optimal solutions for the sake of getting good solutions in a
significantly reduced amount of time.

Reinforcement Learning (RL) [1] is an approach to machine intelligence in
which an agent can learn to behave in a certain way by receiving punishments
or rewards on its chosen actions.

In this paper we aim at investigating a reinforcement learning based model
for solving a well known optimization problem within bioinformatics, the prob-
lem that refers to predicting the structure of a protein from its amino acid
sequence. Protein structure prediction is an NP-complete problem, being one
of the most important goals pursued by bioinformatics and theoretical chem-
istry; it is highly important in medicine (for example, in drug design) and
biotechnology (for example, in the design of novel enzymes).

The model proposed in this paper for solving the bidimensional protein
folding problem can be easily extended to the problem of predicting the three-
dimensional structure of proteins. Moreover, the proposed model can be gen-
eralized to address other optimization problems. To our knowledge, except for
the ant based approaches [2], the bidimensional protein structure prediction
problem has not been addressed in the literature using reinforcement learning,
so far.

The rest of the paper is organized as follows. Section 2 presents the main
aspects related to the protein structure prediction problem. The reinforcement
learning model that we propose for solving the bidimensional protein folding
problem is introduced in Section 3. An experiment is given in Section 4 and
in Section 5 we provide an analysis of the proposed reinforcement model, em-
phasizing its advantages and drawbacks. Section 6 contains some conclusions
of the paper and future development of our work.

2. Protein Structure Prediction. The Hydrophobic-Polar Model

The determination of the three-dimensional structure of a protein, using
the linear sequence of amino acids is one of the greatest challenges of bioin-
formatics, being an important research direction due to its numerous appli-
cations in medicine (drug design, disease prediction) and genetic engineering
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(cell modelling, modification and improvement of the functions of certain pro-
teins). Moreover, unlike the structure of other biological macromolecules (e.g.,
DNA), proteins have complex structures that are difficult to predict. Protein
structure prediction is an important problem within the more general protein
folding problem, and is also reffered in the literature as the computational
protein folding problem [3]. Different computational intelligence approaches
for solving the protein structure prediction problem have been proposed in the
literature, so far.

An important class of abstract models for proteins are lattice-based models
- composed of a lattice that describes the possible positions of amino acids in
space and an energy function of the protein, that depends on these positions.
The goal is to find the global minimum of this energy function, as it is assumed
that a protein in its native state has a minimum free energy and the process
of folding is the minimization of this energy [4].

One of the most popular lattice-models is Dill’s Hydrophobic-Polar (HP)
model [5].

In the folding process the most important difference between the amino
acids is their hydrophobicity, that is how much they are repelled from water.
By this criterion the amino acids can be classified in two categories: hydropho-
bic or non-polar (H) - the amino acids belonging to this class are repelled by
water; hydrophilic or polar (P) - the amino acids that belong to this class have
an affinity for water and tend to absorb it.

The HP model is based on the observation that the hydrophobic forces are
very important factors in the protein folding process, guiding the protein to
its native three dimensional structure.

The primary structure of a protein is seen as a sequence of n amino acids
and each amino acid is classified in one of the two categories: hydrophobic
(H) or hydrophilic (P). A conformation of the protein P is a function C, that
maps the protein sequence P to the points of a two-dimensional cartesian
lattice such that any two consecutive amino acids in the primary structure
of the protein are neighbors (horizontally or vertically) in the bidimensional
lattice. It is considered that any position of an amino acid in the lattice may
have a maximum number of 4 neighbors: up, down, left, right.

A configuration C is valid if it is a self avoiding path, i.e the mapped
positions of two different amino acids must not be superposed in the lattice.

Figure 1 shows a configuration example for the protein sequence P =
HHPH, of length 4, where the hydrophobic amino acids are represented in
black and the hydrophilic ones are in white.

The energy function in the HP model reflects the fact that hydrophobic
amino acids have a propensity to form a hydrophobic core. Consequently
the energy function adds a value of -1 for each two hydrophobic amino acids
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Figure 1. A protein configuration for the sequence P = HHPH,
of length 4. Black circles represent hydrophobic amino acids, while
white circles represent hydrophilic ones. The configuration may be
represented by the sequence LUR. The value of the energy function
for this configuration is -1.

that are mapped by C on neighboring positions in the lattice, but that are
not consecutive in the primary structure P. Such two amino acids are called
topological neighbors. Any hydrophobic amino acid in a valid conformation
C can have at most 2 such neighbors (except for the first and last aminoacids,
that can have at most 3 topological neighbors).

The computational protein folding problem in the HP model is to find the
conformation C whose energy is minimum. A solution for the bidimensional
HP protein folding problem, corresponding to an n-length sequence P could
be represented by a n− 1 length sequence π = π1π2...πn−1, πi ∈ {L,R,U,D},
∀1 ≤ i ≤ n − 1, where each position encodes the direction of the current
amino acid relative to the previous one (L-left, R-right, U-up, D-down). As an
example, the solution configuration corresponding to the sequence presented
in Figure 1 is LUR.

3. A Reinforcement Learning Model for Solving the
Bidimensional Protein Structure Prediction Problem

In the folowing we are addressing the Bidimensional Protein Structure
Prediction problem (BPSP ), more exactly the problem of predicting the bidi-
mensional structure of proteins, but our model can be easily extended to the
three-dimensional protein folding problem.

Let us consider, in the following, that P = p1p2...pn (n ≥ 3) is a protein
HP sequence consisting of n amino acids, where pi ∈ {H,P}, ∀1 ≤ i ≤ n.
As we have indicated in Section 2, the bidimensional structure of P will be
represented as an n − 1-dimensional sequence π = π1π2...πn−1, where each
element πk (1 ≤ k ≤ n) encodes the direction (L, U , R or D) of the current
amino acid location relative to the previous one.

The RL task associated to the BPSP is defined as follows.
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The state space S (the agent’s environment) will consist of 4n−1
3 states,

i.e S = {s1, s2, ..., s 4n−1
3
}. The initial state of the agent in the environment is

s1. A state sik ∈ S(ik ∈ [1, 4
n−1
3 ]) reached by the agent at a given moment

after it has visited states s1, si1 , si2 , ...sik−1
is a terminal (final or goal) state

if the number of states visited by the agent in the current sequence is n − 1,
i.e. k = n− 2. A path from the initial to a final state will represent a possible
bidimensional structure of the protein sequence P.

The action space A consists of 4 actions available to the problem solv-
ing agent and corresponding to the 4 possible directions L(Left), U(Up),
R(Right), D(Down) used to encode a solution, i.e A = {a1, a2, a3, a4}, where
a1 = L, a2 = U , a3 = R and a4 = D.

The transition function δ : S → P(S) between the states is defined as in
Formula 1.

(1)

δ(s 4k−1
3

+i
, al) = s 4k+1−1

3
+4·(i−1)+l

∀k ∈ [0, n− 1], ∀i, 1 ≤ i ≤ 4k ∀l, 1 ≤ l ≤ 4.

This means that, at a given moment, from a state s ∈ S the agent can
move in 4 successor states, by executing one of the 4 possible actions. We say
that a state s′ ∈ S that is accessible from state s, i.e s′ ∈

⋃
a∈A δ(s, a), is the

neighbor (successor) state of s.
The transitions between the states are equiprobable, the transition prob-

ability P (s, s′) between a state s and each neighbor state s′ of s is equal to
0.25 .

Let us consider a path π in the above defined evironment from the initial
to a final state, π = (π0π1π2 · · ·πn−1), where π0 = s1 and ∀0 ≤ k ≤ n− 2 the
state πk+1 is a neighbor of state πk. The sequence of actions obtained following
the transitions between the successive states from path π will be denoted by
aπ = (aπ0aπ1aπ2 · · · aπn−2), where πk+1 = δ(πk, aπk), ∀0 ≤ k ≤ n − 2. The
sequence aπ will be refered as the configuration associated to the path π and it
can be viewed as a possible bidimensional structure of the protein sequence P.
Consequently we can associate to a path π a value denoted by Eπ representing
the energy of the bidimensional configuration aπ of protein P (Section 2).

The BPSP formulated as a RL problem will consist in training the agent
to find a path π from the initial to a final state that will corespond to the
bidimensional structure of protein P given by the coresponding configuration
aπ and having the minimum associated energy.

It is known that the estimated utility of a state [6] in a reinforcement
learning process is the estimated reward-to-go of the state (the sum of rewards
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received from the given state to a final state). So, after a reinforcement learn-
ing process, the agent learns to execute those transitions that maximize the
sum of rewards received on a path from the initial to a final state.

As we aim at obtaining a path π having the minimum associated energy
Eπ, we define the reinforcement function as follows: if the transition generates
a configuration that is not valid (i.e self-avoiding) (see Section 2) the received
reward is 0.01; the reward received after a transition to a non terminal state is
a small positive constant greater than 0.01 (e.q 0.1); the reward received after
a transition to a final state πn−1 after states s1, π1, π2, ...πn−2 were visited is
minus the energy of the bidimensional structure of protein P corresponding
to the configuration aπ.

Considering the reward defined as indicated above, as the learning goal is
to maximize the total amount of rewards received on a path from the initial
to a final state, it can be easily shown that the agent is trained to find a self
avoiding path π that minimizes the associated energy Eπ.

3.1. The learning process. During the training step of the learning process,
the agent will determine its optimal policy in the environment, i.e the policy
that maximizes the sum of the received rewards.

For training the BPSP agent, we propose a Q-learning approach. The
idea of the training process is the following:

• The Q values are initialized with 0.
• During some training episodes, the agent will experiment (using the
ε-Greedy action selection mechanism) some (possible optimal) paths
from the initial to a final state, updating the Q-values estimations
according to the Q− learning algorithm [7].
• During the training process, the Q-values estimations converge to their

exact values, thus, at the end of the training process, the estimations
will be in the vicinity of the exact values.

After the training step of the agent has been completed, the solution
learned by the agent is constructed by starting from the initial state and
following the Greedy mechanism until a solution is reached. From a given
state i, using the Greedy policy, the agent transitions to a neighbor j of i
having the maximum Q-value. Consequently, the solution of the BPSP re-
ported by the RL agent is a path π = (s1π1π2 · · ·πn−2) from the initial to a
final state, obtained following the policy described above. We mention that
there may be more than one optimal policy in the environment determined
following the Greedy mechanism described above. In this case, the agent may
report a single optimal policy of all optimal policies, according to the way it
was designed.
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It is proven in [8] that the Q-values learned converge to their optimal
values as long as all state-action pairs are visited an infinite number of times.
Consequently, the configuration aπ corresponding to the path π learned by the
BPSP agent converges, in the limit, to the sequence that corresponds to the
bidimensional structure of protein P having the minimum associated energy.

4. Experiment

In this section we aim at experimentally evaluating the proposed reinforce-
ment learning approach.

Let us consider a bidimensional HP protein instance P = HPHPPHHP
HPPHPHHPPHPH, consisting of twenty amino acids, i.e n = 20. The
benchmark instance for the 2D HP Protein Folding Problem used in this study
can be found in [9] and its known optimal energy value is E∗ = −9. As we

have presented in Section 3, the states space will consist of 420−1
3 states. We

have trained the BPSP agent as indicated in Subsection 3.1. As proven in
[8], the Q-learning algorithm converges to the optimal Q-values as long as all
state-action pairs are visited an infinite number of times, the learning rate α
is small (e.q 0.01) and the policy converges in the limit to the Greedy policy.
We remark the following regarding the parameters setting:

• the learning rate is α = 0.01 in order to assure the convergence of the
algorithm;
• the discount factor for the future rewards is γ = 0.9;
• the number of training episodes is 19 · 105;
• the ε-Greeedy action selection mechanism was used. Regarding the
ε parameter used for the epsilon-Greedy action selection mechanism
during the training step, the following strategy was used: we have
started with ε = 1 in order to favor exploration, then after the training
progresses ε is decreased until it reaches a small value, which means
that at the end of the training exploitation is favorized.

Using the above defined parameters and under the assumptions that the
state action pairs are equally visited during training, the solution reported
after the training of the BPSP agent was completed is the configuration
aπ = (RUULDLULLDRDRDLDRRU), determined starting from state s1,
following the Greedy policy (as we have indicated in Subsection 3).

The solution learned by the agent is represented in Figure 2 and has an
energy of −9.

Consequently, the BPSP agent learns the optimal solution of the compu-
tational bidimensional protein folding problem, i.e the bidimensional structure
of the protein P that has a minimum associated energy (−9).
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Figure 2. The learned solution is
RUULDLULLDRDRDLDRRU . The value of the energy
function for this configuration is −9.

5. Comparison with related approaches

Regarding the Q-learning approach introduced in Section 3 for solving
the bidimensional protein folding problem, we remark the following. The
training process during an episode has a time complexity of θ(n), where n
is the length of the HP protein sequence. Consequently, assuming that the
number of training episodes is k, the overall complexity of the algorithm for
training the BPSP agent is θ(k · n).

In the following we will briefly compare our approach with some of the
existing approaches. The comparison is made considering the computational
time complexity point of view. Since for the most of the existing approaches
the authors do not provide the asymptotic analysis of the time complexity of
the proposed approaches, we can not provide a detailed comparison.

Genetic and evolutionary approaches were developed in [10, 11, 12] for
predicting the bidimensional structure of proteins. An asymptotic analysis of
the computational complexity for evolutionary algorithms (EAs) is difficult
[13] and is usually done only for particular problems. Anyway, the number
of generations (or equivalently the number of fitness evaluations) is the most
important factor in determining the order of EA’s computation time. In our
view, the time complexity of an evolutionary approach for solving the problem
of predicting the structure of an n-dimensional protein is at least noOfRuns ·
n ·noOfGenerations ·populationLength. For large instances, it is likely (even
if we can not rigurously prove) that the computational complexity of our
approach is less than the one of an evolutionary approach.

Ant Colony Optimization (ACO) was already used for solving the protein
folding problem in the HP model [14, 15]. Neumann et al. show in [16] how
simple ACO algorithms can be analyzed with respect to their computational
complexity on example functions with different properties, and also claim that
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asymptotic analysis for general ACO systems is difficult. In our view, the time
complexity of an ACO approach for solving the problem of predicting th struc-
ture of an n-dimensional protein is at least noOfRuns · n · noOfIterations ·
noOfAnts. For large instances, it is likely (even if we can not rigurously
prove) that our approach has a lower computational complexity.

Compared to the supervised classification approach from [17], the advan-
tage of our RL model is that the learning process needs no external supervision,
as in our approach the solution is learned from the rewards obtained by the
agent during its training. It is well known that the main drawback of su-
pervised learning models is that a set of inputs with their target outputs is
required, and this can be a problem.

The main drawback of our approach is that a very large number of training
episodes has to be considered in order to obtain accurate results and this
leads to a slow convergence. In order to speed up the convergence process,
further improvements, such as local search mechanisms will be considered.
Anyway, we think that the direction of using reinforcement learning techniques
in solving the protein folding problem is worth being studied and further
improvements can lead to valuable results.

6. Conclusions and Further Work

We have proposed in this paper a reinforcement learning based model for
solving the bidimensional protein structure prediction problem, a fundamental
problem in computational molecular biology and biochemical physics. To our
knowledge, except for the ant based approaches, the problem of predicting the
bidimensional structure of proteins has not been addressed in the literature
using reinforcement learning, so far. The model proposed in this paper can be
easily extended to solve the three-dimensional computational protein folding
problem, and moreover to solve other optimization problems.

We plan to extend the evaluation of the proposed RL model for other large
HP protein sequences, to further test its performance. We will also investigate
possible improvements of the RL model by analyzing a temporal difference
approach [1], by using different reinforcement functions and by adding dif-
ferent local search mechanisms in order to increase the model’s performance.
An extension of the BPSP model to a distributed RL approach will be also
considered.
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street, 400084 Cluj-Napoca, Romania

E-mail address: {gabis,iuliana,istvanc}@cs.ubbcluj.ro


