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Abstract. Building an efficient model for automatic alignment of termi-
nologies would bring a significant improvement to the information retrieval
process. We have developed and compared two machine learning based
algorithms whose aim is to align 2 custom standards built on a 3 level
taxonomy, using kNN and SVM classifiers that work on a vector represen-
tation consisting of several similarity measures. The weights utilized by
the kNN were optimized with an evolutionary algorithm, while the SVM
classifier’s hyper-parameters were optimized with a grid search algorithm.
The database used for train was semi automatically obtained by using the
Coma++ tool. The performance of our aligners is shown by the results
obtained on the test set.

1. Introduction

The need for terminology integration has been widely recognized in differ-
ent areas (economical, custom etc) leading to a number of efforts for defining
standardized and complete terminologies. It is acknowledged by literature
that the creation of a single universal terminology for a particular domain is
neither possible nor beneficial because different tasks and viewpoints require
different, often incompatible conceptual choices. Considering these aspects, an
important research direction is searching for an automatic recognition of con-
cepts with the same meaning, even though they have not the same syntactic
representation.

The main aim of our work is to design an algorithm in order to perform
alignments between two terminologies. The goal of the alignments is to put in
correspondence concepts that refer to the same thing, but which appear under
different forms. In other words, alignment problem consists in finding the
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correspondences between the definitions of different dictionaries (standards)
that refer to the same concept. This alignment of definitions, which is one
of the goals of ASICOM project1 as well, has certainly to improve the fusion
between the business models of different companies.

In our case, the concepts we are trying to align are belonging to the cus-
tom area and they are defined in two standards: CCL08A (Centre for Trade
Facilitation and Electronic Business standard or shorter CCL) and Customs
WCO (World Customs Organization or shorter WCO). In order to automat-
ically perform this alignment, several definitions are considered from the two
dictionaries. Pairs of two definitions (that can define the same concept - and
in this case we deal with two aligned definitions - or different concepts - un-
aligned definitions in this case) are formed. Thus, the alignment problem could
be considered as a binary classification problem: the inputs of the classifier
are the pairs (of two definitions) and the outputs are the labels “aligned” or
“unaligned” corresponding to each pair.

As we have mentioned, aligning two definitions means actually to solve
a binary classification problem. Several couples of definitions, which could
be aligned or unaligned, are required, so that the classifier could learn to
discriminate correctly such relationships. In order to perform this alignment as
a classification approach, all the possible couples of definitions are considered
from the mentioned dictionaries (CCL and WCO). In this way, if a dictionary
contains n1 definitions and the other dictionary contains n2 definitions, then
we will be obtained n1 ∗ n2 couples of definitions (some of them are aligned
couples, while others are unaligned couples). Taking into account that we deal
with a classification problem, a Machine Learning algorithm could be used.

For our task of solving the terminology alignment problem two Machine
Learning based algorithms were chosen: a k Nearest Neighbour (kNN) al-
gorithm [2] and a Support Vector Machine (SVM) [22] that work by using
a particular representation based on the similarities between two definitions.
Even if the kNN is a simple and fast algorithm, it requires to establish a thresh-
old value and to specify the alignment cardinality. Therefore, we decided to
try an SVM-based approach also, since it can learn the optimal value of the
threshold and is able to produce any alignment type. Several performance
measures, borrowed from the information retrieval domain, are used in order
to evaluate the quality of the automatic produced alignments: the accuracy,
the precision, the recall and the F-measure of alignments.

The remaining of the paper is structured as follows: Section 2 gives a short
review of different alignment models, Sections 3 and 4 presents our solution to

1ASICOM – Architecture de Système d’information Interopérable pour les industries du
Commerce
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the alignment problem and several numerical results, while Section 5 concludes
the results.

2. Related work

To our knowledge, the alignment problem has been intensively studied
in order to achieve an automatic translation of terminologies, providing us
several alignment models. The alignment problem has to be considered from
two important points of view:

• the structures that must be aligned and
• the manner in which this alignment is actually performed (the match-
ing algoritm).

2.1. The structures that must be aligned. Regarding the structure of
the alignment, two important levels of a dictionary could be identified: the
sentence level and the ontology level.

2.1.1. The sentence level. The sentence level refers to the bag of words of
that dictionary, but it is actually a special bag of words where not only the
frequency of a word is important, but also other linguistic information about
these words. The richness of human language allows people to express the same
idea in many different ways; they may use different words of the same language
to refer to the same entity or employ different phrases to describe the same
concept. Furthermore, the same idea could be expressed in different languages.
Sentence-aligned bilingual corpora are a crucial resource for training statistical
machine translation systems. In this context, we discuss about multilingual
alignment. Therefore, the problem of sentence alignment for monolingual
corpora is a phenomenon distinct from alignment in parallel, but multilingual
corpora.

Monolingual alignment – Sentence-aligned bilingual corpora are a crucial
resource for training statistical machine translation systems. Several authors
have suggested that large-scale aligned monolingual corpora could by simi-
larly used to improve the performance of monolingual text-to-text rewriting
systems, for tasks including summarization [15, 16] and paraphrasing [1, 20].
Most of the work in monolingual corpus alignment is in the context of sum-
marization. In a single document summarization alignment between full doc-
uments and summaries written by human is used to learn rules from text
compression. Marcu [16] computes sentence similarity using a cosine-based
metric. Jing [15] identifies phrases that were cut and pasted together using
a Hidden Markov Model with features incorporated word identity and posi-
tioning within sentences, by providing an alignment of a document and its
summary. In the context of multi document summarization, SimFinder [13]



28 A. SÎRBU, L. DIOŞAN, A. ROGOZAN, J.-P. PÉCUCHET

identifies sentences that convey similar information across input documents to
select the summary content.

Multilingual alignment – To our knowledge, the problem of aligning sen-
tences from parallel corpora has been intensively studied for automated trans-
lation. While much of the research has focused on the unsupervised models
[3, 5, 11], a number of supervised discriminatory approaches have been re-
cently proposed for automatic alignment [4, 18, 21]. Related to the use of
linguistic information more recent work [19] shows the benefit of combining
multilevel linguistic representations (enriching query terms with their morpho-
logical variants). By coupling Natural Language Processing and Information
Retrieval (IR) the language is enriched by combining several levels of lin-
guistic information through morphological (lemma, stem), syntactic (bigrams,
trigrams) and semantic (terms and their morphological and/or semantic vari-
ants) analyses. Moreover, data fusion has been exhaustively investigated in
the literature, especially in the framework of IR [8, 19]. The difficulty is to
find a way to combine results of multiple searches conducted in parallel on
a common data set for a given query in order to obtain higher performances
than each individual search.

2.1.2. The ontology level. The ontology level is actually a generalisation of
the first level that take into account for a given dictionary not only the words
and their order in a sentence (when the words are in fact considered isolated
elements), but also the relationships (syntactic, semantic or other relationship
types) establish among the words/concepts. In other words, at this level a
concept (or its definition) could be represented as a bag of concepts (by concept
being understood the corresponding word and its relationships with other
words/concepts).

At present, there exists a line of semi-automated schema matching and
ontology integration systems, see for instance [12, 17]. Most of them imple-
ment syntactic matching. The idea of generic (syntactic) matching was first
proposed by Phil Bernstein and implemented in the Cupid system [17], but
COMA [12] is a generic schema-matching tool, which seems to be a more flexi-
ble architecture. COMA provides an extensible library of matching algorithms;
a framework for combining obtained results, and a platform for evaluating of
the effectiveness of different matchers.

2.2. Matching algorithms. We distinguish between matching algorithms at
element-level and structure-level.

The element-level matching techniques focus on the entities of a dictio-
nary (words or concepts).They compute matching elements by analyzing en-
tities in isolation, ignoring their relations with other entities: string-based
techniques (normalization techniques, substring or subsequence techniques,
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path comparison), language-based techniques (based on NLP techniques us-
ing morphological properties of the input words) – these methods may be
either intrinsic (using the internal linguistic properties of the instances, such
as morphological and syntactic properties: tokenization, elimination or filtra-
tion, lemmatization, stemming, weighting) or extrinsic (requiring the use of
external resources, e.g. lexicon-based and multilingual methods: synonymy or
semantic similarity).

The structure-level techniques focus on the structure of the ontology. It
computes mapping elements by analyzing how entities appear together in the
structure corresponding to a dictionary: graph-based techniques (graph al-
gorithms which consider the input as labelled graphs) and taxonomy-based
techniques (are also graph algorithms which consider only the specialization
relation; the intuition behind taxonomic techniques is that is-a links connect
terms that are already similar, therefore their neighbours may be also somehow
similar).

3. Alignment methods

In order to obtain an automatic alignment two methods were utilized: the
k Nearest Neighbour algorithm [2] and the Support Vector Machine [22].

3.1. k Nearest Neighbour. kNN is a method of classifying objects based on
closest training examples in a feature space. kNN is a type of instance based
learning, or lazy learning where the function is only approximated locally
and all the computation is deferred until classification. The kNN algorithm
is amongst the simplest of all machine learning algorithms and is also very
fast, two important reasons to utilize it for the alignment task. An object is
classified by a majority vote of its neighbours, with the object being assigned
to its class most common amongst its k nearest neighbours; k is a positive
integer, typical small. If k = 1, then the object is simply assigned to its
closest neighbour. In binary classification problems it’s helpful to choose k to
be an odd number as this avoids tied votes.

In our case an object corresponds to a definition (or to its representation as
bag of ”special” words at different syntactic levels). The distance between two
objects (definitions) is computed by using a similarity measure. The smallest
distance (or the largest similarity measure) between two definitions (from all
the possible combinations) will indicate that the two definitions are aligned.
The main idea of the kNN classifier in this case is to search amongst the couples
of two definitions those with similarity greater than a given threshold and to
select from the found couples the first k couples with the largest similarity.
Such algorithm is able to produce two types of alignments:

• one-to-one alignments when k = 1 or
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• one-to-many alignments when k > 1.

Even if kNN’s methodology seems to be very simple, the usage of this
algorithm in order to reach our purpose has determined several important
questions:

• Which is the optimal value for k?
• Which is the optimal value of similarity threshold?

In order to solve these problems an SVM algorithm instead of the kNN
classifier was used, since SVM can learn the optimal value for the threshold
and is able to produce any alignment type:

• one-to-one – a concept of a dictionary corresponds to one concept of
the other dictionary (equivalence relation);

• one-to-many – a concept of a dictionary corresponds to many concepts
of the other dictionary (type of relation);

• many-to-many – more concepts of a dictionary corresponds to many
concepts of the other dictionary.

3.2. Support Vector Machine. SVMs are a set of related supervised learn-
ing methods used for classification and regression. Generally, classification
is defined for the situation when there are more objects, each one belonging
to one of several classes, and a classification task would be to assign the be-
longing class to a new given object. In the case of binary classification using
SVM, being given a set of training examples, each marked as belonging to one
of two categories, an SVM training algorithm builds a model that predicts
whether a new example falls into one category or the other. An SVM model
is a representation of the examples as points in space, mapped by a kernel so
that the examples of the separate categories are divided by a clear gap that is
as wide as possible. New examples are then mapped into that same space and
predicted to belong to a category based on which side of the gap they fall on.
In our case it is a binary classification problem, if the SVM is given a pair of
definitions it will decide if they are aligned or not aligned.

An SVM algorithm has two phases: a training phase and a test phase. In
the training phase the SVM model is learned starting from labelled examples
(in our case, couples of definitions) and the hyper parameters are optimized
and in the test phase the unseen definitions couples are labelled as aligned or
unaligned.

Therefore, each data set has been divided in two: a part for training and
a part for testing. The training part has been dived again in a learning sub-
set, used by the SVM algorithm in order to find the hyper plane that makes
the class separation and a validation set, used in order to optimize the values
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of the hyper parameters. The SVM model, which is learned in this manner,
classifies (labels) the definitions couples from the test set.

4. Numerical experiments

4.1. Data representation. Our input data is represented by definitions stored
in the two dictionaries (WCO Dictionary and CCL Dictionary). These dic-
tionaries are provided by the team of ASICOM project in a form of 3 levels
taxonomies: a concept is represented by the text of the definition, the path
in the hierarchy of concepts and the father of the concept. In order to use
a Machine Learning algorithm, the natural language of definitions has to be
processed. First, each sentence was turned into a bag of words and then
followed these steps: normalisation, filtering of the stop words and lemma-
tization. Furthermore, each couple of definitions is represented by a set of
similarity measures.

4.1.1. First set of similarities. In order to perform automatic alignments us-
ing the kNN algorithm several similarities computed at different levels of the
ontology were used :

• Name: Synonyms and TriGrams similarity applied on concept;
• NameType: Name and Data Type similarity, applied on the concept;
• Path: Name similarity, applied on path of the concept in the given
ontology;

• Leaves: Name Type applied on leaves of the concept in the given
ontology;

• Children: Name Type applied on children of the concept in the given
ontology;

• Comment: TriGrams similarity, applied on comment (definition) to-
kens.

These six distances were computed using the Coma++ tool [10]. The
similarity is represented by a weighted sum of these six distances whose weights
are optimized on the training set using an evolutionary algorithm.

4.1.2. Second set of similarities. An important step in using the SVM is build-
ing the input vector. For each couple of definitions there is built a vector that
contains five similarity measures:

• the Match coefficient [7] that counts the common element for two def-
initions,

• the Dice coefficient [9] that is defined as twice the number of common
words, divided by the total number of words from two definitions,

• the Jaccard [14] coefficient, which is defined as the number of common
words, divided by the total number of words from two definitions,
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• the Overlap [6] coefficient, which is defined as the number of common
words, divided by the minimum of the number of words from two
definitions,

• the Cosine measure that is defined as cosine similarity of the prod-
uct between term frequency of a term in a definition and the inverse
definition frequency:

cosine(defi, defj) =
defi ∗ defj

||defi|| ∗ ||defj ||
.

In addition, this vector contains also the lengths of the definitions and the
label (aligned or not-aligned).

Since Match, Dice, Jaccard, Overlap similarities are based on reunion (the
total number of words from two definitions) and intersection (the common
words of two definitions) a special way of computing this reunion and inter-
section is actually used in the numerical experiments. This special computa-
tion is adapted to the bag representation (instead of set-based representation).
Considering the following definitions and the corresponding bag of words:

• defi = (a, b, b, c, c, d),
• defj = (a, a, b, b, b, c, e).

In this case:

• defi ∪ defj = (a, b, b, b, c, c, d, e),
• defi ∩ defj = (a, b, b, c)

As shown in the example, a word may appear several times in a definition
and from this reason when we calculate the cardinal of intersection of two
definitions we take the minimum occurrence of a word in the two definitions
and while on calculating reunion, the maximum occurrence.

4.2. Construction of the database. Taking into account that both Ma-
chine Learning’s algorithms require a training set and a test set, in the absence
of a human expert, a database of 180 aligned couples of definitions was semi
automatic created using the Coma++ tool [10]. Regarding the unaligned cou-
ples were selected 395 couples. The selection procedure was based on a normal
distribution of the average distance over the unaligned couples. The training
set contains 290 couples of definitions (90 aligned and 200 unaligned) and the
test set contains 285 couples of definitions (90 aligned and 195 unaligned).
This database was created by the ASICOM’s team.

4.2.1. k Nearest Neighbour. kNN receives as input the similarities between two
definitions by using the weighted sum of six similarity measures and outputs
the performed alignments. In order to select the aligned couples we identify:

• those with similarity > threshold (many-to-many alignments) and
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• the best alignment from those with similarity > threshold (one-to-
many alignments).

The threshold was fixed 0.2 (default value from Coma++). The similarity
value is represented by the weighted sum of the 6 distances presented in the
first set of similarities. The weights are optimized on the training set, then
validated on the test set by applying kNN with k=1.

4.2.2. Support Vector Machine. SVM receives as input the similarities between
two definitions and outputs the label 1 if they are aligned and 0 if they are not
aligned. The training set is built without mixing the couples of definitions, so
first in the training set are taken the couples of aligned definitions and then
the couples of unaligned definitions.

4.3. Weights and parameters’ optimization. As we have previously men-
tioned, in the first experiment using kNN algorithm, the similarity is computed
as a weighted sum of 6 distances. The weights are optimized using an evo-
lutionary approach based on F-measure of aligned couples in the following
manner: we consider a chromosome which codes the weights associated to the
six distances. Its fitness is computed basing on the training set. Each defini-
tion from the first dictionary was compared with all the definitions from the
second dictionary and was chosen the first couple with the greatest similar-
ity value. If this similarity is greater than the threshold value, the couple is
labelled as aligned, otherwise unaligned. In this manner 290 labelled couples
are obtained. The fitness of the chromosome is represented by the F-measure
of the aligned couples. The aligned couples are the ones that were considered
aligned from the comparison with the threshold value and were initially la-
belled as aligned by Coma++, too. The best weights are the ones indicated
by the chromosome with the greatest fitness value (F-measure). The best
weights are learned on the training set and tested on the test set.

In the second experiment the SVM algorithm with an RBF kernel was
used:

(1) K(x, y) = exp(−σ|x− y|2).
Cross Validation was made on the training set with different combinations

of C and σ, C in range [10−2, 103] and σ in range [2−5, 22] by using a grid
search algorithm and then the values from the combination (C and σ) with
the best performances were chosen.

4.4. Performance measures. In order to measure the quality of the align-
ments the following performance measures were used: accuracy, recall, pre-
cision and F-measure, which are calculated for the aligned class (1) and the
accuracy for both classes (1 and 0).
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• the accuracy of alignments represents the percent of correct alignments
from the total number of alignments;

• the precision of alignments represents the percent of relevant align-
ments among the proposed alignments;

• the recall of alignments represents the percent of relevant alignments
that are effectively retrieved;

• F-measure represents the weighted harmonic mean of precision and re-
call. Greater F-measure (the maximal value being 1) signifies a correct
and complete alignment.

4.5. Numerical results. In Table 1 the performances of the kNN and SVM
based aligners are presented. The SVM classifier was applied at 3 different
taxonomy levels while the kNN one utilizes a combination of them.

Table 1. The performance of the kNN and SVM-based align-
ers, using different similarity measures.

Accuracy Precision Recall F-measure

kNN 95% 87% 97% 92%
SVM on Explanation 32% 32% 100% 48%
SVM on Explanation & Path 90% 87% 81% 84%
SVM on Explanation & Path & Father 91% 87% 84% 86%

As we can notice from the results, by using the path and father of a con-
cept it is possible to improve the performance of the classification process.
The correct alignments were well recognized, but there are several not aligned
definitions labelled as aligned by the SVM leading to a low precision, caused
by: the couple type problems from our database like definitions with strong
syntactic similarity and with different meaning (e.g. Code specifying the type
of package of an item and A code specifying a type of transport means), the
general-particular problem (e.g. Means and mode of transport used for the
carriage of the goods at departure, coded and A code specifying a type of trans-
port means) or words that appear in many definitions, but having different
meaning.

The results using the kNN classifier on the definitions from this corpus are
better than the ones using SVM, but, on the other hand, the utilization of
the SVM classifier instead of the kNN one is more appropriate for solving the
definition alignment problem taking into account that it can learn the optimal
value of the threshold and it is able to produce any alignment type.
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5. Conclusions

In this paper we presented our models for the automatic alignment of two
terminologies (in fact, two real custom standards). These terminologies were
reduced to several definitions taken from two dictionaries (CCL and WCO).
The alignment issue was considered as a classification problem and solved by
using two Machine Learning algorithms: kNN and SVM.

Even if the numerical results indicate that the SVM algorithm reaches
weaker performances than the kNN method (from the F-measure performance
point of view), the SVM is more helpful in order to align the given termi-
nologies because it does not require fixing the values of the parameters. Fur-
thermore, the SVM-based approach allows providing any type of alignments
(one-to-one, one-to-many, many-to-many), which are very useful in the real
world.

Future work will be focused on experiments considering a multi class prob-
lem. In this case we will deal with more types of definition couples: couples
aligned and couples unaligned (straight unaligned, medium unaligned and
weak unaligned).
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