
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LV, Number 3, 2010

TOWARDS IMPROVING THE STATIC SEMANTICS OF

XCORE

VLADIELA PETRAŞCU AND DAN CHIOREAN

Abstract. Throughout this paper, we analyse the state of facts concern-
ing the static semantics of the XCore meta-metamodel and we propose
improvements in formalizing it.

1. Introduction

Nowadays, the model-driven techniques in their various flavors (Model
Driven Architecture (MDA) [8], Model Driven Engineering (MDE) [11], Lan-
guage Driven Development (LDD) [5]) promise to revolutionize software devel-
opment, by automating a major part of the process. Metamodeling languages
stand at the core of this novel paradigm. Therefore, a complete and formal
definition of these languages (including their abstract syntax, concrete syntax,
and semantics) is vital to the success of the model-driven approach.

However, a study that we have carried out on three of the best known
meta-metamodels, namely MOF (Meta Object Facility) [7], Ecore [12], and
XCore [5], has revealed that the problem of formalizing the static semantics of
these languages is far from being a solved issue. Within this paper, we focus
on the state of facts regarding the XCore meta-metamodel and we propose
improvements in defining its static semantics.

The rest of the paper is organized as follows. Section 2 provides some
background on (meta)modeling and identifies the key requirements in defin-
ing the static semantics of a (meta)modeling language. A brief overview of

Received by the editors: August 5, 2010.
2000 Mathematics Subject Classification. 68N30.
1998 CR Categories and Descriptors. D.2.4 [SOFTWARE ENGINEERING]: Soft-

ware/Program Verification – Programming by contract, Class invariants, Validation; D.2.11
[SOFTWARE ENGINEERING]: Software Architectures – Languages (e.g., description,
interconnection, definition) .

Key words and phrases. metamodeling, XCore, static semantics, Well Formedness Rules
(WFRs).

61



62 VLADIELA PETRAŞCU AND DAN CHIOREAN

XCore, the current approach in describing its static semantics, as well as de-
tails regarding our contribution are given in Section 3. The paper ends with
conclusions in Section 4.

2. Backgound on (meta)modeling

Similar to any other language, a modeling language can be defined as a
3-tuple of the form (abstract syntax, concrete syntax, semantics) [5]. The
abstract syntax defines the vocabulary of concepts employed by the language,
together with their structural inter-relationships. It has been traditionally
given in terms of a class model - called the metamodel1, which can be visualized
by means of class diagrams. Defining a metamodel is an analogous process to
defining the BNF (Backus-Naur Form) grammar of a programming language.
Moreover, similar to an ordinary context free grammar which is unable to
capture static semantics’ rules concerning typing or scoping, the graphical
class diagram notation lacks the expressive power needed to lay down complex
constraints that rule out illegal combinations of concepts in the language.
Such constraints, known as Well Formedness Rules (WFRs) define the static
semantics of a modeling language. They are usually formalized as invariants
on the metamodel, using OCL [9] or an OCL dialect.

As they complement the class diagram descriptions, the major value of
WFRs resides in the fact that they ensure a better understanding of the mod-
eling concepts’ semantics. The existence of an informal (natural language)
equivalent of each WFR is mandatory in this respect. Regarding the for-
mal specification, its role is twofold. On the one side, it increases rigor and
helps preventing potential ambiguities. On the other side, it lays the basis of
automatic model validation. Assuming that the language is tool-supported,
the formalized WFRs allow checking whether models are correct/compilable
or not with respect to their representation language. No model transforma-
tion task, such as code generation or XMI serialization, should be allowed on
non-compilable models.

The arguments above are even stronger when the language is a metamodel-
ing language. Metamodeling languages are the “languages used to define other
languages”. They stand at the top of the metamodeling architectures proposed
by all model-driven approaches. In case of a metamodeling language, its ab-
stract syntax is represented by means of a meta-metamodel (a model which is
its own metamodel). Having its static semantics appropriately specified (by
means of explicit and formal WFRs associated to the meta-metamodel) is thus

1Here, we use the term metamodel in its general acceptance, as denoting the abstract
syntax model. According to the LDD vision however, a metamodel should capture the
entire model of a language, covering also its concrete syntax and semantics.



TOWARDS IMPROVING THE STATIC SEMANTICS OF XCORE 63

highly important, since it enables checking the compilability of all metamodels
instantiating it.

The research carried on the three previously metioned meta-metamodels
has allowed us to identify the following general requirements in defining the
static semantics of a metamodeling language:

• All WFRs should be stated in both an informal (human-understandable)
and formal (machine-readable) style. The informal specification should
come prior to the formal one and be as detailed and precise as possible.

• Each informal definition of a WFR should be accompanied by mean-
ingful model test cases, promoting a test-driven WFR specification
style.

• The formal specifications should be stated in a manner that allows
getting the maximum amount of useful debugging hints in case of as-
sertion failures (specifications should be testing-oriented). The use of
OCL specification patterns, as proposed in [4], is highly recommended.

• The OCL specification style should ensure identical WFRs’ evaluation
results after translation in a programming language.

3. XCore static semantics

XCore is the bootstraping kernel of XMF (eXecutable Metamodeling Facil-
ity) [1, 5], a MOF-like metamodeling facility focused on capturing all aspects
of a language definition - abstract syntax, concrete syntax and semantics.
Unlike MOF though, XMF is completely self-defined and provides platform-
independent executability support by means of an executable OCL dialect
named XOCL.

3.1. State of facts. The official XMF reference [5] acknowledges the value
of WFRs and promotes their use in defining the abstract syntax of model-
ing languages. Still, the document does not describe (neither informally, nor
formally) any WFR for the XCore meta-metamodel. As regarding the XMF
implementation, this does only include two explicit XOCL constraints, spec-
ified in the context of the Element and Object classes, respectively. Apart
from these, there seems to be also a number of other constraints which are
only inferable from the XOCL code corresponding to the XCore modifiers.

The XMF approach, that omits the explicit definition of WFRs, trying
to preserve model consistency only by means of a suitable implementation of
modifiers, has a number of drawbacks.

• In case of an executable language such as XMF, which also provides
an interpreter console, one can never assure that model changes will
be performed exclusively by calling the corresponding modifiers in the



64 VLADIELA PETRAŞCU AND DAN CHIOREAN

prescribed order. Direct assignments or different call sequences are
also possible, leading to potentially invalid models.

• As emphasized by [6], this approach may be seen as an alternative
to the use of preconditions. As opposed to preconditions however, it
induces an increased code complexity, with a negative effect on relia-
bility.

• Complex constraints generally involve multiple classes and the neces-
sity of “adjusting” the code of several modifiers. Overlooking to check
for the rule in any of these modifiers may lead to incorrect models.
Instead, writing explicit WFRs is simpler, more clear, and less error-
prone.

• Trying to preserve model consistency at all stable times may not be
the best solution always. Underspecification, for instance, may be
desirable in particular circumstances.

Writing explicit WFRs is a prerequisite in enforcing them. Even with the
approach taken, the XMF implementation does not cover some of the elemen-
tary WFRs that are compulsory for object-oriented concepts, such as avoiding
name conflincts among features of the same class/classifier or the proper man-
agement of contained-container dependencies.

3.2. Proposed improvements. As a solution to the above mentioned prob-
lems, we have proposed a set of XOCL WFRs for the XCore meta-metamodel,
which we have tested on relevant model examples. The entire set of rules,
together with the corresponding tests, can be consulted at [2]. Below, we only
discuss three relevant examples.

3.2.1. Name conflicts among owned and inherited members. As previously
stated, one of the WFRs not covered by the XMF implementation concerns the
name conflict among an attribute owned by the current class and attributes
inherited from its ancestors. This is a fundamental object oriented modeling
constraint, being enforced by object oriented programming languages as well.
Such a conflict should arise in case of class D from Figure 2, which defines the
attributes b and r, having identical names with an inherited attribute and
reference, respectively.

The XOCL constraint that we propose for the above mentioned WFR is
given below. Figure 1 illustrates the corresponding part of the XCore mea-
metamodel.

[WFR1] There should not be any name conflicts among the at-
tributes owned and inherited by a class.

context Attribute @Constraint uniqueName

let allAtts = self.owner.allAttributes () then



TOWARDS IMPROVING THE STATIC SEMANTICS OF XCORE 65

Figure 1. An excerpt of the XCore meta-metamodel

sameNameAtts = allAtts ->excluding(self)->select(att |

att.name.asSymbol () = self.name.asSymbol ())

in sameNameAtts ->isEmpty ()

end

fail

let sameNameAtts = self.owner.allAttributes ()->excluding(self)->

select(att | att.name.asSymbol () = self.name.asSymbol ()) then

msg = "Attribute name duplication! " +

"Inherited/owned attributes of " + self.owner.toString () +

" with the same name: "

in @While not sameNameAtts ->isEmpty () do

let att = sameNameAtts ->sel



66 VLADIELA PETRAŞCU AND DAN CHIOREAN

Figure 2. A non-valid model example

in msg := msg + att.owner.toString () + "::" + att.toString () + "; ";

sameNameAtts := sameNameAtts ->excluding(att)

end

end;

msg

end

end

Apart from the constraint itself, XMF allows the specification of a fail
clause, whose body is intended to provide valuable model debugging informa-
tion in case of assertion failure. This facility is in accordance to the testing-
oriented specification style that we promote in [4].

3.2.2. Containment relationships. The proper management of containment
(composition) relationships is a fundamental issue in metamodeling. This sub-
ject has been also approached by us in [3], in the context of UML 2.3 [10]. As
shown by the metamodel excerpt in Figure 1, XCore represents containments
explicitely, by providing the Contained and Container abstract metaclasses
in this purpose. Below, we give their description, as taken from the XMF
documentation.

“A container has a slot contents that is a table2. The table
maintains the contained elements indexed by keys. By de-
fault the keys for the elements in the table are the elements
themselves, but sub-classes of container will modify this fea-
ture accordingly. Container provides operations for accessing
and managing its contents.”

“A contained element has an owner. The owner is set when the
contained element is added to a container. Removing an owned

2According to the metamodel, this rather seems to be the description for
IndexedContainer, due probably to a lack of synchronization between metamodel and
documentation.



TOWARDS IMPROVING THE STATIC SEMANTICS OF XCORE 67

element from a container and adding it to another container will
change the value of owner in the contained element.”

According to the commonly-agreed semantics of containments, we claim
that there are two fundamental rules that any model should fulfil in this re-
spect.

(1) A part should belong to a single container at a given time.
(2) A container cannot be itself contained by one of its parts.

As in case of other constraints, the enforcement of the ones above was meant
to be covered in XMF by an appropriate implementation of operations in the
descendants of Container and Contained. Moreover, in order to preserve
models’ validity, these operations are expected to be called in a particular
sequence during model editing tasks. As a consequence, the models created
using the model/diagram editors of the XMF tool (XMF-Mosaic) are correct
with respect to these rules. However, the models edited using the interpreter
console (where there is freedom with respect to the type and sequencing of the
editing operations) may reach invalid states, which are impossible to detect in
the absence of explicitly stated WFRs.

In order to exemplify this for the rule (1), let us start from a sample XCore
model containing an empty package named Test1 (which has been assigned to
a global variable t1), and the following sequence of XOCL commands executed
within the XMF interpreter console.

p1 := Package ("P1");

t1.add(p1);

p2 := Package ("P2");

t1.add(p2);

c := Class("C");

p1.add(c);

The lines above modify our initial model by creating two new packages, P1 and
P2, which are added as subpackages of Test1, and a class, C, which is added
to package P1. As a consequence, class C will have P1 as its owner, while P1

will have C as the only element witin its contents table.
Suppose C has been mistakely added to P1, when it should have been, in

fact, added to P2. Issuing the following command in the console

p2.add(c);

apparently solves the problem, since the owner of C is changed to P2, and C

is added to the contents table of P2. However, C still belongs to the contents
table of P1, from which it should have been removed prior to its addition to P2.
Therefore, in the current state, the model is invalid with respect to rule (1),
as C simultaneously belongs to two different containers (P1 and P2). A visual
proof of this is given by the model browser on the left of the XMF-Mosaic



68 VLADIELA PETRAŞCU AND DAN CHIOREAN

screenshot from Figure 3, illustrating the state of the model as reached after
the execution of the above commands.

Still, even if the model is obviously wrong, the lack of an appropriate WFR
makes the call to checkConstraints() on Test1 report this package and its
entire contents as valid. The XCore WFR that we propose below offers a
solution to this problem.

[WFR2] All Contained instances that belong to the contents table
of an IndexedContainer should have that container as owner.

context IndexedContainer

@Constraint validOwnerForContents

self.contents.values()->select(v | v.oclIsKindOf(Contained) and

v <> null)->select(v | v.owner <> self)->isEmpty ()

fail "The elements from " +

self.contents.values()->select(v | v.oclIsKindOf(Contained) and

v <> null)->select(v | v.owner <> self). toString () +

" should have " + self.toString () + " as the owner!"

end

As shown by the right-hand side of the screenshot in Figure 3, the
model checking performed after the addition of the above constraint to
IndexedContainer reports the P1 package as invalid with respect to this par-
ticular constraint. In fact, the proposed constraint captures anomalies of a
more general nature than just parts simultaneously belonging to at least two
different containers (e.g. parts belonging to the contents table of a container
and having no owner set at all).

Figure 3. XMF-Mosaic screenshot

Regarding the rule (2) above, the neccessity of introducing a correspond-
ing explicit WFR can be argued by means of the following example. Let us



TOWARDS IMPROVING THE STATIC SEMANTICS OF XCORE 69

assume the existence of an XCore model consisting of a single empty package
named Test2 (that has been assigned to a global variable t2). Furthermore,
assume that there is the neccessity of creating under Test2 a hierarchy of three
subpackages, say P1, P2, and P3, each included in the previous one. This basic
model editing task can be accomplished in XMF by means of the following
sequence of commands.

p1 := Package ("P1");

t2.add(p1);

p2 := Package ("P2");

p1.add(p2);

p3 := Package ("P3");

p2.add(p3);

However, the misuse of p1 instead of p3 as the argument of the latter call
above has the effect of creating a circular containment between packages P1

and P2, each of them becoming the owner of the other. Yet, in the absence of
an explicit WFR prohibiting this, a call to Element::checkConstraints()

on any of them reports no problem at all.
As a solution to this, we propose the XOCL WFR below, which applies to

all indexed containers, except for the Root namespace (in XMF, Root is the
global namespace in which everything is contained, itself included).

[WFR3] No IndexedContainer different from the Root namespace
can be owned by one of its parts.

context IndexedContainer

@Constraint notOwnedByPart

(self <> Root and self.oclIsKindOf(Contained )) implies

self.contents.values()->select(v | self.owner = v)->isEmpty ()

fail "This container is owned by each of its parts from " +

self.contents.values()->select(v | self.owner = v). toString ()

end

4. Conclusions

In view of the goals pursued by the model-driven approaches, formaliz-
ing the static semantics of any metamodeling language is a must. Within
this paper, we have analyzed the approach taken in case of the XCore meta-
metamodel and we have identified its shortcomings. The proposed solution
consists in the definition of a set of XOCL constraints, that have been vali-
dated on relevant model examples. Each WFR is stated both informally and
formally and is accompanied by meaningful test cases.



70 VLADIELA PETRAŞCU AND DAN CHIOREAN

Acknowledgements

This work was supported by CNCSIS-UEFISCSU, project number PNII-
IDEI 2049/2008.

References

[1] eXecutable Metamodeling Facility (XMF) homepage. http://itcentre.tvu.ac.uk/

~clark/xmf.html.
[2] Frame Based on the Extensive Use of Metamodeling for the Specification, Imple-

mentation and Validation of Languages and Applications (EMF SIVLA) homepage.
http://www.cs.ubbcluj.ro/~chiorean/CUEM_SIVLA.

[3] Dan Chiorean and Vladiela Petraşcu. Specification and Evaluation of Constraints
in MOF-based Metamodels. In ACM/IEEE 13th International Conference on Model
Driven Engineering Languages and Systems (MoDELS’10), Workshop on OCL and Tex-
tual Modeling, October 2010. (accepted).

[4] Dan Chiorean, Vladiela Petraşcu, and Ileana Ober. Testing-Oriented Improvements of
OCL Specification Patterns. In Proceedings of 2010 IEEE International Conference on
Automation, Quality and Testing, Robotics AQTR 2010, Tome II, pages 143–148. IEEE
Computer Society, 2010.

[5] Tony Clark, Paul Sammut, and James Willans. Applied Metamodeling. A Foundation
for Language Driven Development (second edition). Ceteva, 2008.

[6] Bertrand Meyer. Object-Oriented Software Construction (second edition). Prentice Hall,
1997.

[7] Object Management Group (OMG). Meta Object Facility (MOF) Core Specification,
Version 2.0. http://www.omg.org/spec/MOF/2.0/PDF.

[8] Object Management Group (OMG). Model Driven Architecture (MDA) Guide, Version
1.0.1. http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf.

[9] Object Management Group (OMG). Object Constraint Language (OCL), Version 2.2.
http://www.omg.org/spec/OCL/2.2/PDF.

[10] Object Management Group (OMG). Unified Modeling Language (UML) Infrastructure,
Version 2.3. http://www.omg.org/spec/UML/2.3/Infrastructure/PDF/.

[11] Douglas C. Schmidt. Model-Driven Engineering. Computer, 39(2):25–31, 2006.
[12] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse

Modeling Framework (second edition). Addison-Wesley Professional, December 2008.

Babeş-Bolyai University of Cluj-Napoca, Mihail Kogălniceanu nr. 1, Cluj-
Napoca, Romania

E-mail address: {vladi,chiorean}@cs.ubbcluj.ro


