
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LV, Number 3, 2010

TEACHING MODEL CHECKING TO UNDERGRADUATES

A.VESCAN AND M. FRENŢIU

Abstract. The way program verification is taught in our faculty is firstly
described. One of the verification methods is model checking, shortly pre-
sented to the students in one lecture. One laboratory project consists in
using the SPIN tool. The difficulties encountered by students with this
project are presented in this paper.

1. Introduction

The need for more reliable software [1, 9, 16, 6], and the role of Formal
Methods [9, 3, 14, 19, 7] are well known. During the last two decades, re-
search in formal methods has led to the development of some very promising
techniques that facilitate the early detection of defects. These techniques are
accompanied by powerful software tools that can be used to automate various
verification steps. Investigations have shown that formal verification proce-
dures would have revealed the exposed defect in, e. g., the Ariane-5 missile,
Mars Pathfinder, Intel’s Pentium II processor, or the Therac-25 therapy radi-
ation machine [4].

Today, the computers are used in all fields of human activities. More and
more programs are needed, and software critical systems require error-free
programming [1].

If we want to build software of good quality, to increase its reliability, we
have to contribute to better education of human resources. It is considered
that the main barrier against the usage of Formal Methods is the lack of good
professionals, able to use such methods.

Each university must educate better software engineers capable to use the
newest methods, which increase the quality of software products and improves
the software processes. In this direction, one of the important subject that
must be taught to undergraduates is Verification and Validation.

Received by the editors: July 18,2010.
2010 Mathematics Subject Classification. 68Q60, 68N30.
1998 CR Categories and Descriptors. D.2.4 [Software]: Software engineering – Soft-

ware/Program Verification; D.2.5 [Software]: Software engineering – Testing and Debug-
ging .

Key words and phrases. verification and validation, model checking, tools, education.

45



46 A.VESCAN AND M. FRENŢIU

2. The role of Verification and Validation (V&V)

One means to Software Quality Assurance is V&V. The course V&V is one
of the important courses that contributes to obtain well-educated practition-
ers. We teach such a course to the third year undergraduates. The theoretical
basis for building reliable software products is given here. The course consists
of three main parts:

• the theory of program correctness;
• the methods of verification and validation;
• the consequences on software engineering practice.

The entire curricula of this course, and also, the undergraduate study
program may be seen at [20].

One cannot understand V&V if he does not know the concept of program
correctness. The first part of the course presents this concept and gives meth-
ods to prove correctness. More important, the accent is put on the methods
to achieve this correctness.

The methods discussed in the second part are: proving correctness, testing,
inspection, symbolic execution, and model checking. It is underlined that all
of them must be practiced during the software process [8]. Their usage may
be informal, or more formal, complete or only some of them, depending on
the type of the system which is built. For safety-critical systems all of the
above mentioned methods must be used. We consider that all future software
engineers should be aware of all verification methods.

The third part of the course presents the Cleanroom methodology [17],
the role of V&V for Software Quality Assurance and Software Process Im-
provement, and the consequences of correctness theory on software engineering
practice [5, 6, 8].

At the undergraduate level we cannot afford to teach the mathematical
basis of model checking, the theory that lies at the basis of model checking
theory. Instead, the main theoretical aspects are presented in a two hours
lecture, and the existence of tools and examples of such tools are shortly
presented.

Model checking [12] is a verification technique that explores all possible
system states in a brute-force manner. In this way, it can be shown that a
given system model truly satisfies a certain property. The property specifica-
tion prescribes what the system should do, or what it should not do, whereas
the model description addresses how the system behaves. The model checker
examines all relevant system states to check whether they satisfy the desired
property. To make a rigorous verification possible, properties should be de-
scribed in a precise and unambiguous manner. A temporal logic, which is a
form of modal logic that is appropriate to specify relevant properties, is used



TEACHING MODEL CHECKING TO UNDERGRADUATES 47

as a property specification language. In term of mathematical logic, one checks
that the system description is a model of a temporal logic formula. Temporal
logic is basically an extension of traditional propositional logic with operators
that refer to the behavior of systems over time. It allows for the specification of
a broad range of relevant system properties [12] such as functional correctness
(does the system do what it is supposed to do?), reachability (is it possible to
end up in a deadlock state?), safety (“something bad never happens”), liveness
(“something good will eventually happen”), fairness (does, under certain con-
ditions, an event occur repeatedly?), and real-time properties (is the system
acting in time?). Also, model checking may be used to check the conformance
of design with the requirements [2].

Teaching model checking to undergraduates was already proposed by oth-
ers [13, 18]. The undergraduate curricula cannot contain an entire course
about model checking, but we consider that it is an important verification
method and must be present in such a course.

3. Problems with teaching model checking

As a laboratory project one tool was presented to the students and this
tool was Spin [10].

The language Promela was presented and introduced to students during
the first part of the laboratory. Several examples [15] were presented and
explained to better understand the syntax of the language but more than
that, the semantics of the structures were also explained. The non deter-
minacy was explained by using several examples. The notion of a process
in Promela was presented and discussed. The concurrency, interference and
interleaving between processes were described. The students played with the
provided examples [15] and experienced the concurrency and interleaving. Sev-
eral ways/methods for deterministic steps/atomic executions of statements of
different processes were explained. So, one of the difficulties encountered with
teaching model checking was the unfamiliarity with concurrent systems.

The structure of the laboratory consisting in model checking may be found
here [21]. The laboratory consists in two hours and for the assignment the
students had two problems: in class assignment problem and homework as-
signment problem.

The properties to be checked were first expressed using assertions. As in
class assignment the students had to implement in Promela a process to com-
pute a given value and then to use assertions to establish the correctness of
the computation. They also had to use assertions to express preconditions and
postconditions. The majority of them were able to work alone, without any
additional help. This was a simple exercise to help student create a process



48 A.VESCAN AND M. FRENŢIU

and use assertions for correctness, and also to prepare them for the homework
assignment problem. They have already used assertions (preconditions, post-
conditions, invariants) in a previous laboratory [21] when they use ESCJAVA
and JML [11].

Another problem faced by some of the students was to make them model
a system in class, immediately after the presentation of similar examples.
Obviously, they need more time to process and understand modeling using
Promela and thinking about verification of a system/model using a model
checker.

For the second part of the class we have discussed the use of LTL formula
to express the properties that the model should have. They have run the
prepared examples [15]: about critical section in two processes, about deadlock
and starvation. They have used LTL formula to express these properties and
used the JSpin tool to verify them. During the use of JSpin tool with LTL
formula the students were very enthusiastic about the “power” of the tool,
especially about the checking process.

For homework assignment they have received the following problem: Con-
sider the frog pond shown in Figure 1. Three female frogs are on the three
stones on the left and three male frogs are on the three stones on the right.
Find a way to exchange the positions of the male and female frogs, so that
the male frogs are all on the left and the females are all on the right. The
constraints that your solution must satisfy are as follows: frogs can only jump
in the direction they are facing. They can either jump one rock forward if the
next rock is empty or they can jump over a frog if the next rock has a frog on
it and the rock after it is empty. Model the above system using a Spin model,
and show that it is possible to reach the desired end state.

Figure 1. The Frog Pond Puzzle

The students played the game and tried to find a solution using [22]. Some
of them found the solutin quickly and were able to sketch an algorithm for the
solution.

Only a few of the students were able to model the system and check for
solution, some of them used assertions and others used a LTL formula. Only a
few of them understood that the property is checked in all states of the system
model. They were very satisfied about the outcome of their finding.



TEACHING MODEL CHECKING TO UNDERGRADUATES 49

Other students didn’t understand correctly what they should do and they
modeled the solution of the problem and not the system and the rules. They
were very excited that the JSpin model checker always “gave” them the solu-
tion, and each time they run (randomly execution) the created processes they
reached the solution!

Other students found the solution of the problem in the JSpin example
directory but when asked about the model, the way that the model should
be used in JSpin, they didn’t know what to answer. They were not able to
explain (even explained during the previous laboratory) how the model is used
and how the model checker verify the LTL formula.

4. Conclusions

Verification by Model Checking had motivated the students, although they
met the above difficulties. Since the allocated time for this subject was small,
the examples were small and they could be considered as toys examples. Nev-
ertheless, they offer to the students the possibility to acquire this new method
of verification. They saw that Model Checking is a good mean to catch errors
earlier in the model, to eliminate the rework, and to improve the quality of
the product and the software process.

Nevertheless, we can improve this part of the course by choosing more
suitable examples and give them to the students as homework projects.

Also, we must insist on improving the (first) model chosen by students.
And, as well, we must insist that the students should pay attention to a broadly
verification of a system, at least in the following three directions:

• to use all verification methods;
• to carefully design the testing cases according to the chosen criteria;
• to verify the robustness of the system.

References

[1] R. W. Butler, S. C. Johnson, Formal Methods for Life-Critical Software, in Computing
in Aerospace 9 Conference, San Diego, California, 1993, pp. 319–329.

[2] M. Chechik, J. Gannon, Automating Analysis of Consistency between Requirements and
Designs, IEEE Transactions on Software Engineering, 27(2001), no.7, pp.1–21.

[3] E. M. Clarke, J.M. Wing, Formal Methods: State of the Art and Future Directions, ACM
Computing Surveys, 28 (1996), no. 4, pp. 626–643.

[4] N. Dershowitz, Software Horror Stories, www.cs.tau.ac.il/~nachumd/horror.html.
[5] M. Frentiu, On Program Correctness and Teaching Programming , Computer Science

Journal of Moldova, 5(1997), no.3, pp. 250–260.
[6] M. Frentiu, Correctness, a very important quality factor in programming , Studia Univ.

“Babe-Bolyai”, Seria Informatica, L(2005), no.1, pp. 12–21.
[7] M. Frentiu, The Need to Teach Formal Methods, Analele Universităţii Bucureşti, LV,

2006.



50 A.VESCAN AND M. FRENŢIU

[8] M. Frentiu, Verificarea si Validarea Sistemelor , Ed. Presa Universitara Clujeana, Cluj-
Napoca, 2010, pp. 232, ISBN 978-973-610-979-9.

[9] C. M. Holloway, Why Engineers Should Consider Formal Methods, in 16th AIAA/IEEE
Digital Avionics Systems Conference, Volume 1, 1997, pp. 1.3-16 – 1.3-22.

[10] G. J. Holzman, The Model Checker SPIN , IEEE Transactions on Software Engineering,
23(1997), no.5, pp. 279-295.

[11] JML, Java Modeling Language Home Page, http://www.eecs.ucf.edu/~leavens/JML/
[12] J. P. Katoen, Principles of Model Checking , MIT Press, 2008, pp. 995.
[13] H. Liu, D.P. Gluch, A proposal for introducing model checking into an undergraduate

software engineering curriculum, Journal of Computing Sciences in Colleges, 18(2002),
no. 2, pp.259–270.

[14] M. J. Lutz, Alloy, Software Engineering, and Undergraduate Education, in First Alloy
Workshop, colocated with the Fourteenth ACM SIGSOFT Symposium on Foundations
of Software Engineering, Portland, 2006, pp. 96–97.

[15] B. R. Mordechai, Principles of the Spin Model Checker , ISBN: 978-1-84628-769-5, 2008,
pp. 216.

[16] B. Meyer,Software Engineering in the Academy, IEEE Computer, 34 (2001), pp. 28–35.
[17] H. Mills, M. Dyer, R.Linger, Cleanroom Software Engineering , IEEE Software, 4(1987),

no.5, pp.19–25.
[18] H. Nishihara, K. Shinozaki, K. Hayamizu, T. Aoki, K. Taguchi, F. Kumeno, Model

Checking education for Software Engineering in Japan, ACM SIGCSE Bulletin - COL-
UMN: Special section on formal methods education and training, 41(2009), no. 2, pp.
45–50.

[19] L. Yilmaz, S. Wang, Integrating Model-Based Verification into Software Design Educa-
tion, Journal of STEM Education, vol.6 (2005), no.3–4, pp.29–34.

[20] Undergraduate study program - Babes-Bolyai University, www.cs.ubbcluj.ro
[21] A. Vescan, Software Systems Verification and Validation - course, seminar, laboratory

- http://www.cs.ubbcluj.ro/~avescan/
[22] The Frog Pond Puzzle, http://www.hellam.net/maths2000/frogs.html

Department of Computer Science, Faculty of Mathematics and Computer
Science,, Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: {avescan,mfrentiu}@cs.ubbcluj.ro


