
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LV, Number 2, 2010

SMART SENSORS FOR SOFTWARE TELEMETRY SYSTEMS

ADRIAN ROMAN

Abstract. Software telemetry is a software project management approach
that uses sensors attached to development tools to monitor and control the
development process and the resulted products. Software telemetry pro-
poses solutions for metrics collection cost problem and metrics decision-
making problem, but it also comes with several downsides. This article
identifies the problems of software telemetry and proposes the concept of
smart sensors as possible solution for improving the approach.

1. Introduction

1.1. Software measurements. Software development is known as a slow
and expensive process, often resulting in low quality products with serious
reliability, usability, and performance problems. For decades, software de-
velopment researchers have been attempting to control and improve software
development processes and increase the quality of the final products guided
by DeMarco’s saying[1], ”You can neither predict nor control what you cannot
measure”.

Measurement is the process by which numbers or symbols are assigned
to attributes of entities in the real world in such a way as to describe them
according to clearly defined rules [2]. Software measurements refers to the
characteristics of a software product or the software process and make the
project management more effective. However, practitioners face various bar-
riers in applying metrics. Due to the high cost associated metrics collection
and difficulties in using them in the decision-making process, measurements
are not widely used within the software organizations.

Software telemetry, a new approach in the software measurement field, is
a step towards solving both the metrics collection cost problem and metrics

Received by the editors: 2010/4/25.
2010 Mathematics Subject Classification. 68N30, 68U35.
1998 CR Categories and Descriptors. K.6.3 [Management of Computing and Infor-

mation Systems]: Software Management – Software development ; K.6.3 [Management
of Computing and Information Systems]: Software Management – Software process;
D.2.8 [Software]: Metrics – Process metrics.

Key words and phrases. Software telemetry, software project telemetry, software sensor,
smart sensor.

99



100 ADRIAN ROMAN

decision-making problem. Software telemetry also comes with several down-
sides, related to the way sensors are implemented and also related to the set
of metrics collected.

This article identifies the existing problems of the software telemetry and
introduces the smart sensors as possible solution.

1.2. Software telemetry. Software project telemetry is an approach to soft-
ware project management that uses sensors to collect software metrics au-
tomatically and unobtrusively. The following important properties define
software telemetry as a style of software metrics definition, collection, and
analysis[3]:

• Automatic collection of the data by sensors attached to tools which
measure various characteristics of the project environment on constant
basis.

• The data is a stream of events. Each event is time-stamped which is
significant for analysis. Data analysis in software project telemetry is
focused on the changes over time of various parameters.

• The data is accessible to both developers and the managers. Project
members have to be able to transparently access the collected data.

• Telemetry analyses exhibit graceful degradation. The analyses should
provide value even if complete data over the entire project’s lifespan
is not available.

• Analysis of data includes monitoring and control of processes as well as
short-term prediction. Telemetry analysis represents the project state
at a given time and how it changes at various timescales.

Software telemetry is used in projects where the software developers work
at a location which is inaccessible for manual metrics collection activities.
This approach is in contrast with the software metrics data which is required
to be collected by the developer. Furthermore, the software telemetry data has
its focus on the changes over time in the measurements of various processes
and product during development. In addition, the access to telemetry data
is not restricted to software quality improvement groups, all developers and
managers of a project can view the data in order to take a decision according
to the future requirement of the project. Also, the telemetry analysis shows
the current state of the project and the changes that occurs in it over time, the
scale of which can be decided. The parallel display of more than one project
state values and the pattern of their change allows for opportunistic analysis,
which determine how different variable co-vary with each other.

Software telemetry addresses the metrics collection cost problem by auto-
mated data collection - sensors replace the manual metrics collection activi-
ties, thus, reducing operational costs. It addresses themetrics decision-making



SMART SENSORS FOR SOFTWARE TELEMETRY SYSTEMS 101

Figure 1. The architecture of a software telemetry system[4]

problem through high-level visual perspectives on software development pro-
cess. Unlike traditional metrics approaches which are primarily based on his-
torical project databases and focused on model-based project comparison, soft-
ware project telemetry emphasizes project dynamics and in-process control.

1.3. Software telemetry system architecture. A software project teleme-
try system consists of three components: the sensor, the collector (server)
application and the data visualization interface. Figure 1 illustrates the archi-
tecture of a software telemetry system[4].

Sensors are an essential part of any telemetry system. In software project
telemetry systems data is collected automatically by tools / sensors that reg-
ularly measure various characteristics of the development environment. Data
consists of a stream of time stamped events and developers and managers can
immediately access the data.

Sensors are attached to development environments and can be imple-
mented as plug-ins (in certain cases called add-ins or add-ons). Plug-ins are
optional components which can be used to enable the dynamic construction of
flexible and complex systems, passing as much of the configuration manage-
ment effort as possible to the system rather than the user, allowing graceful
upgrading of systems over time without stopping and restarting.

The basic function of a sensor is to collect data from the development
environment and send it to a centralized collector application. In order to
obtain usable and valuable data, more requirements have to be fulfilled by a
sensor[6]:



102 ADRIAN ROMAN

• It has to be completely integrated to the development environment. The
sensor should not interfere with the development process.

• It has to be able to send data a centralized warehouse (server appli-
cation). A connection between the development environment and the
server has to be established and the sensor has to be able to collect
the data and send them to the database.

• It has to be able to send data automatically. The process of data col-
lection and sending has to be automatic, with no human intervention
or effort.

• It has to be able to timestamp events. As the data analyses are based
on evolution over time, the data has to be time stamped.

• It has to gather significant project management data (e.g. count the
code lines for the current open projects). The sensor have to be able
to collect data useful for analysis, not just any data.

• A setup has to be provided (easy deployment). The deployment of a
sensor has to be easy to perform.

Some examples of sensors used in software telemetry systems are listed below:

• A plug-in for an IDE (integrated development environment) such as
Visual Studio, and Eclipse. It can record individual developer activ-
ities automatically, such as code editing effort, compilation attempts,
and results, etc.

• A plug-in for a version control system, such as CVS or SVN. It can
monitor code check-in and check-out activities, and compute or show
the differences between revisions.

• A plug-in for a bug tracking or issue management system, such as
Bugzilla, and Jira. Whenever an issue is reported or its status is
updated, the sensor can detect such activities and record the relevant
information.

1.4. Downsides of software telemetry. As with any other approach, the
use of software telemetry has several disadvantages attached to it as well. For
example, it is very much possible to misinterpret or misuse the software project
telemetry data. Furthermore, the adoption of software telemetry approach for
decision making and measurement purposes emphasize an increased use of
tools to manage process and products which can incur additional cost in the
project[3].

The main downsides of software telemetry are sum up below:

• Sensors are tool and metric-specific. A sensor must be de-
veloped for each type of tool to be monitored. Although, this
is one time cost, every time a new development tool has to be mon-
itored, a sensor has to be developed. Moreover, every change in the
metrics required by the analysis component or in the development tool
architecture results in changes to the sensor level.



SMART SENSORS FOR SOFTWARE TELEMETRY SYSTEMS 103

• Some metrics are not suitable for automated collection. For
example, the software development effort. It is almost impossible to
construct a sensor that knows how much effort a developer has con-
tributed to a project. The total effort represents not only the develop-
ment, programming time, but also the analysis, design, thinking effort
that cannot be monitored and collected by sensors attached to the
development tools. It is still an open research question whether all
important metrics can be captured by sensors or not.

The introduction of smart sensors addresses these problems and proposes
solutions for further improvements of software telemetry.

2. Smart sensors and proposed architecture

In order to overcome the downsides previously mentioned, an extension
of the existing architecture is possible. Sensors with extended properties can
be designed and implemented as part of a telemetry system. A so-called
smart sensor (could also be called extended sensor) should have the following
properties added to the ones mentioned in section 1.2 of this article:

• It is machine-specific sensor instead of tool-specific sensor. This means
that a smart sensor is able to monitor several applications in the same
time and it is independent of the development tools. Thus, sensors are
designed and implemented for every type of machine instead of every
type of development tool.

• It is able to collect an extended range of data. Not metric-specific.
The sensor must be capable of collecting a large number of metrics by
design.

• It is able to receive messages from the centralized application. The
smart sensor should be able to receive and interpret messages from
the centralized application. The messages should indicate the metrics
to be collected by the sensors.

• It is able to collect and send only the required data. In order to reduce
the data overload, only required data should be monitored and sent to
the centralized application.

• It allows user interaction. The sensor should have a user interface
that allows the user interaction. The interface should allow the input of
metrics that cannot be collected automatically and should not interfere
with the sensor functioning process.

2.1. Proposed architecture for smart sensor integration. The archi-
tecture of software telemetry system [5] described in figure 1 easily integrates
such a smart/extended sensor (figure 2). The main components of the system
remain the same, only that data flow is a little bit different. Centralized ap-
plication is responsible for both data collection and sending instructions and



104 ADRIAN ROMAN

messages to sensors. Management interface is used to sustain the decision pro-
cess. Project managers are able to tell exactly what metrics they need to be
collected for a certain period of time. Smart sensors have all the properties of

Figure 2. Smart sensors in a software project telemetry system

regular software sensors plus several more that are meant to solve both prob-
lems identified in Section 1.3. Table 1 shows how each problem is addressed
by the smart sensor solution.

Problem Solution
A sensor must be
developed for each
type of tool to be
monitored

Smart sensors are machine-level.
There is no need to develop a sen-
sor for each tool. Smart sensors are
able to collect an extended range of
data. Not metric-specific. Smart
sensors are able to receive messages
and change the set of collected met-
rics dynamically.

Some metrics are
not suitable for au-
tomated collection

Smart sensors allow user interac-
tion. Thus, metrics that are not
suitable for automatic collection can
be collected through the user inter-
face and sent to the centralized ap-
plications in the same way as data
collected automatically.



SMART SENSORS FOR SOFTWARE TELEMETRY SYSTEMS 105

2.2. Smart sensor implementation considerations. Creating software
sensors is not easy. The developers need to know a lot about the development
environment that the sensor is attached to. Plus, development environments
have bugs in their plugin APIs, they are due to frequent changes and most of
the time are not well documented.

Smart sensors try to solve these problems by implementing a machine-
level application that is able to capture all the necessary information in a
generic way, independent from the development environment. Such a sensor
should be able to collect metrics like the time spent on a certain application,
file or project, the idle time, the number of code lines written for different
configuration and development environments. This is the biggest challenge of
this approach and further study is needed as it involves high-level programming
skills.

Another important feature of a smart sensor is the capability of collect-
ing only specified metrics. The sensors receive messages from the server and
collects only certain metrics. A telemetry language for the communication
between sensors and the centralized application has to be designed.

The central idea of sensor-based metrics collection is that sensors are de-
signed to collect metrics automatically and unobtrusively. Once they are in-
stalled, they work silently in the background. But smart sensor also allow user
interaction. Metrics that cannot be collected automatically, such as the time
spent for brainstorming or team meetings, can be introduced in the software
telemetry system via a thin application that connects the user with the sensor.
The data then is forwarded by the sensor to the server application.

Offline storage needs to be also considered for the situations when the
development stations fail to connect to the centralized server. When the com-
munication with the server is not possible the metrics are stored locally using
XML files, a small database or open source solutions like Google Gear.

3. Conclusions and future work

The use of software project telemetry supports project management deci-
sion making. Furthermore, the automated collection of data adds significant
value to software telemetry as it makes all metrics more comparable and cur-
rent. However, there is always a chance that the data obtained through sensors
of software telemetry can be misinterpreted or misused and it also increases
the dependency of the project team on tools for managing process and prod-
ucts. Hence it can be said that although software telemetry approach does not
provide a silver bullet to solve all problems that are associated with metrics-
based project management and decision making, however, it does address the
inherent problems found in traditional measurement and provides for a new
approach to more local, in-process decision making.



106 ADRIAN ROMAN

Software telemetry presents two main downsides: (1) sensors are tool
and metric-specific and (2) some metrics are not suitable for auto-
mated collection. A sensor has to be developed for every type of develop-
ment tool and every change in the required set of metrics results in changes to
the sensor level. Also there are metrics that cannot be collected automatically
and require human input.

This article introduces the concept of smart sensors that can be used in
software telemetry systems to overcome the above mentioned downsides. A
smart sensor is metric-specific, is able to collect a large range of data and
allows user input. Thus, sensors are implemented for every type of machine
instead of every type of development tool and user can input metrics that are
collected, transported and analysed by the telemetry system. Further research
is need on the way smart sensors can be implemented to achieve the proposed
properties, on the communication protocols to be used and on the architecture
of software telemetry systems using this approach.

References

[1] T. DeMarco, Controlling Software Projects, Yourdon Press, 1982.
[2] N.E. Fenton, S.L. Pfeeger, Software Metrics: A rigorous and Practical Approach, Thom-

son Computer Press, 1997.
[3] P. M. Johnson, H. Kou, M. Paulding, Q. Zhang, A. Kagawa, T. Yamashita, Improving

software development management through software project telemetry, Software, IEEE,
22(4), 2005, pp. 76-85.

[4] P. M. Johnson, H. Kou, J. Agustin, C. Chan, C. Moore, J. Miglani, S. Zhen, W.E.J.
Doane, Beyond the Personal Software Process: Metrics collection and analysis for the
differently disciplined, Proceedings of the 25th International Conference on Software En-
gineering, IEEE Computer Society, 2003, pp. 641 - 646.

[5] A. Roman, Proposed Architecture for Software Telemetry Systems, Proceedings of the
National Symposium ZAC 2008, ISBN: 978-973-610-730-6, 2008, pp.31-37.

[6] A. Roman, Towards Building Software Project Telemetry Tools, Proceedings of the Inter-
national Conference ”European Integration Between Tradition and Modernity”, ISSN:
1844-2048, 2008, pp.731-734.

”Petru Maior” University of Tirgu-Mures
E-mail address: aroman@science.upm.ro


