
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LV, Number 4, 2010

IMPLEMENTATION OF A RECOMMENDER SYSTEM

USING COLLABORATIVE FILTERING

PRODAN ANDREI-CRISTIAN

Abstract. Nowadays, consumers have a lot of choices. Electronic retail-
ers offer a great variety of products. Because of this, there is a need for
Recommender Systems. These systems aim to solve the problem of match-
ing consumers with the most appealing products for them. They do this by
analyzing either the products information details (Content Based methods)
or users social behavior (Collaborative Filtering). This paper describes the
Collaborative Filtering technique in more detail. It then presents one of
the best methods for CF: the Matrix Factorization technique. Next, it
presents two algorithms used for matrix factorization. Then, the paper
describes the implementation details of a framework created by us, called
Rho, that uses Collaborative Filtering. In the end, we present some results
obtained after experimenting with this framework.

1. Introduction

This paper is organized in two parts. The first part (sections 1 and 2)
presents some theoretical aspects about Recommender Systems. It describes
what they are, who uses them, a couple of examples and some mathemati-
cal background. In terms of building a user profile, the paper describes the
Collaborative Filtering technique.

In the second part (section 3), the paper describes an implementation of a
framework (named Rho and implemented by us) which can be used to model
a Recommender System based on Collaborative Filtering techniques. Using
the algorithms described in section 2.1, the presentation continues with the
implementation details. Finally, in section 4, we comment on some results
obtained after experimenting with this framework. In the end, section 5 we
state our conclusions along with some ideas on how to further expand the
capabilities of such systems.

Received by the editors: August 30, 2010.
2010 Mathematics Subject Classification. 68P20, 15A18, 15A23.
1998 CR Categories and Descriptors. H.3.3 [Information Systems]: Information stor-

age and retrieval – Information search and retrieval ; G.1.2 [Mathematics of Computing]:
Numerical Analysis – Approximation.

Key words and phrases. collaborative filtering, Recommender Systems, svd.

70

IMPLEMENTATION OF A RECOMMENDER SYSTEM 71

We continue with this section by giving an overview of what Recommender
Systems are, a general view on how do they work and some examples, used by
several big companies.

Nowadays, consumers have a lot of choices. Electronic retailers offer a
great variety of products. Because of this, there is a need for Recommender
Systems. These systems aim to solve the problem of matching consumers with
the most appropriate products.

Recommender Systems can be used on products such as books, movies,
music, restaurants and TV shows. Many customers will view the same movie
or purchase the same item. Every item has a couple of characteristics like genre
or subject, and users can express their preferences (like of dislike) regarding
them. Also, customers give feedback on products, indicating how much they
liked it, so data about which product appeals to which customer, is available.
Companies can analyze this data and recommend products to their customers.

Essentially, Recommender Systems compare the user’s profile to some ref-
erence characteristics, and try to predict the “rating” that a user would give
to an item they had not yet considered.

There are mainly two forms of data collection needed for building a users
profile:

(1) Explicit data: ask a user to rate an item on a scale, present two
items to a user and asking him/her to choose the best one, ask a user
to create a list of items that he/she likes, ask a user to rank a collection
of items from favorite to least favorite;

(2) Implicit data: observing the items that a user views in an online
store, analyze item/user viewing times, keep a record of the items that
a user purchases online, obtaining a list of items that a user has listened
to or watched on his/her computer, analyzing the user’s social network
and discovering similar likes and dislikes.

The Recommender System compares the collected data to similar and non
similar data collected from others and calculates a list of recommended items
for the user.

The following issues represent the main challenges that must be considered
when implementing a Recommender System.

• The cold-start problem: Recommender Systems must be capable of
matching the characteristics of an item against relevant features in the
user’s profile. In order to do this, it must first construct a sufficiently-
detailed model of the user’s tastes and preferences. The cold start
problem implies that the user has to dedicate an amount of effort to
contribute to the construction of their user profile before the system
can start providing any intelligent recommendations.

72 PRODAN ANDREI-CRISTIAN

• Sparsity: In any Recommender System, the number of ratings already
obtained is usually very small compared to the number of ratings that
need to be predicted. Effective prediction of ratings from a small
number of examples is important. Also, the success of the collaborative
Recommender System depends on the availability of a critical mass of
users.
• Scalability: Recommender Systems are usually designed to work on

very large data sets. Therefore the scalability of the methods employed
by them systems is crucial.

It is worth mentioning that big companies like Amazon, Google, Yahoo,
Netflix, last.fm make use of Recommender Systems.

2. Designing a Recommender System using Collaborative
Filtering

Collaborative filtering is a term coined by the developers of Tapestry, the
first Recommender System ([1]). The underlying assumption of CF approach
is that those who agreed in the past tend to agree again in the future. For
example, a collaborative filtering or recommendation system for music tastes
could make predictions about which music a user should like given a partial
list of that user’s tastes (likes or dislikes). These predictions are specific to
the user, but use information gathered from many users.

The problem of collaborative filtering (CF) is defined in [2], as follows.
The problem can be modeled by the random triplet (U, I,R), where:

• U taking values from {1, ..., N} is the user identifier (N is the number
of users),
• I taking values from {1, ...,M} is the item identifier (M is the number

of items), and
• R taking values from X ⊂ R is the rating value. Typical rating values

can be binary (X = {0, 1}), integers from a given range (for example,
X = {1, 2, 3, 4, 5}), or real numbers of a closed interval (for example,
X = [10, 10]).

A realization of (U, I,R) denoted by (u, i, r) means that user u rated item
i with value r. The goal is to estimate R from (U, I) such that the root mean
squared error of the estimate,

(1) RMSE =

√
E{(R̂−R)2}

is minimal, where R̂ is the square estimate of R and E denotes the mean.
In practice, the distribution of (U, I,R) is not known: we are only given

a finite sample, T ′ = {(u1, i1, r1), (u2, i2, r2), ..., (ut, it, rt)}, generated by it.

IMPLEMENTATION OF A RECOMMENDER SYSTEM 73

The sample T ′ can be used for training predictors. We assume sampling
without replacement in the sense that (userID, itemID) pairs are unique in
the sample, which means that users do not rate items more than once. Let
us introduce the notation T = {(u, i) : ∃r : (u, i, r) ∈ T ′} for the set of
(userID, itemID) pairs. Note that |T ′| = |T |, and typically |T | � N ·M ,
because most of the users rate only a small subset of the entire set of items.
The sample can be represented as a partially specified matrix denoted by
R ∈ RN×M , where the matrix elements are known in positions (u, i) ∈ T ,
and unknown in positions (u, i) /∈ T . The value of the matrix R at position
(u, i) ∈ T , denoted by rui, stores the rating of user u for item i. For clarity, we
use the term (u, i)-th rating in general for rui, and (u, i)-th training example
if rui : (u, i) ∈ T .

The goal of this CF setup is to create such predictors that aim at min-
imizing the error (1). In practice, we cannot measure the error because the
distribution of (U, I,R) is unknown, but we can estimate the error on a vali-
dation set. Let us denote the validation set by V ′ ⊂ [1, ..., N]× [1, ...,M]×X,
assuming sampling without replacement as defined above, and we further as-
sume the uniqueness of (userID, itemID) pairs across T ′ and V ′. We define
V = {(u, i) : ∃r : (u, i, r) ∈ V ′}. The assumptions ensure that T ∩ V = ∅ .
If both the training set T and validation set V ′ are generated from the same
distribution the estimate of RMSE can be calculated as:

(2) ˆRMSE =

√√√√ 1

|V|
∑

(u,i)∈V

(r̂ui − rui)2

2.1. Matrix Factorization for Collaborative Filtering. The idea behind
Matrix Factorization (MF) is quite simple. We want to approximate matrix
R (the ratings matrix) as the product of two matrices:

(3) R ≈ PQ,

where P is an N×K matrix and Q is a K×M matrix. We call P the user
feature matrix and Q the item feature matrix. K is the number of features in
the given factorization. Q and P typically contain real numbers, even when
R contains only integers.

One way to do this is to use a techniques called Singular Value Decom-
position (SVD). This technique is a matrix factorization technique commonly
used for producing low-rank approximations of the initial matrix. Given an
m × n matrix A, with rank r, the singular value decomposition, SV D(A), is
defined as:

74 PRODAN ANDREI-CRISTIAN

(4) SV D(A) = U × S × V T ,

where, where U is an m ×m unitary matrix over R, the matrix S is an
m × n diagonal matrix with nonnegative real numbers on the diagonal, and
V T , an n× n unitary matrix over R, denotes the conjugate transpose of V .

Getting back to collaborative filtering, the task is to factorize the R (rating
matrix) according to SVD. Once the m × n ratings matrix R is decomposed
and reduced into three SVD component matrices with k features Uk, Sk, and
Vk, prediction can be generated from it by computing the cosine similarities

(dot products) between m pseudo-customers Uk ·
√
Sk

T
and n pseudo-products√

Sk · VkT . In particular, the prediction score Pi,j for the i-th customer on the
j-th product by adding the row average ri to the similarity. Formally,

(5) Pi,j = r + Uk ·
√
Sk

T
(i) ·

√
Sk · VkT

Once the SVD decomposition is done, the prediction generation process in-
volves only a dot product computation, which takes O(1) time, since k is a
constant.

However, this is unfeasible for very big and sparse matrices. An alternative
to this is proposed by [2] and presented next.

2.2. Background on the ISMF and RISMF algorithms. In this section
we give an overview of the theoretical aspects of two recommendation algo-
rithms used in the framework implemented by us and described in section 3.
These algorithms (denoted ISMF and RISMF [2]) use the following matrix
factorization technique.

The notations are the same used in section 2. Let puk denote the elements
of P ∈ RN×K , and qki the elements of Q ∈ RK×M . Further, let pu, denote a
row (vector) of P, and qi, a column (vector) of Q. Then:

IMPLEMENTATION OF A RECOMMENDER SYSTEM 75

r̂ui =

K∑
k=1

pukqki = puqi,(6)

eui = rui − r̂ui, (u, i) = rui − puqi ∈ (T),

eui
′ =

1

2
eui

2,(7)

SSE =
∑

(u,i)∈T

eui
2 =

∑
(u,i)∈T

(
rui −

K∑
k=1

pukqki

)2

SSE′ =
1

2
SSE =

∑
(u,i)∈T

eui
′,

RMSE =

√
SSE

|T |
,

(P∗,Q∗) = arg min
(P∗,Q∗)

SSE′ = arg min
(P∗,Q∗)

SSE = arg min
(P∗,Q∗)

RMSE(8)

Here:

• r̂ui denotes how the u-th user would rate the i-th item, according to
the model;
• eui denotes the training error measured at the (u, i)-th rating;
• SSE denotes the sum of squared training errors.

Equation 8 states that the optimal P and Q minimize the sum of squared
errors only on the known elements of R.

In order to minimize RMSE, which is in this case equivalent to minimizing
SSE′, we apply a simple incremental gradient descent method to find a local
minimum of SSE′, where one gradient step intends to decrease the square of
prediction error of only one rating, or equivalently, either eui

′ or eui
2.

For the incremental gradient descent method, suppose we are at the (u, i)-
th training example, rui, and its approximation r̂ui is given.

We compute the gradient of eui
′ and we obtain:

∇eui′ =

(
∂eui

′

∂pu
,
∂eui

′

∂qi

)
(9)

∂eui
′

∂puk
= −eui · qki(10)

∂eui
′

∂qki
= −eui · puk(11)

76 PRODAN ANDREI-CRISTIAN

We update the weights in the direction opposite to the gradient:

puk ← puk + γ · eui · qki(12)

qki ← qki + γ · eui · puk(13)

That is, we change the weights in P and Q to decrease the square of actual
error, thus better approximating rui. Here γ is the learning rate.

When the training has been finished, each value of R can be computed
easily using Eq. 6 , even at unknown positions. In other words, the model
(P*, Q*) provides a description of how an arbitrary user would rate any item.

This method is called ISMF, that is incremental simultaneous MF, accord-
ing to [2] due to its distinctive incremental and simultaneous weight updating
to other MF methods.

2.3. Improving the ISMF algorithm. The matrix factorization presented
in the previous section can overfit for users with few (no more than K) ratings:
assuming that the feature vectors of the items rated by the user are linearly
independent and Q does not change, there exists a user feature vector with
zero training error. Thus, there is a potential for overfitting, if γ and the
extent of the change in Q are both small. A common way to avoid overfitting
is to apply regularization by penalizing the square of the Euclidean norm of
weights. Penalizing the weights results in a new optimization problem:

eui
′ =

eui
2 + λ · pu · pu

T + λ · qi
T · qi

2
,

SSE′ =
∑

(u,i)∈T

eui
′,

(P∗,Q∗) = arg min
(P,Q)

SSE′.(14)

Here λ ≥ 0 is the regularization factor. Note that minimizing SSE′′ is
no longer equivalent to minimizing SSE, unless λ = 0, in which case we get
back to the ISMF. The authors call this MF variant RISMF, that stands for
regularized incremental simultaneous MF.

Similar to the ISMF approach, we compute the gradient of eui
′:

∂eui
′

∂puk
= −eui · qki + λ ∗ puk,

∂eui
′

∂qki
= −eui · puk + λ ∗ pki(15)

We update the weights in the direction opposite to the gradient:

IMPLEMENTATION OF A RECOMMENDER SYSTEM 77

puk ← puk + γ · (eui · qki − λ ∗ puk)(16)

qki ← qki + γ · (eui · puk − λ ∗ pki)(17)

The training algorithm is for training the data can be found in [2]:

3. The Rho framework

This section presents a small framework implemented by us, that uses the
algorithms mentioned in the previous chapter and which he called Rho. It can
be used to train a model, analyze the results and provide recommendations for
a user. Starting with the overall architecture, in which the main components
of the software are presented, we then show the parameters supported by the
framework on each of the four components and how to use each component.

The purpose of Rho is to provide a framework for Recommender Systems
research, having a couple of tools for training, analyzing the results and making
recommendations. It is formed of four components: Trainer, BatchRunner,
Analyzer, Recommender. A diagram showing the interaction (inputs and
outputs) between the components of the system is presented in Figure 1.

The AnalyzerThe Trainer

Ratings given
by users to items

The predicted model used
for ratings prediction

The Recommender

Top 10 items that a user hasn't
considered yet and he would prefer

Accuracy of the model
can be used the

train multiple
models at once (The

Batch Trainer)

Figure 1. The components in the Rho framework

Next, we will analyze each component and explain its functionality.

3.1. Training the model with the Trainer. The main purpose of Rho
is to allow making recommendations using matrix factorization techniques.
Since it’s unfeasible to factorize big sparse matrixes, the proposed algorithms
uses some machine learning techniques. Discovering the model using machine
learning assumes two phases: 1) train the model on a training dataset, 2) test
the model on a test dataset, with the information gathered during training.
As its name suggests, the Trainer component is used to train the model, on a

78 PRODAN ANDREI-CRISTIAN

training dataset. The script located in trainer.py runs the effective training
algorithm. The parameters can be changed in that file.

For now, Rho supports the 2 algorithms that were described earlier in
sections 2.2 and 2.3 respectively. The parameters used to tune the algorithm
are written in a Python hash format, which is easy to understand and follow.
They are the following: algorithm type (ISMF or RISMF), minimum improve-
ment required to continue current feature, learning rate, regularization factor,
number of features(factors) to use, initialization value for features, max epochs
per feature, minimum number of epochs, number of items in entire training set,
number of users in entire training set, number of ratings in entire training set,
path to training dataset, path to test dataset.

After running a training round, the results (the items features and user
features vectors corresponding to P∗ and Q∗ respectively) are stored within
the results filed in the following format:
Features [DAY]-[MONTH]-[YEAR] [HOUR]-[MINUTE].txt where,
[DAY], [MONTH], [YEAR], [HOUR], [MINUTE] refer to the current date of
the system. The data is serialized using the cPickle python library, and
contains Numpy vectors (see section 3.5 for details).

Further more, if the user choses the option to store additional results
about that training round, things like RMSE, and the parameters with which
the algorithm had ran, he can do that by enabling the RECORD RESULTS TO SQL

option. This stores the results in a sqlite3 database (it’s format is the same
as Table 4.2).

We can find the corresponding files for the user and item feature vectors
by having a look at the date field.

3.2. Analyzing the results with the Analyzer. The Analyzer is a script
which analyzes the results. We can use it in order to measure the efficiency of
some of the tests we ran. This means, the script loads up the model, and tries
to predict the ratings in the test file (learning the P,Q models and predicting
the ratings using Eq. 6). The level of acceptance, when analyzing weather a
prediction was good or bad, can be adjusted using the tolerance parameter
(rating ∈ [predicted rating − tolerance, predicted rating + tolerance]). For
example, if the rating is 4.0, the predicted rating is 3.7, and the tolerance
is 0.5, the prediction is considered to be a success. The parameters are also
expressed in python hashes and can be configured within the script.

If no training/test files are specified, the script will load all the results
existing in the database described earlier, and test them. The tolerance would
be the same and can be modified within the script. This is useful when trying
to analyze all the experiments carried so far.

IMPLEMENTATION OF A RECOMMENDER SYSTEM 79

3.3. Carrying multiple experiments using the BatchTrainer. We have
found that running one experiment at a time can be a tedious and boring
operation unless we really must do that. Most experiments usually involve
changing some parameters and re-running the algorithm, whose speed can
vary between a couple of seconds to tens of minutes.

The BatchTrainer overcomes this problem by allowing us to describe ex-
periments, and ultimately creating workflows for running multiple algorithms
sequentially.

We are able to state multiple parameters for different experiments in the
BatchTrainer.py script (their meaning is the same as those described in
section 3.1). The script will run the experiments one after the other, registering
the results.

3.4. A recommendation service using the Recommender. Recommender.py

provides a service for querying for user preferences. Given a user id and based
on a model, the program returns a list of 10 items, that it “considers” the user
would rate as high.

The parameters are the user feature file in the model learned and the user
feature file in the model learned.

For example, when asking, “What items should I recommend to user Alice
?”, the recommender would respond with a list of item ids and the corre-
sponding predicted rating.

3.5. Technologies used. The implementation of Rho is done using Python
version 2.6. The reason for using Python is that we wanted to model and
test the different parameters quickly, rather then optimizing the algorithm for
speed. For efficiently storing and working with the arrays and matrices, the
NumPy library [3] was used. The code for this framework can be found in [4].

4. Results

This section presents the results obtained by us when running the im-
plementation described in the previous section. It starts by presenting the
dataset (the Movie Lens dataset [5]). Then it describes the attempt to get the
correct γ and λ parameters, for minimizing the RMSE error on the models.
We also analyzed how does the algorithms performs relative to the number
of training epochs or features. Also we were interested in the time needed to
run the experiments and the eventual correlation between it and the RMSE
evolution. At the end of the chapter, we present a more comprehensive table
with many values that have been obtained during the experiment.

80 PRODAN ANDREI-CRISTIAN

λ \γ 0.005 0.007 0.01 0.015 0.02

0.005 0.9333 0.8815 0.8462 0.7097 0.7011
0.007 0.9333 0.8815 0.8463 0.7168 0.7026
0.01 0.9333 0.8816 0.8465 0.7197 0.7027
0.015 0.9333 0.8819 0.8470 0.7263 0.7057

Table 1. Different RMSEs for λ - regularization factor and γ
- learning rate

4.1. Datasets. The experiments presented in this article have been carried
out using the MovieLens database [5]. MovieLens data sets were collected by
the GroupLens Research Project at the University of Minnesota.

This data set consists of:

• 100,000 ratings (1-5) from 943 users on 1682 movies.
• Each user has rated at least 20 movies.

Users and items are numbered consecutively from 1. The data is ran-
domly ordered. This is a tab separated list of user id | item id | rating

| timestamp.
Regarding the tests dataset: u1.base and u1.test through u5.base and

u5.test are 80%/20% splits of the u data into training and test data. Each of
u1, ..., u5 have disjoint test sets; this if for 5 fold cross validation (where
you repeat your experiment with each training and test set and average the
results).

4.2. Experiments and results. It has been observed that RSIMF (with reg-
ularization factor usually performs better than ISMF). As described through-
out this paper, the idea is to minimize the RMSE error in order to obtain
better results.

First we wanted to see what are the best learning rates and regularization
factors. For that we have tried a couple of tests with different values for the
two parameters, which we presented in Table 1. In order to obtain a reasonable
training we have used 20 features and 50 epochs. We noticed that not every
feature was trained 50 times. If the improvement between two epochs is not
grater than 0.0001, we move on to training the next feature. The smaller
RMSE obtain was 0.7011 which we have achieved for γ = 0.02 and λ = 0.005.

The running time for these experiments was about 70962 seconds, about
19.71 hours. The medium training is 0.98 hours. We show this on Figure
2. We notice that the time to train the models which yielded best RMSE is
significantly longer than that used to train models with lower RMSE.

IMPLEMENTATION OF A RECOMMENDER SYSTEM 81

Figure 2. Running times for the 20 trainings. First bar cor-
responds to value (1,1) in Table 1, second bar - (1, 2) and so
on.

We have also noticed in Figure 3 a certain periodicity on the RMSE. The
values plotted here are from the same experiment presented in Table 1 and
follows the same rule as Figure 2.

Table 2 offers a complete overview over the experiments which have been
ran.

5. Conclusions and further work

In this thesis, we analyzed a couple of alternatives for building Recom-
mender Systems with emphasis on Collaborative Filtering (CF), namely some
Matrix Factorization (MF) techniques. Some of the biggest challenges imposed
by such systems are scalability and sparsity. We find that often Recommender
Systems have to deal with thousands of users and products and potentially
hundreds of million of ratings, which result in big matrices with very few rat-
ings - 98-99% sparse - in the case of CF and implicitly MF). It is unfeasible to
factorize those matrices through classical linear algebra algorithms. In section
2.1 we describe two machine learning algorithms (named ISMF and RISMF

82 PRODAN ANDREI-CRISTIAN

Figure 3. Total RMSE evolution on 20 trainings. First bar
corresponds to value (1,1) in Table 1, second bar - (1, 2) and
so on.

described in [2]) that do this. They overcome these problems by “guessing”
the ratings (missing) values.

Further more, in order to do some experiments with these algorithms, we
created a framework which allows training models based on the above men-
tioned algorithms, store and analyze the results in an easy to follow manner.
The framework also can be used to query recommendations for best 10 items
for a certain user.

Some of the results have been discussed on section 4. The best RMSE used
on the MovieLends database (100.000 ratings), was 0.7011 with the RMSIF
algorithm.

There are many aspects that can be improved when building Recommender
Systems. From a prediction accuracy perspective, authors have tried many
other techniques like SVD++ [6] or building a complex model which includes
both a k-Nearest Neighborhood approach combined with a matrix factorization
[7]. These techniques also take into account things like implicit feedback and
even time (“temporal effects”). It would be interesting to enrich the existing

IMPLEMENTATION OF A RECOMMENDER SYSTEM 83

alg epochs features time(sec) RMSE training DS test DS

RISMF 50 20 826 0.9332 dataset/u1.base dataset/u1.test
RISMF 50 20 1695 0.8815 dataset/u1.base dataset/u1.test
RISMF 50 20 2354 0.8462 dataset/u1.base dataset/u1.test
RISMF 50 20 6795 0.7097 dataset/u1.base dataset/u1.test
RISMF 50 20 6097 0.7011 dataset/u1.base dataset/u1.test
RISMF 50 20 817 0.9332 dataset/u1.base dataset/u1.test
RISMF 50 20 1695 0.8815 dataset/u1.base dataset/u1.test
RISMF 50 20 2361 0.8463 dataset/u1.base dataset/u1.test
RISMF 50 20 6522 0.7168 dataset/u1.base dataset/u1.test
RISMF 50 20 6162 0.7026 dataset/u1.base dataset/u1.test
RISMF 50 20 813 0.9333 dataset/u1.base dataset/u1.test
RISMF 50 20 2801 0.8816 dataset/u1.base dataset/u1.test
RISMF 50 20 2357 0.8465 dataset/u1.base dataset/u1.test
RISMF 50 20 6915 0.7107 dataset/u1.base dataset/u1.test
RISMF 50 20 6129 0.7027 dataset/u1.base dataset/u1.test
RISMF 50 20 817 0.9334 dataset/u1.base dataset/u1.test
RISMF 50 20 1685 0.8819 dataset/u1.base dataset/u1.test
RISMF 50 20 2379 0.8470 dataset/u1.base dataset/u1.test
RISMF 50 20 6307 0.7263 dataset/u1.base dataset/u1.test
RISMF 50 20 6261 0.7057 dataset/u1.base dataset/u1.test

Table 2. Table format for storing training rounds results

framework with those algorithms or ideas from them. The users of the frame-
work could either analyze their performances in terms of speed and accuracy.

Because of the large amounts of data (which keeps growing) it starts to be
very hard to store it on single computing unit and perform complicated calcu-
lations. There may be useful to distribute the computations across multiple
computers. Porting these algorithms on distributed frameworks like hadoop
[?] (which uses the MapReduce programming model) would be beneficial.
Another way would be to parallelize the factorization operations, on a single
computer. In this case we could take advantage of the multicore processors.

Another thing worth mentioning is to make use of “ensemble methods” [?
] to combine the predicted results of multiple recommender algorithms, using
linear regression or other blending algorithms.

References

[1] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Using
collaborative filtering to weave an information tapestry. Communications
of the ACM, 35:61–70, 1992.

84 PRODAN ANDREI-CRISTIAN

[2] Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk.
Scalable collaborative filtering approaches for large recommender sys-
tems. J. Mach. Learn. Res., 10:623–656, 2009. ISSN 1533-7928. URL
http://portal.acm.org/citation.cfm?id=1577069.1577091.

[3] Open Source Library. Numpy library. ***. URL
http://numpy.scipy.org/.

[4] Cristian Prodan. The rho framework. 2010. URL
http://github.com/christian/Rho.

[5] MOVIELENS-DATA. MovieLens dataset. URL
http://www.grouplens.org/node/73.

[6] R. M. Bell and Y. Koren. Scalable collaborative filtering with jointly
derived neighborhood interpolation weights. In ICDM ’07: Proceed-
ings of the 2007 Seventh IEEE International Conference on Data Min-
ing, pages 43–52, Washington, DC, USA, October 2007. IEEE Com-
puter Society. ISBN 0-7695-3018-4. doi: 10.1109/ICDM.2007.90. URL
http://dx.doi.org/10.1109/ICDM.2007.90.

[7] Yehuda Koren. Factorization meets the neighborhood: a multifaceted col-
laborative filtering model. In Proc. Int. Conf. on Knowledge Discovery and
Data Mining, pages 426–434, 2008.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science,
Cluj-Napoca, Romania

E-mail address: prodan.cristian@gmail.com

