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EVOLUTIONARY MULTIOBJECTIVE APPROACH FOR

MULTILEVEL COMPONENT COMPOSITION

A. VESCAN AND C. GROŞAN

Abstract. Component-based Software Engineering (CBSE) uses compo-
nents to construct systems, being a means to increase productivity by
promoting software reuse and increasing software quality. The process of
assembling component is called component composition. Components are
themselves compositions of components. This give rise to the idea of com-
position levels, where a component on level i may be decomposed (using
more components) at level i + 1 or compositions at level i + 1 serves as
component at level i.

We are approaching the multilevel component composition problem.
We formulate the problem as multiobjective, involving 4 objectives. The
approach used is an evolutionary computation technique.

1. Introduction

Component-Based Software Engineering (CBSE) is concerned with de-
signing, selecting and composing components [1]. As the popularity of this
approach and hence number of commercially available software components
grows, selecting a set of components to satisfy a set of requirements while
minimizing a set of various objectives (as cost, number of used components)
is becoming more difficult.

In this paper, we address the problem of automatic component selection.
Informally, our problem is to select a set of components from available com-
ponent set which can satisfy a given set of requirements while minimizing
the number of used components. To achieve this goal, we should assign each
component a set of requirements it satisfies.

In general, there may be different alternative components that can be
selected, each coming at their own set of offered requirements. We aim at a
selection approach that guarantees the optimality of the generated component
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system. The compatibility of components is not discussed here, it will be
treated in a future development.

Component selection methods are traditionally done in an architecture-
centric manner. An approach was proposed in [6]. The authors present a
method for simultaneously defining software architecture and selecting off-
the-shelf components. Another type of component selection approaches is
built around the relationship between requirements and components available
for use. In [2] the authors have presented a framework for the construction
of optimal component systems based on term rewriting strategies. Paper [4]
proposes a comparison between a Greedy algorithm and a Genetic Algorithm.
Various genetic algorithms representations were proposed in [9, 10, 8, 7].

All the above approaches did not considered the multi-level structure of
a component-based system. They all constructed the final solution as a one
level system, but components are themselves compositions of components.
This give rise to the idea of composition levels, where a component on level i
may be decomposed (using more components) at level i + 1 or compositions
at level i+ 1 serves as component at level i.

The motivation to propose this approach is two fold. Firstly, this paper
presents a systematic approach to describe component-based systems having
a multilevel structure. This offers a means to abstract details not needed in a
certain level.

Secondly, the proposed evolutionary multiobjective approach provides a
way of finding the “best” solution out of a set of solutions.

The paper is organized as follows: Section 2 presents a short introduction
on components and their compositions. The proposed approach (that uses an
evolutionary algorithm) is presented in Section 3. In Section 4 some exper-
iments and comparisons are performed. We conclude our paper and discuss
future work in Section 5.

2. Components and multi-level Compositions

A component is an independent software package that provides functional-
ity via welldefined interfaces. The interface may be an export interface through
which a component provides functionality to other components or an import
interface through which a component gains services from other components.
The purpose [1] of a component is to provide functionality that can be used
in different contexts. This functionality is accessible through a components
provides interface. Components may have multiple provide interfaces.

A component can depend on functionality offered by other components.
The functionality that is required by a component forms a components re-
quires interface. A component may also have multiple of these. A component
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with a requires interface can be bound to any component that implements
this interfaces. Thus, by specifying functionality in terms of interfaces, no
dependencies on concrete components are introduced. This property makes
components independently deployable. However, non-functional properties of
components, such as performance characteristics, may yield such component
dependencies. These are ignored in this article.

The “blackbox” nature of a component is important: that is, a component
can be incorporated in a software system without regard to how it is imple-
mented. In other words, the interface of a component should provide all the
information that users need. Moreover, this information should be the only
information they need. Consequently, the interface of a component should be
the only point of access to the component.

Components are used as building blocks to form larger software enti-
ties. Assembling components [1] is called composition. Composition involves
putting components together and connecting provided functionality to re-
quired functionality. Composition can be static or dynamic. With static
composition the collection of components that form an application is stati-
cally known. With dynamic composition the composition of components is
determined dynamically, e.g., at run-time. In this article we only consider
static composition.

A graphical representation of our view of components is given in Figure 1.
See details about component specification elements in [11]. Because of lack of
space we only give a wordly description of component specification.
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Figure 1. Components graphical representation and compo-
nents assembly construction reasoning

There are two type of components: simple component - is specified by the
inports (the set of input variables/parameters), outports (the set of output
variables/parameters) and a function (the computation function of the com-
ponent) and compound component - is a group of connected components in
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which the output of a component is used as input by another component from
the group.

In Figure 1 we have designed the compound component by fill in the
box. We have also presented the inner side of the compound component: the
constituents components and the interactions between them.

Two particular components are the source and the destination components:
the source component has no inports and generates data provided as outports
in order to be processed by other components and the destination component
has no outports and receives data from the system as its inports and usually
displays it, but it does not produce any output. The source component rep-
resents the “read” component and the destination component represents the
“write” component.

Components are themselves compositions of components. This give rise
to the idea of composition levels. In other words, in an hierarchical system,
a subsystem of higher level components can be the infrastructure of a single
component at a lower level. For example, in Figure 2 a higher level (compo-
nent) is nested within the lower level. Any element at any level is both (if
it is a compound component, gray fill color in the figure) a component in its
own level and a subsystem at its adjacent higher (next) level. The first level
represents the level of the final required system. Every compound component
is decomposed into a subsystem that will be part of the next higher level.

Level 3

Level 2

Level 1

Figure 2. Hierarchical component-based system
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2.1. Problem formulation. An informal specification of our aim is described
next. It is needed to construct a final system specified by input data (that
is given) and output data (what is required to compute). We can see the
final system as a compound component and thus the input data becomes
the required interfaces of the component and the output data becomes the
provided interfaces, and in this context we have the required interfaces as
provided and we need to provide the internal structure of the final compound
component by offering the provided interfaces.

In Figure 3 all the above discussion is graphically represented.
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Figure 3. Graphycally representation of the problem formulation

A formal definition of the problem (seen as a compound component) is
as follows. Consider SR the set of final system requirements (the provided
functionalities of the final compound component) as SR = {r1, r2, ..., rn}
and SC the set of components (repository) available for selection as SC =
{c1, c2, ..., cm}.

Each component ci can satisfy a subset of the requirements from SR (the
provided functionalities) denoted SPci = {pi1 , pi2 , ..., pik} and has a set of
requirements denoted SRci = {ri1 , ri2 , ..., rih}.

The goal is to find a set of components Sol in such a way that every
requirement rj (j = 1, n) from the set SR can be assigned a component ci
from Sol where rj is in SPci (i = 1,m), while minimizing the number of used
components. All the requirements of the selected components must be satisfied
by the components in the solution. If a selected component is a compound
component, the internal structure is also provided. All the levels of the system
are constructed.
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3. Proposed approach description

Evolutionary algorithms are a part of evolutionary computing, which is a
rapidly growing area of artificial intelligence. Inspired by Darwin’s theory of
evolution - Genetic Algorithms (GAs) are computer programs which create
an environment where populations of data can compete and only the fittest
survive, sort of evolution on a computer. They are well known suitable ap-
proaches for optimization problems.

The approach presented in this paper uses principles of evolutionary com-
putation and multiobjective optimization [3]. First, the problem is formulated
as a multiple objective optimization problem having 4 objectives: the number
of used components, the number of new requirements, the number of provided
interfaces and the number of the initial requirements that are not in solution.
All objectives are to be minimized.

There are several ways to deal with a multiobjective optimization problem.
In this paper the weighted sum method [5] is used. Let us consider we have the
objective functions f1, f2,. . . , fn. This method takes each objective function
and multiplies it by a fraction of one, the “weighting coefficient” which is
represented by wi. The modified functions are then added together to obtain
a single cost function, which can easily be solved using any method which can
be applied for single objective optimization.

Mathematically, the new function is written as:

n∑
i=1

wifi, where 0 ≤ wi ≤ 1 and
n∑

i=1

wi = 1.

In our case we have four objectives. Furthermore, the new function ob-
tained by aggregating the four objectives can be written as:

F (x) = α · f1(x) + α · f2(x) + α · f3(x) + α · f4(x).
The objectives (to minimize) are:

• the number of used components;
• the number of provided interfaces;
• the number of new added requirements;
• the number of initial requirements that are not in the solution.

3.1. Solution representation. A solution (chromosome) is represented as a
4-tuple (lstProv, lstComp, lstInitReq, lstNewReq) with the following in-
formation:

• list of provided interfaces (lstProv);
• list of components (lstComp);
• list of initial requirements (lstInitReq);
• list of new requirements (lstNewReq).
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The value of i − th component represents the component satisfying the
i − th provided interface from the list of provided interfaces. A chromosome
is initialized with the list of provided interfaces by the list of requirements
of the final required system and with the list of initial requirements with the
list of the requirements of the final required system (these will be provided
as implicit, being input data of the problem/system). An example is given in
what follows.

A valid chromosome using the components repository in Section 4 may be
structured as follows: Crom0 = ((1, 2, 3), (9, 11, 11), (1, 2), (9, 10)). This
chromosome does not represent a solution, it is only an initialized chromosome
without any applied genetic operator. The provided interfaces (1, 2, 3) are
offered by the components (9, 11, 11). The set of initial requirements are:
(1, 2). By using a component we need to provide it’s requirements: component
9 requires the 9-th new requirement and component 11 requires the 10-th new
requirement.

The same chromosome after applying mutation operator has the internal
structure:
Crom1 = ((1, 2, 3, 10, 9), (9, 11, 11, 12, 10), (1, 2), ()). In order to provide
the 10-th new requirement we have selected component 12, and for the 9-th
new requirements the component 10 was chosen. No new requirements are
added (the requirements of the new selected components are in the set of the
initial requirements. A graphical visualization of the chromosome is given in
Figure 4.

p2

r2 C12

p1r1 C10

p3

C9

C11

p9

p10

r9

r10

Figure 4. Chromosome representation Crom1 =
((1, 2, 3, 10, 9), (9, 11, 11, 12, 10), (1, 2), ())

3.2. Genetic operator: mutation. The genetic operator used is mutation.
Mutation operator used here consists in applying the following steps:

• randomly select a requirement form the list of new requirements;
• add the associated provided interface of the new requirement in the
list of provided interfaces;
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• add the component that satisfies the added provided interface (a com-
ponent is randomly selected from the set of components that offer it);

• remove the required selected from the list of new requirements;
• add to the list of new requirements the requirements of the added
component (if there are) to the list of components.

For instance, for the chromosome Crominit = ((1, 2), (21, 22), (4), (14, 15, 16))
we can apply three mutations as follow:

(1) Mutation 1
• the selected new requirement is 16;
• add the associated provided interface:
Crominit = ((1, 2, 16), (21, 22), (4), (14, 15, 16));

• the selected component to provide the 16-th requirements is com-
ponent 23
Crominit = ((1, 2, 16), (21, 22, 23), (4), (14, 15, 16));

• remove the satisfied requirement
Crominit = ((1, 2, 16), (21, 22, 23), (4), (14, 15));

• add the requirements of the selected component - no new require-
ments.

(2) Mutation 2
• the selected new requirement is 15;
• add the associated provided interface:
Crominit = ((1, 2, 16, 15), (21, 22, 23), (4), (14, 15));

• the selected component to provide the 15-th requirements is com-
ponent 24
Crominit = ((1, 2, 16, 15), (21, 22, 23, 24), (4), (14, 15));

• remove the satisfied requirement
Crominit = ((1, 2, 16, 15), (21, 22, 23, 24), (4), (14));

• add the requirements of the selected component - no new require-
ments.

(3) Mutation 3
• the selected new requirement is 14;
• add the associated provided interface:
Crominit = ((1, 2, 16, 15, 14), (21, 22, 23, 24), (4), (14));

• the selected component to provide the 14-th requirements is com-
ponent 24
Crominit = ((1, 2, 16, 15, 14), (21, 22, 23, 24, 24), (4), (14));

• remove the satisfied requirement
Crominit = ((1, 2, 16), (21, 22, 23, 24, 24), (4), ());

• add the requirements of the selected component - no new require-
ments.
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3.3. Algorithm description. In a steady-state evolutionary algorithm one
member of the population is changed at a time. The best chromosome (or
a few best chromosomes) is copied to the population in the next generation.
Elitism can very rapidly increase performance of GA, because it prevents losing
the best found solution to date. A variation is to eliminate an equal number
of the worst solutions, i.e. for each “best chromosome” carried over a “worst
chromosome” is deleted.

4. Experiments

A short and representative example is presented in this section. Starting
for a set of three requirements and having a set of 29 available components, the
goal is to find a subset of the given components such that all the requirements
are satisfied.

The set of requirements SR = {r1, r2, r3} (view as provided interfaces
{p1, p2, p3, see the discussion in Section 2.1) and the set of components SC =
{c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, ..., c29} are given as in Figure 5.
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Figure 5. Components repository and final system

Figure 5 contains the components from the repository and the final system
specification represented as a component (requirements of the (final) compo-
nent are the input data of the problem and provided interfaces of the (final)
component are the requirements of the problem, what should be provided
by the final system). The compound components are depicted with fill grey
color. There are many components that may provide the same functionality
with different requirements interfaces.
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4.1. Obtained results. The parameters used by the evolutionary approach
are as follows: population size 20, number of iterations 10, mutation probabil-
ity 0.7. The value of α used while aggregating the objectives was set to 0.25
which gives the same importance to all objectives. The algorithm founded
three levels, including the final system level (first level). For each level only
one compound component was included.

The algorithm was run 100 times and the best, worse and average fitness
values were recorded. The evolution of the fitness function for all 100 runs
using the value α = 0.25 is depicted in Figure 6 (first level), 8 (second level)
and 10 (third level). Best, worse and average fitness value recorder for each
run are presented. For each level the solution is also shown the representation
in Figure 7.

A best solution (for the first level) was also found starting from the valid
chromosome:
Cromlevel1 = ((1, 2, 3), (1, 1, 2), (1, 2), (4, 5)). This chromosome does
not represent a solution, it is only an initialized chromosome without any
applied genetic operator. The provided interfaces (1, 2, 3) are offered by the
components (1, 1, 2). The set of initial requirements are: (1, 2). By using
a component we need to provide it’s requirements: component 1 requires the
4-th new requirement and component 2 requires the 5-th new requirement.

The same chromosome after applying mutation operator has the internal
structure:
Cromlevel1′ = ((1, 2, 3, 4, 5), (1, 1, 2, 3, 3), (1, 2), ()). In order to provide
the 4-th new requirement we have selected component 3, and for the 5-th
new requirements the same component was chosen. No new requirements are
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added (the requirements of the new selected components are in the set of the
initial requirements.

For the second level, the compound component C1 was “constructed” by
using other components. Figure 9 shows the internal structure of the found
solution.

A best solution was also found starting from the valid chromosome:
Cromlevel2 = ((1, 2), (16, 17), (4), (13)). This chromosome does not rep-
resent a solution, it is only an initialized chromosome without any applied
genetic operator. The provided interfaces (1, 2) are offered by the compo-
nents (16, 17). The set of initial requirements contains only (4). By using a
component we need to provide it’s requirements: component 16 requires the
13-th new requirement.

The same chromosome after applying mutation operator has the internal
structure:
Cromlevel2′ = ((1, 2, 13), (16, 17, 17), (4), ()). In order to provide the 13-th
new requirement we have selected component 17. No new requirements are
added (the requirements of the new selected components are in the set of the
initial requirements.

For the third level, the compound component C1 was “constructed” by
using other components. Figure 9 shows the internal structure of the found
solution.
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A best solution was also found starting from the valid chromosome:
Cromlevel3 = ((1), (25), (13), (19)). This chromosome does not represent a so-
lution, it is only an initialized chromosome without any applied genetic oper-
ator. The provided interfaces (1) are offered by the components (25). The set
of initial requirements contains only (13). By using a component we need to
provide it’s requirements: component 25 requires the 19-th new requirement.

The same chromosome after applying mutation operator has the internal
structure:
Cromlevel3′ = ((1), (25, 26), (13), ()). In order to provide the 19-th new
requirement we have selected component 26. No new requirements are added
(the requirements of the new selected components are in the set of the initial
requirements.

A comparison between the best fitness values using the first solution (Fig-
ure 7) and the second solution (Figure 12) is done.
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Figure 12. Level 1 solution representation of the chromosome
with the best fitness value - second solution
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The comparison is done using standard deviation and is presented in Fig-
ure 13. The same comparison between the worst fitness values are presented in
Figure 14. Because the best obtained values using the two solutions are over-
lapping we could say that the same best solution may be obtained starting
from the same components repository.
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4.2. Discussion. As evidents from the above results, the evolutionary algo-
rithms are a suitable approach for CBSE problems. They are robust and
fast, and, from the way the chromosome is constructed, the convergence to a
solution is always guaranteed.

Another advantage of using evolutionary computation consist in the pos-
sibility of providing more than one solution, but a set of alternative feasible
solutions.
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By treating the problem as multiobjective we can incorporate all the prob-
lem constraints and analyze all the situations which can occur. The approach
always converges to at least one solution of the system.

5. Conclusions

CBSE is the emerging discipline of the development of systems incorporat-
ing components. A challenge is how to assemble components effectively and
efficiently. Multi-level component composition has been investigated in this
paper. We have proposed a multiobjective evolutionary approach, 4 objectives
being involved. For each level (a compound component) of the final system
we have applied the algorithm and the solution corresponding to that level
was obtained. For a level we have compared the best fitness values using two
solution and because they are overlapping we could conclude that the same
best solution may be obtained starting from the same components repository.

Some of the advantages of using an evolutionary algorithm are as follows:

• it obtain multiple solutions in a single run;
• it is fast and has a low computational complexity;
• it can be scaled to any number of components and requirements.

As future work we will consider dynamic modifications of the requirements
of the final system, investigating: the use of the same representation as in
the current paper, several ways to deal with the multiobjective optimization
problem (the weighted sum method or Pareto principle), different ways of
modifying the requirements, by adding new requirements or deleting existing
ones.
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