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COMPLEX SYSTEMS AND CELLULAR AUTOMATA

MODELS IN THE STUDY OF COMPLEXITY

CAMELIA CHIRA(1), ANCA GOG(1), RODICA IOANA LUNG(2), DAVID ICLANZAN(1)

Abstract. Complex systems consist of a large number of interconnected
and mutually interacting components. The real world is full of examples
of complex adaptive systems from ancient and modern cultures, biological
and social systems to economies and ecosystems. The study of complex
systems is crucial for a constructive assessment and understanding of es-
sential aspects of everyday life. Computational approaches to the analysis
of complexity are among the most important tools used for this purpose.
The current paper aims to offer an overview of complex systems and their
main properties of emergence, adaptability and self-organization. Cellu-
lar automata are reviewed as major computational techniques engaged for
complex systems modelling. In a cellular automaton, simple rules give rise
to complex emergent behaviours worth investigated in the context of many
real-world complex models. Perspectives of promising research directions
to be tackled are discussed.

1. Introduction

Complexity, emergence and self-organization represent essential aspects of
today’s world real systems. The study and in-depth analysis of these elements
needs computational perspectives able to significantly impact the study of
complexity and the solving process of dynamic complex problems. Complex
systems research has developed and grown tremendously during the past two
decades, being subject of studies in a great variety of fields including physics,
biology, computer science, sociology and economics. There are three interre-
lated approaches to the modern study of complex systems: (i) study of the
interactions that give rise to complex systems; (ii) models of complex systems;
(iii) the process of formation of complex systems.
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A complex system usually involves a large number of components. These
components may be simple both in terms of their internal characteristics and
in the way they interact. However, when the system is observed over a long
time period and length scales, there may be phenomena that are not easily
understood in terms of its simple components and their interactions. Complex
systems are mainly characterized by emergence, complexity, self-organization,
non-linearity, order/chaos dynamic and generic evolution. The current paper
offers a survey on the main aspects related to the properties of complex systems
and the major computational instruments that can be engaged in the study
of these complex systems. Cellular Automata (CA) are reviewed in detail as
important tools in the analysis of complex interactions and emergent systems.
Furthermore, we discuss potential promising perspectives worth exploring in
the analysis and understanding of complex behaviour in real systems.

The structure of the paper is as follows: complex systems are defined and
their main properties of emergence and self-organization are detailed; CA are
reviewed from definition and rule types to CA applications; some perspectives
on future work and concluding remarks are drawn at the end of the paper.

2. Complex Systems

A system is a delineated part of the universe which is distinguished from
the rest by an imaginary boundary [21]. A complex system is any system con-
taining a large number of interacting entities (agents, processes, etc.) which
are interdependent. The system behaviour cannot be identified by just consid-
ering each entity and combining them, but considering how the relationships
between the entities affect the behaviour of the whole. This definition applies
to systems from a wide range of scientific disciplines including thermodynam-
ics, neural networks, evolution of cooperation, economic systems of interacting
trading agents, urban growth, traffic systems and many others.

A system can be defined between two extremes of connectivity among its
components: order and chaos. A complex system lies within this state-space of
connectivity. At the ordered extreme, elements have no connections between
them. Order is the result of no interactions (and therefore no dynamics). At
the chaotic extreme, every element is directly connected to every other. This
means that all information percolates and is modelled conventionally as a field.
A complex system is an intermediate state between an ordered system and a
chaotic system.

The main features of complex systems include emergence, self-organization,
evolution and adaptability. Emergence occurs when the behaviour of a system
cannot be reduced to the sum of the behaviour of the parts. Self-organization
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is the process by which elements interact to create spatio-temporal patterns
of behaviour that are not directly imposed by external forces.

The formation of complex systems, and the structural/functional change
of such systems, is a process of adaptation. Evolution is the adaptation of
populations through inter-generation changes in the composition of the popu-
lation. Learning is a similar process of adaptation of a system through changes
in its internal patterns. The conventional notion of evolution of a population
based upon replication with variation and selection with competition continues
to be central. However, additional concepts such as co-evolution, ecosystems,
multiple niches and hierarchical or multilevel selection have become important.

3. Emergence and Complexity

Emergence is a concept widely used in sciences, arts and engineering. A
short description would state that “emergence” is the notion that the whole is
not the sum of its parts [38]. For example, an individual ant or an individual
neuron do not exhibit special intelligence, but gathered together and properly
connected, ’spontaneous intelligence’ emerges. Actually, in nature, some of
the most engaging and perplexing phenomena are those in which highly struc-
tured collective behaviour emerges over time from the interaction of simple
subsystems. Flocks of birds flying in lockstep formation and schools of fish
swimming in coherent array abruptly turn together with no leader guiding the
group [16]. The emergence of order and organization in systems composed of
many autonomous entities or agents is a fundamental process.

Emerging properties are fundamental and yet familiar. According to Hol-
land [38], emerging phenomena in generated systems are typically persistent
patterns with changing components, i.e. they are changeless and changing,
constant and fluctuating, persistent and shifting, inevitable and unpredictable.
True emergent properties are irreducible, they cannot be destroyed or decom-
posed - but they appear or disappear. Unforeseeable failures and unexpected
faults in software or hardware systems are special, undesired forms of emer-
gence. It is necessary to understand the process of emergence in complex
systems in order to enhance their robustness. Thus the knowledge of differ-
ent types of emergence is essential for understanding and mastering complex
systems.

Several attempts to classify and formalize the concept of emergence have
been made [26]. Formalization attempts using grammars, formal languages
and mathematics are proposed in [44, 5, 19]. The ubiquitousness of emergence
in various, very different fields prohibits - for the moment - a unified formaliza-
tion that would fit every form of emergence encountered. However, common
characteristics across these fields [88] are as follows: the micro-macro effect
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is the most important characteristic referred in the literature (which refers to
the properties, behaviours, structures or patterns appearing at a higher macro
level that cannot be explicitly found at the lower, micro level); radical novelty
- individuals at the micro-level have no explicit representation of the global
behaviour; coherence or organizational closure; interacting parts - emergents
arise from interaction between parts; dynamical - emergents arise as the sys-
tem evolves in time; decentralized control; two-way link: micro-level parts give
rise to an emergent structure which, from a macro-level, influences the parts;
robustness and flexibility.

In [26] Fromm delineates four types of emergence as follows:

• Type I Simple/nominal emergence without top-down feedback, only
“feed forward“ relationships;

• Type II Weak emergence including simple (positive or negative) top-
down feedback (Type II weak emergence may be stable or unstable);

• Type III Multiple emergence with many feedbacks appears in very
complex systems with many feedback loops or complex adaptive sys-
tems with intelligent agents having a large amount of external influence
during the process of emergence;

• Type IV Strong emergence is the form of emergence which is respon-
sible for structures on a higher level of complexity which cannot be
reduced, even in principle, to the direct effect of the properties and
laws of the the elementary components.

Currently, emergence as phenomenon is studied in various fields. For exam-
ple its philosophy is analyzed and defended in [40]. A general framework that
allows the treatment of emergence without explicit reference to the specific
underlying mechanism is presented in [34]. Current practical computational
issues regarding implementing emergent behaviour are discussed in [15].

Application fields for studying the emergence phenomenon have become
more complex: emergence of personality from the perspective of dynamical
systems is formalized in [62]; emergence of chaos in complex dynamical net-
works is studied in [95]; emergence issues in managing complex adaptive sys-
tems used in natural resource management in [68] and many others.

In [93] the use of evolutionary computation is advocated for the automated,
simulation-based design of organic computing systems [94] with emerging be-
haviour.

4. Self-organization and Adaptability

From cells, organisms and ecosystems to planets, stars and galaxies al-
most all systems found in nature show organization. Traditional scientific
fields attempt to explain these features by referencing the particular micro
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properties or laws characterizing the system components. However, following
“the principle of self-organization” proposed by Ashby [3], the problem can
also be approached from a general perspective using properties applicable to
every collections of parts of a system, regardless of size or nature. In [3] Ashby
notes that a dynamical system, independently of its type or composition, al-
ways tends to evolve towards a state of equilibrium, towards an attractor.

The mathematical modelling of systems with many degrees of freedom is
very challenging. With the advent of (inexpensive) computer modelling, the
scientific study of self-organizing systems and adaptivity has recently grown
out from a variety of disciplines including thermodynamics, cybernetics, evo-
lutionary biology. The computer simulation assisted approach is at the base
of the new domain of “complex adaptive systems”, which was pioneered in the
1980’s by a number of researchers from the Santa Fe Institute in New Mex-
ico. Through computer simulations, complexity theorists can study systems
consisting of many interacting components, which undergo constant change,
both autonomously and in interaction with their environment. The behaviour
of such complex systems is typically unpredictable, yet exhibits various forms
of adaptation and self-organization.

A defining characteristic of complex systems is their tendency to self-
organize globally as a result of many local interactions without explicit pres-
sure or involvement from outside the system. The field of self-organization
seeks general rules about the dynamics and evolution of global patterns that
might be used to predict future organization of the system, as a result to the
changes made to the underlying components [41].

A complex system moves between order and disorder without becoming
fixed in either state. Such a system is considered adapting when it responds
to information by changing. Complex adaptive systems persists in spite of
changes in the underlying components due to how the interactions between
those components are realized and changed. From changes in local interactions
the system itself engages in adaptation or learning [37].

Random or locally directed changes can instigate self-organization by pro-
moting the exploration of new state space positions. The instability that may
arise from a local change triggers some sort of stress upon the whole system,
causing it to move along a trajectory to a new attractor which forms the self-
organized state. Changes and fluctuations allow the system to escape one
basin of attraction and to enter another one.

One could expect that a system perturbed from an equilibrium state should
settle to a “minimally” stable state generated by some type of optimization
process. In real life, these optimized states often are highly unstable, exhibit-
ing catastrophic breakdown events or avalanches. For example, in traffic flow
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the idealized state corresponds to a uniform flow of cars with all cars mov-
ing at maximum velocity possible. This idealized system is very fragile and
unsustainable as traffic jams of all sizes might occur [65].

Complex systems are often situated at the delicate balanced edge between
order and disorder in a self-organized critical state. Changes or mutations of
a system may take it either towards a more static configuration or towards a
more changeable one. If a particular dynamic structure is optimum for the
system and the current configuration is too static, then the most changeable
configuration will be most successful. If the system is currently too changeable
then the most static mutation will be favoured. In this way the system can
adapt in both directions to converge on the optimum dynamic characteristics.

Self-organized criticality provides a general mechanism for the emergence
of complex behaviour in nature with granular piles [20], traffic [65], river net-
works [72] and braided rivers [82], the crust of the earth and many other
systems operating in this state.

To summarize, the complex adaptive systems have the following properties:

• Local, non-linear interactions of the parts result in self-organization of
the system as a whole. Kauffman [42] outlines the importance of the
co-evolution of agents and their environments. As an agent changes,
so does the environment (including other agents, and vice versa).

• The mixed condition between order and chaos of these systems gives
them stability and flexibility simultaneously.

• Rather than striving for ideal but unstable states, complex systems are
organized in a way that assures good functioning but also the ability
to change.

5. Cellular Automata

Cellular Automata (CA) represent useful and important tools in the study
of complex systems and interactions. Introduced by von Neumann more than
fifty years ago [61] as formal models for organisms capable of self-reproducing,
CA are simple models of computing with an extraordinary complex behaviour.
A cellular automaton is a system evolving in discrete time steps with a discrete
spatial geometry - usually a regular lattice. Other CA topologies such as
networks or irregular graphs have been studied [83, 86, 87, 18]. The cellular
automaton is specified in terms of rules that define how it changes and evolves
in time. The emergent behaviour and computational complexity of a system
can be analyzed and better understood based on CA dynamics.

The main features of CA are the following:
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Figure 1. Similarities between the pattern growth of a specific
shell and the dynamics of Rule 30 in 1D CA (from [71])

• The state: the value of each cell in CA (taken from a finite set of
states). For example, cell state can have one of two values: 0 or 1
(extensively studied CA).

• The neighbourhood : the set of cells which interact locally. In 1D CA, a
common neighbourhood of a cell refers to the so-called first neighbours
{−1, 0, 1} composed of the two neighbouring cells (one from the right
and one from the left). In 2D CA, most used neighbourhoods include
the von Neumann neighbourhood {(−1, 0), (1, 0), (0,−1), (0, 1)} (the
four neighbouring cells on top, right, left and down side) and Moore
neighbourhood {−1, 0, 1}2 (all eight neighbouring cells).

• The transition function or the set of rules governing the evolution of
CA: how the state of a cell changes depending on its current value and
that of the neighbourhood.

The global rule of a cellular automaton maps a configuration to the next
time step configuration by applying the transition function uniformly in each
cell. A space-time diagram is obtained by mapping the cellular automaton
from one configuration to the next at all time steps [63]. It is important to
emphasize that even simple rules (underlying local interactions only) give rise
to complex emergent behaviour. Indeed, an important research direction refers
to the analysis of CA space-time diagrams. The study of the underlying CA
dynamics can potentially enable the understanding of emergent behaviour in
complex systems and their computational capacity [30, 63].

CA are attractive models for many real-world complex systems from fields
such as physics, biology and social sciences. For example, the natural pattern
growth of a shell can be matched to the dynamics of 1D CA Rule 30 (see
next subsection for a description of CA rule types) as illustrated in Figure 1
while the growth of crystals - like snowflakes patterns (see Figure 2) - can be
modelled using 2D CA.

During the past few decades, CA have continuously attracted a great deal
of interest from researchers and practitioners from various disciplines due to
their simplicity and ability to generate highly complex behaviour. One signifi-
cant property of CA is their capability to perform complex computation based
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Figure 2. The pattern growth in snowflakes modeled with 2D
CA (from [96])

on local information. Universality of computing and other theoretical aspects
concerning the computational power of cellular automata are consequently
considered of great importance [91].

The problem of finding CA rules able to generate a desired global be-
haviour is considered of great importance and highly challenging. The field of
evolutionary computing offers the most promising models for addressing this
inverse problem of global to local mapping [30]. The most studied problems
include the density classification task [64, 50, 66, 33], the synchronization task
[17, 47] and the discovery of structures such as gliders and glider guns, essential
in the study of computationally universal cellular automata [75, 79].

5.1. CA Rule Types. Conway identified the first binary cellular automaton
that supports universal computation, the well known Game of Life (or Life)
[31]. This automaton evolves in an infinite two-dimensional grid of cells where
each cell can be dead or alive. At each time step, the state of each cell is
modified depending on the value of its eight neighbours (cells that are hor-
izontally, vertically, or diagonally adjacent). The following simple rules are
applied: any live cell with fewer than two live neighbours dies; any live cell
with two or three live neighbours lives on; any live cell with more than three
live neighbours dies; any dead cell with exactly three live neighbours becomes
a live cell.

In [8] the authors have proved that this CA is able to simulate a Turing
machine, meaning that it can compute everything that can be algorithmically
computed. Life was one of the first major findings in CA field, being a great
example of emergence and self-organization. Indeed, despite its very simple
local rules, complex global behaviour and interesting patterns like still lives,
oscillators and spaceships are evolved within Life. More interesting patterns
have been further discovered: guns, which are able to create gilders and other
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spaceships, puffers which leave a trail when moving or rakes, which create
spaceships while moving through space.

After discovering the Game of Life, identifying other CA capable of uni-
versal computation has become a challenge for researchers. In [75, 76] evo-
lutionary techniques are used in order to discover rules that give rise to CA
able to simulate logic gates, as this could help identifying automata capable of
universal computation. A similar evolutionary approach manages to identify a
new cellular automaton that can implement any logic circuit and is a simula-
tion of Life in [77, 78]. Gliders and glider guns have been further investigated
in [79, 80, 81] by means of evolutionary techniques.

Wolfram has studied all 256 possible rules for 1D CA with two neighbours.
The decimal interpretation of the binary number representing the rule gave the
name of the resulting cellular automata. He identified several CA which exhibit
an interesting complex behaviour. These CA have been classified into four
categories [89]: Class 1 - CA which evolve to a homogeneous state; Class 2 -
CA displaying simple separated periodic structures; Class 3 - CA which exhibit
chaotic or pseudo-random behavior, and Class 4 - CA which yield complex
patterns of localized structures and are capable of universal computation.

CA that exhibit Class 4 features include The Game of Life, HighLife [7],
Life-3d [6], Rule 54, Rule 110 and Beehive Rule [92]. Wolfram conjectured that
all CA belonging to Class 4 might be able to perform universal computation.

The 1D CA Rule 110 (see Figure 3) is one of the most intensively stud-
ied CA, due to its complex behaviour [90]. Its interesting behaviour is given
by the evolution of gliders, periodic structures moving through time. An-
other important finding was the proof that Rule 110 automaton is capable of
universal computation, emulating a universal Turing machine [91]. In 2003,
Martinez shows that each glider without extensions proposed by Cook [14] can
be obtained by collisions [48]. The computational complexity of Rule 110 is
investigated in [60], where the prediction of Rule 110 automaton is proved to
be a P-complete problem.

Rule 54 is investigated in [11, 35, 91, 1]. In [49] the author shows that
all gilders produced in this automaton can be evolved by collisions, similar
to Rule 110. The results obtained by this analysis are further used to evolve
dynamical logic gates.

The most common approach used for updating the state of a cell is syn-
chronous, where all cells are updated simultaneously. Taking into account the
fact that the updating is not synchronized in most of the real complex sys-
tems that can be simulated using CA, the asynchronous application of rules
has been recognized as an important issue and experimentally investigated in
[13, 73, 84, 9]. In [22] the authors show that the behaviour induced by some
rules is significantly modified by the asynchronous update of the cells, while



42 CAMELIA CHIRA(1), ANCA GOG(1), RODICA IOANA LUNG(2), DAVID ICLANZAN(1)

Figure 3. Space-time diagram of Rule 110 [91]

for some of them the CA dynamics do not change significantly. Asynchrony
was induced by updating each cell with a given probability, called synchrony
rate. This study is continued in [25] where directed percolation induced by
asynchrony is identified. Such a phenomenon was also observed in the Game
of Life [10].

The mathematical approaches to studying the behaviour induced by asyn-
chrony in 1D CA can be found in [23, 24, 27, 28, 69]. 2D CA have been
studied in [70, 71], where the authors show that the minority rule exhibits a
complex behaviour when applied asynchronously. The importance of this rule
and related findings might help improving understanding complex biological
systems.

5.2. Reversible CA. In reversible CA, for each configuration there is exactly
one past configuration. The importance of reversible CA is due to the fact
that in such automata the information is conserved through time, making
them suitable for the simulation of physical phenomena. This special class of
CA has been studied starting with [59, 51, 2]. In [36] the authors investigate
the local properties of cellular automata in order for them to be reversible.
This study has been further developed in [52] by finding a way to detect the
reversible behaviour by means of matrix representations. For this purpose,
they are using the results obtained in [12] which show that any 1D CA can be
transformed into an automaton of neighbourhood 2.

A method for calculating the ancestors of a configuration of states has
been provided in [53, 56]. The ancestors are chosen to be non Garden-of-Eden
sequences, which are sequences of states that can not be produced by any CA
[51]. Two methods for calculating and classifying all possible reversible 1D CA
of 3, 4, 5 and 6 states are proposed in [55]. Another type of invertible behaviour
is investigated in [54, 57] and takes into account the spatial reversibility and
not the temporal evolution.
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5.3. CA Applications. The application areas of CA are many and diverse
ranging from the simulation of complex systems in nature and society to mod-
elling games and understanding social dynamics.

CA have been used to model various systems in biology (intracellular activ-
ity, cell-cell interactions, population of organisms, DNA sequences), chemistry
(molecular systems, crystal growth, lattice gas automata), physics (dynamical
systems, spin systems, reaction-diffusion systems), computer science (parallel
processing architectures, von Neumann machines) and many others [30].

Due to the stability of CA dynamics [30], the most widely spread CA
application refers to modelling dynamical physical systems. CA have been
used to model the laws of physics as an alternative to differential equations [85].
Moreover, CA have been successfully engaged to model geography and urban
growth [43], tumor-immune system interactions and tumor growth [45, 58, 32],
controlling highly non-linear dynamical systems [4], image processing [74],
traffic control [46], pattern recognition [39, 67, 29] etc.

6. Conclusions and Perspectives

The study of complex systems clearly needs to address essential aspects
such as the emergence of complexity, the role of self-organization, coopera-
tion and specialization and the relation between different complex adaptive
systems. Basic properties of complex systems may include communication,
cooperation, complexity, adaptation, feedback, growth, reproduction, spatial
and temporal organization.

Computational approaches to the modelling and analysis of complex adap-
tive systems can potentially offer a better understanding of the underlying
working mechanisms of many real-world systems. In this sense, the current
paper offers an extensive review of cellular automata as supporting compu-
tational tools in the study of complexity. Although the volume of research
material published in this area is very large and continuously growing, there
are many issues to be tackled that can offer further insights into the un-
derstanding of complexity. Some of the perspectives worth exploring in the
author’s view include computer simulations using multi-agent modelling and
evolutionary computing techniques and the investigation of complex network
and cellular automata models for the analysis of complex systems.

Different types of emergence should be modelled by analyzing different
interaction models within a population. A micro-level can be considered either
at the individual/agent level or even within single entity individuals while a
macro-level can be defined at group/population level. Different interaction
models at the micro/macro level that induce emergent behavior can be studied
using evolutionary computation.
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Specific CA perspectives refer to the study of various CA topologies, the
design of new CA types based on fuzzy neighbourhoods, the investigation of
rule propagation models during CA evolution, the asynchronous application
of (mixed) rules, the development of dynamic rules and neighbourhoods in
CA, the investigation of various types of hybridizations within CA and novel
natural computing models for CA rule detection.

Future scientific and technological developments in many fields will depend
on the advances made to understand and harness complex systems behaviour.
The study of complexity might facilitate the comprehension of the complex
features involved in - for instance - the essential emotion-cognition-action in-
teraction. Furthermore, this study may be really useful in dealing with the
management of systems having a great number of components and dimensions.
The development of universal methods for estimating and characterizing the
behaviour of complex systems would be highly beneficial. A formalization
would shed a light on how to (automatically) implement self-organization pro-
cesses linked to applicative problems and might give us new insights about our
surroundings.
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