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COURNOT GAMES
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Abstract. Equilibria detection in large games is a fundamental problem
in computational game theory. A memetic algorithm, Global Search and
Local Ascent (GSLA), is proposed. GSLA’s performance is evaluated by
means of numerical experiments within the framework of a Cournot game
involving up to 100 players and by comparison with an evolutionary mul-
tiobjective optimization algorithm adapted for Nash equilibria detection.

1. Introduction

Mathematical games share a lot of similarities with Multi-Objective Op-
timization Problems (MOOPs). A non-cooperative game consists of a set of
players, a set of actions available for each player, and the corresponding payoff
functions for each player respectively. Similar with a multi-objective optimiza-
tion problem each player seeks to maximize her corresponding payoff function
in order to increase her profits.

The most common solution concepts for the two types of problems are
the Pareto optimal solution for MOOPs [5] and the Nash equilibria for games
[10], respectively. While the Pareto dominance relation allowed an extensive
study of MOOPs from an evolutionary perspective [4], for the Nash equilibrium
only recently an appropriate fitness concept based on non-domination has been
developed [6, 7]. This was attained with the use of a generative relation capable
of guiding an evolutionary algorithm towards a game’s Nash equilibrium. Thus
existing evolutionary algorithms designed for multiobjective optimization can
be adapted for searching Nash Equilibria.

Our aim is to compute equilibria for games involving large number of
players. Preliminary experiments with [6, 3] show that common algorithms
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designed for MOOPs are unsuccessfully answering that challenge. A memetic
algorithm that aims to combine evolutionary techniques and local improve-
ment procedures, named Global Search and Local Ascent (GSLA) algorithm,
is introduced. Numerical experiments conducted for Cournot games with up
to 100 players show the potential of GSLA.

The paper is organized as follows: in the next section some basic notions
from game theory are presented as well as the Nash generative relation. In the
third section the GSLA algorithm is described, and the algorithm’s founding
ideas and building blocks are illustrated. Next, numerical experiments con-
ducted with the Cournot oligopoly offer an assessment of GSLA’s performance,
as well as a comparison to NSGA-II’s. The paper ends with conclusions, ac-
knoledgments and bibliographical references.

2. Prerequisites

Some fundamental concepts related to game theory are described in this
section.

2.1. Strategic game. A finite strategic non-cooperative game [6, 10] is de-
fined as a system Γ = ((N,Si, ui), i = 1, n) where:

• N = {1, ..., n} is a set of n players;
• for each player i ∈ N , Si represents the set of actions (pure strategies)
available to him, Si = {si1 , si2 , ..., simi

};
• S = S1 × S2 × ...× SN is the set of all possible situations of the game;
• an element of S is a strategy profile (or strategy) of the game;
• for each player i ∈ N , ui : S → R represents the payoff function.

Let s∗ be a strategy profile. Denote by (sij , s
∗
−i) the strategy profile obtained

from s∗ by replacing the strategy of player i by sij i.e.

(sij , s
∗
−i) = (s∗i , s

∗
2, ..., s

∗
i−1, sij , s

∗
i+1, ..., s

∗
n).

S−i denotes a strategy profile of every player except i. It is important to notice
that, for a given game outcome, each player’s payoff is not determined solely
by his own action, but rather by the combination of his chosen strategy and
all the other players’ actions.

2.2. Nash Equilibrium. In game theory, the prevalent solution concept of a
non-cooperative game is Nash Equilibrium (NE) [9, 8]. Thus, a Nash equilib-
rium is a strategy profile reflecting a state of the game from which no single
player can improve his payoff by unilaterally modifying her strategy.

Definition Profile strategy s∗ is a Nash equilibrium if the inequality
ui(s

∗) ≥ ui(sij , s
∗
−i) holds for every action sij of every player i, sij ∈ Si.
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2.3. Nash ascendancy relation. Given two strategy profiles s′ and s′′, the
instituted operator k(s′, s′′) assigns to the pair the cardinality of the set

k(s′′, s′) = card{i ∈ {1, ..., n}|ui(s′i, s′′−i) ≥ ui(s
′′), s′i ̸= s′′i }

i.e. k(s′, s′′) denotes the number of individual strategies from s′ which
replaced in s′′ give better payoff for the corresponding player.

k(s′′, s′) measures the sensitivity of s′′ with respect to perturbations sup-
plied from s′. The lower sensitivity, the higher is the stability of s′′ with
respect to s′.

We may use

m(s′′, s′) = n− k(s′′, s′)

as a measure for the relative quality of s′′ with respect to s′.
Let us consider a generative relation RN on S × S: (s′, s′′) ∈ RN if and

only if s′ is better than s′′ with respect to m, i.e. m(s′, s′′) > m(s′′, s′).
Therefore (s′, s′′) ∈ RN if and only if k(s′, s′′) < k(s′′, s′).
A strategy profile s′ ascends (dominates in Nash sense) another strategy

profile s′′ if there are less players capable of augmenting their profit by changing
their strategy from s′ to s′′, than the reverse.

A strategy profile s is considered non-dominated in Nash sense if @s′ ∈ S :
(s′, s) ∈ RN .

As stated in [6], all non-dominated strategy profiles with respect to RN

represent NE.

3. Proposed method

The above-mentioned Nash-based domination concept facilitates the com-
parison of two solutions, ascertaining that one is ”closer” than the other to the
equilibrium. Applying this domination concept in the framework of evolution-
ary computation, by using the generative relation within the EA comparison
procedures, leads to algorithms for search and detection of a game’s Nash
equilibria, as the algorithm will converge to the Nash non-dominated solu-
tions. An evolutionary model that incorporates a global search within the
game solutions’ space is proposed. This search is performed using a genetic
algorithm that has been adapted so it detects a game’s Nash equilibrium.
Then, a local search algorithm is used, aimed to improve the quality (thus
reducing the ”distance” to the NE) of the new population’s best candidate
solution.

The proposed method, named Global Search and Local Ascent (GSLA),
is constructed as a memetic algorithm, a GA’s hybridization with a stochastic
local optimization technique.



88 SĂRĂŞAN, MIHOC, LUNG, AND DUMITRESCU

3.1. Global Search. Using a Genetic algorithm (GA) [1, 4] a population of
individuals is evolved, by applying a set of particular rules, towards a state
which maximizes the population’s fitness. Because of the many advantages
inherent to this technique, as well as its compatibility with the problem of
detecting a game’s NE, the model of a GA constitutes the basis of the proposed
evolutionary method.

The algorithm uses a real-coding of chromosomes: each chromosome rep-
resents a strategy profile and each individual gene indicates the strategy that
a player chooses to play.

In its run, the algorithm first triggers the creation of a random initial
population of candidate solutions. Each generation’s individuals are assigned –
via a Nash-ascendancy fitness evaluation – an factor that indicates the quality
of the candidate’s solution within the population. Less dominated individuals
(with a smaller ascendancy factor) represent better-quality solutions.

Selection of individuals for crossover is performed tournament-style offer-
ing the benefit of a stricter selection pressure while still not completely dis-
counting weaker individuals. Selected individuals undergo a convex crossover,
their offspring possibly also undergo uniform mutation to preserve genetic
variety within the population.

The offspring population, with the same size with the parent population,
replaces the old population, discarded in favour of the young one. The best
individual of the old population is also kept in the new population – a partial
elitist approach which avoids the risk of premature convergence associated
with full elitism, but still ensures the further exploration of the current best
solution and its neighbours within the next generation. The algorithm stops
after a preset number of generations or when the number of fitness function
evaluations is reached.

3.2. Local search. GAs are usually competent at detecting adequate global
solutions, but are often lacking precision. On the other hand, local search
methods, such as hill climbing, are quite successful at detecting the optimum in
a bounded section. An approach wherein the GA technique and hill climbing
are alternated should increase the search’ efficiency while surmounting the
deficiencies inherent in GA as well as in hill climbing.

Within the proposed model, after reaching a specified number of iterations,
before resuming with the initiation of a new generation cycle, the current
generation’s fittest individual is in fact set apart and submitted to undergo a
local refinement process (before being added to the new population).

This process is constructed as follows:
Let s = (s1, ..., sn) denote the strategy profile represented by the fittest

individual. For a random value i ∈ {1, ..., n}, the gene si is modify by summing
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a value ±e (± is randomly decided upon). For the potential offspring s′, we
would have s′i = si ± e.

If the new strategy profile Nash-ascends its parent, it takes its place and
the refinement process is applied again.

If the new strategy profile does not dominate its parent a new position
i is considered for mutation. The following positions are obtained by either
increases or decreases (a randomly made decision as well) the precedent i value
by 1, depicting a circular movement along the chromosomal genes.

If, however, within the current strategy profile s no i was found so that
player s′ could increase her payoff by altering her strategy with e, the search
ends.

4. Numerical experiments

The current section offers a brief view into the performance analysis of the
GSLA algorithm, as well as a performance comparison with multi-objective op-
timization evolutionary algorithm NSGA-II [3], adapted to search for a game’s
Nash equilibria instead of the Pareto optimal solutions.

The Cournot oligopoly model has been considered for the numerical ex-
periments [2]. Results show the two algorithms – GSLA and NSGA-II – indi-
vidual performances in detecting the game’s NE. A graphical visualization of
the obtained values also illustrates how the two algorithms behave.

4.1. Cournot oligopoly. Consider n competing companies, all producing a
single product, and the product quantity produced by each firm is denoted by
qi respectively.

A game strategy profile is

s = (q1, ..., qn).

Let Q = Σqi denote the total quantity for that product available on the
market. The market clearing price is

P (Q) =

{
a−Q, for Q < a,

0, for Q ≥ a.

where a denotes the maximum number of the product that are possible to be
sold on the market.

We assume that any firm i’s full expenditure for producing the quantity
qi is Ci (qi) = cqi, c < a. Working with the supposition that all firms choose
their quantities at the same time, the payoff for each firm i is its profit:

πi(q1, ..., qn) = qiP (Q)− Ci(qi)

= qi [a− (q1 + ...+ qn)− c] , i = 1, ..., n.
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GSLA NSGA II
No. of Average Standard Average Standard
players distance deviation distance deviation

2 0.000074 0.000050 0.000757 0.001712
5 0.000548 0.001124 1.321731 1.758642
10 0.002871 0.004088 7.467808 2.818299
20 0.265021 0.230464 18.976990 4.420855
50 0.379441 0.256289 26.378490 3.942610
100 0.447361 0.029569 89.040740 16.546090

Table 1. Average distance to Nash equilibrium in 30 runs for
GSLA and NSGA II

The Cournot oligopoly in the form presented here has one Nash equilibrium
q∗ = (qi

∗)(i= ¯1,n), and

qi
∗ =

a− c

n+ 1
,∀i ∈ {1, ..., n}

This model is used for numerical simulation with different numbers of players
in order to asses GSLA’s and NSGA-II’s performances in detecting the game’s
Nash equilibrium.

4.2. Parameter setting. Both algorithms GSLA and NSGA-II are tested
for 2, 5, 10, 20, 50 and 100 players.

Population size was set to 75, the maximum number of generations to 250,
the initialization domain to [0, 100]. The tournament size is 30, crossover
probability 0.5 and probability of mutation 0.2.

Cournot parameters a and c were set to 205 and 3 respectively.
30 runs were completed for each algorithm with different random seeds,

and the average and standard deviation of the best obtained solutions’ distance
to the NE was calculated.

4.3. Numerical results. The numerical results obtained for games with 2,
5, 10, 20, 50 and 100 players with the two methods – GSLA and NSGA II
are depicted in Table 1. The GSLA performance is superior, the average
distance to Nash equilibria being 0.44 even for the game having 100 players
while NSGA-II has an average distance 89.04. A graphical illustration of the
differences between the two methods is given in Figure 1.

5. Conclusion and Further work

A new hybrid method, called Global Search and Local Ascent algorithm is
proposed. GSLA combines a generational evolutionary algorithm with a hill
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Figure 1. Comparison of average distance to NE for GSLA
and NSGA II

climbing procedure in order to compute the Nash equilibria for a large non-
cooperative game. The search is guided using a generative relation allowing
the comparison of two strategy profiles within a game.

The efficiency of the method is evaluated using a Cournot oligopoly taking
into account up to 100 firms.

Results are compared with a modify version of the NSGA-II algorithm.
For the given setting, GSLA significantly outperforms NSGA-II, suggesting a
very good search potential.

Further work will consist in exploring this potential by using GSLA for
equilibria detection in games characterized by the existence of multiple Nash
equilibria.
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