
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LV, Number 2, 2010

A PROPOSED APPROACH FOR PLATFORM

INTEROPERABILITY

PAUL HORAŢIU STAN AND CAMELIA ŞERBAN

Abstract. This paper presents a new approach regarding interoperabil-
ity. The novelty of the proposed solution resides in using a proxy object for
each parameter object in order to avoid serialization. The main guidelines
and the architecture related to developing a framework in order to auto-
matically generate the source code for communication between platforms
are proposed. Finally, there are summarized the contributions of this work
and future improvements.

1. Introduction

An actual software engineering problem is the improvement of the software
development process and the final product quality. In order to realize this,
the source code should be reusable [8]. Obviously, it is a good news for a
developer if an old library developed in Java can be used in .NET without
being necessary to rewrite the code. In this case, it saves time and improves
the quality of the final software system, because the Java library was tested
in the past and it works fine.

There are many frameworks written for both Java and .NET, for in-
stance: Hibernate [9] respectively NHibernate, JUnit [10] respectively NUnit
etc. These frameworks could be written for a platform and reused from an-
other platform, for instance instead of rewriting Hibernate for .NET it can be
reused directly.

The current paper presents the architecture and the main guidelines re-
lated to developing a framework in order to automatically generate the source
code for communication between platforms.

The proposed approach is discussed as follows: Section 2 highlights the
current interoperability approaches, and the proposed solution together with
the motivation of the problem and the disadvantages of actual interoperability

Received by the editors: February 5, 2010.
2010 Mathematics Subject Classification. 68N15.
1998 CR Categories and Descriptors. D.2.12 [Software]: SOFTWARE ENGINEERING

– Interoperability ; D.2.13 [Software]: SOFTWARE ENGINEERING – Reusable Software;
Key words and phrases. Proxy, Automatic Source Code Generation, Interoperability.

87



88 PAUL HORAŢIU STAN AND CAMELIA ŞERBAN

approaches. Section 3 describes in details the technical details, the theoretical
concepts used in order to implement the interoperability mechanism and an
implementation solution for .NET-Java. Finally Section 4 summarizes the
contributions of this work and presents future research directions.

2. The Problem

The general context of this article is focused on how to access remote
objects developed for different programming languages in a transparent way,
like they were written for client programming language. The problem is how
the parameters can be passed to the remote methods without being necessary
to serialize them on client platform and restored on remote platform in order
to be used there. The main idea presented in this article is that each object
should be executed in the address space of the process which has created itself.

This section is composed by two parts, first presents the current inter-
operability approaches and the second describes the proposed solution. The
proposed solution is presented as follows: the motivation of the problem, the
disadvantages of current approaches and a short description of the technical
solution.

2.1. Current interoperability approaches. Nowadays there are many soft-
ware applications that communicate and solve business problems. These appli-
cations are developed using different platforms, for instance Java, .NET, PHP,
Perl, Python, Pascal etc. In order to realize the communication these appli-
cations should use the same protocol. There are many techniques used for
implementing the communication between applications, for instance: COM
(Microsoft Component Object Model), CORBA (Common Object Request
Broker Architecture), Java RMI (Remote Method Invocation) [11], .NET Re-
moting [12], WEB Services based applications [2], SCA (Software Component
Architecture) [3] etc.

The Component Object Model (COM) lets an object expose its function-
ality to other components and to host applications [16]. COM is Microsoft’s
initial component object model. A binary standard for the efficient inter-
operation across component boundaries. A COM component can implement
several COM classes, each uniquely identified by a class ID (CLSID). Each
COM class can implement several COM interfaces. A COM interface provides
a set of operations and is uniquely identified by an interface ID (IID). A COM
object is an instance of a COM class, but does not necessarily constitute a
single object (split object). Clients use COM objects solely via the interfaces
provided by that object. Each interface has a QueryInterface operation that
can be used to ask for any of the other interfaces of the COM object based on



A PROPOSED APPROACH FOR PLATFORM INTEROPERABILITY 89

IIDs. COM object servers execute in processes that can be partitioned into
COM apartments [1].

The Common Object Request Broker Architecture (CORBA) is a stan-
dard defined by the Object Management Group (OMG) that enables software
components written in multiple computer languages and running on multiple
computers to work together, i.e. it supports multiple platforms [15].

First and foremost, CORBA covers the specification of the interfaces of
object request brokers (ORBs). An ORB accepts requests for method invoca-
tions and relays them to the addressed object, bridging platform and language
gaps. An ORB also provides interface and implementation repositories that
make the system fully self-describing (reflection). CORBA also covers the
binding of programming languages to ORB-understood interfaces. Such in-
terfaces are described in a standardized interface definition language (IDL).
CORBA 3 added the CORBA component model (CCM), which is designed to
be a superset of EJB [1].

RMI-IIOP provides interoperability with other CORBA objects imple-
mented in various languages - but only if all the remote interfaces are origi-
nally defined as Java RMI interfaces. It is of particular interest to program-
mers using Enterprise JavaBeans (EJB), since the remote object model for
EJB components is based on the RMI API [17].

The .NET remoting support combines context and reflection infrastructure
with flexible support for proxies, channels, and messages to provide building
blocks for a wide variety of communication styles and patterns [1].

Web services are similar to deployed components from a client point of view
as they offer features via standard interfaces. However, services do not reveal
their implementations platform and infrastructure requirements. Web services
are far more self-contained than typical components or even applications. By
being almost completely self-contained, services cannot be reused in different
contexts, but are merely good to be used as is. To enable reuse, services
would have to have explicit context dependencies and offer reconfiguration by
binding their required interfaces against selected provided interfaces of other
services [1].

In the Simple Object Access Protocol (SOAP) model each object is serial-
ized on the source platform, sent to the destination platform and deserialized
there. If the serialized object is very large then the overall performance de-
creases.

Service Component Architecture (SCA) defines a way to create compo-
nents and a mechanism for describing how those components work together.
SCA was originally created by a group of vendors, including BEA, IBM, Or-
acle, SAP, and others [4].



90 PAUL HORAŢIU STAN AND CAMELIA ŞERBAN

Every SCA application is built from one or more components. The appli-
cation might contain a few components implemented as Java classes, others
written in C++, and still others defined using BPEL, all spread across a group
of machines [4].

2.2. Proposed Approach. This paper intends to presents a technique for
implementing the platform interoperability and the source code reusability
between programming languages.

2.2.1. Problem Motivation. The platform interoperability approach allows the
source code written for a given platform to be called from another platform,
this will determine a more reusable source code. The software development
process will be improved because the code rewriting tasks are skipped, the
development time is minimized and the final deliverable quality is improved.

On the other hand, the libraries reusability instead of redesigning and
rewriting them implies a better software systems functionality. In many cases
when a functionality is rewritten, bugs appear in project, then in the soft-
ware industry it’s recommended to reuse modules that works fine instead of
rewriting them [3].

2.2.2. Drawbacks of current interoperability approaches. Some current inter-
operability approaches are based on the COM technology, the Java and/or
.NET classes are converted to COM objects and after that are imported using
native methods for Java and using COM objects for .NET. There are business
solutions that use this technique for interoperability. The COM technology
disadvantage is that it is operating system dependent, so it does not allow
platform interoperability.

In CORBA, the server objects are managed by an object broker that can be
accessed by clients in order to send messages to server objects. The limitation
of CORBA is that the server objects methods could not return and could not
have parameters of types defined on client side.

Unlike COM and CORBA, proposed approach is platform independent
and allows remote object’s methods to return and to have parameters of client
side defined types.

A web services based approach limitation is the objects passed from client
to server and vice-versa should be serialized. The communication process is
composed of the following steps:

• Serialize the object in an XML format
• Send the serialized object
• Deserialize the object from the XML format

Proposed solution solves this limitation, the objects should not be serial-
izable because proxy objects are generated and it manage the communication



A PROPOSED APPROACH FOR PLATFORM INTEROPERABILITY 91

with real object instead of serializing the real objects and deserializing them
on the destination platform. This technique involves only few data exchanges
between platforms used for creating and managing proxy objects. This solu-
tion is applicable for systems that does not involve data intensive processing
but involves calling remote procedures and functions.

Unlike Web Services approaches, in the proposed solution for each remote
object a proxy object is generated on the client side. This allows to avoid
serialization/deserialization of huge objects. In some scenarios the overall
performance is increased and in other ones the performance is decreased.

The Service Component Architecture model defines a top-down approach,
in contrast with the proposed technique that is focused on reusing old software
routines, that involves a bottom-up development process.

Presented solution can be used if parts of a distributed object should be
used by many applications. For this use case our solution is better than SOAP
model that implies serialization and deserialization of the remote object, in
contrast, the proposed solution will exchange only short messages in order to
manipulate the needed remote object parts.

2.2.3. Conceptual view of the proposed solution. The main solution idea is that
each object is executed in the address space of the process which has created
itself. This means these objects are not serialized, sent to remote platform
and deserialized there in order to be used.

In the proposed solution for each remote object a proxy object is generated
on the client side. There are three use cases for a proxy object: create itself,
erase itself and invoke one of their methods, for all of the above situations
the request is redirected to the remote object, when a proxy object is created
a remote object is created too, when the proxy is erased from memory the
remote object is erased too and when a proxy method is invoked the request
is forwarded to the remote object. These three situations are presented in the
figure 1.

3. Technical details

This section presents the high level architecture of the proposed approach
and the implementation solution. This solution is applicable for .NET and
Java, but it can be extended to support other development platforms.

We discuss the proposed approach as follows: Sections 3.1. presents the
main architecture and introduces the terms and definitions used later in this
article, Section 3.2 shows how the proposed solution works, finally, the main
architecture of the developed interoperability framework for Java and .NET
is presented in Section 3.3.



92 PAUL HORAŢIU STAN AND CAMELIA ŞERBAN

proxyObject remoteObject

<<create>>

<<create>>

method

method

<<destroy>> <<destroy>>

client platform remote platform

Figure 1. Proposed Architecture

3.1. Architecture. The proposed solution is based on the Proxy design pat-
tern presented in [7].

In the proposed solution for each remote object a proxy object is gener-
ated on the client side. When the client platform creates the proxy then the
server creates the real object and store them in a hash table based on an auto-
matically generated identifier. When the client side platform erase the proxy
object, for instance the garbage collector decides to remove from memory the
unreferenced objects then the server side platform will remove from the remote
objects hash table the real object. When a client object invokes a method on
the proxy object the request is redirected to the remote object. These three
situations are presented in the figure 2.

proxyObject remoteObject

<<create>>

method

<<destroy>>

client platform remote platform

RemotePlatformManager

newInstance

MyPlatformManager

newInstance
<<create>>

managedObjects

put

invoke
invoke

get

method

delete
delete

get

remove

Figure 2. Communication Architecture



A PROPOSED APPROACH FOR PLATFORM INTEROPERABILITY 93

Definition 1. RemotePlatform is the development environment and the pro-
gramming language used in order to develop routines that should be imported.

Definition 2. ClientPlatform is the development environment and the pro-
gramming language in which should be imported the remote routines.

Definition 3. RemoteType is a data type defined on the RemotePlatform that
should be accessed from ClientPlatform.

Definition 4. ProxyType is a data type defined on the ClientPlatform. An
instance of this type represents a proxy to an instance of RemoteType. This
type is automatically generated.

Definition 5. RemotePlatformManager is a data type that manage the com-
munication with RemotePlatform. This data type has been written for Client-
Platform and is used by ProxyType in order to redirect the methods requests.
It is included in the proposed framework.

Definition 6. MyPlatformManager is a data type that manages the commu-
nication with the ClientPlatform. This data type has been written for Re-
motePlatform, it receives commands from RemotePlatformManager and redi-
rects them to instances of RemoteType. It is included in the proposed frame-
work.

3.2. How it works. The general context is: there is a data type RemoteType
on the developing platform RemotePlatform and it should be used in a class C
on developing platform ClientPlatform. Based on the RemoteType an XML file
is generated that specifies how the type can be used. Using this XML file the
source code for the ProxyType is automatically generated. The ProxyType is
written in the ClientPlatform programming language. This process is exposed
in the figure 3.

RemoteType

XML
specification
file

ProxyType

Figure 3. Automatically Generating the Proxy Type

After the ProxyType is generated it can be used on the ClientPlatform.
The remote types in binary format should be available, that means .jar files
if the remote objects are written in Java or .dll files if the remote objects are
written in .NET.

On the ClientPlatform there is the class RemotePlatformManager, this
class manages the communication with the RemotePlatform. On the Re-
motePlatform there is the class MyPlatformManager that manage the com-
munication with the clients. MyPlatformManager stores all remote objects in



94 PAUL HORAŢIU STAN AND CAMELIA ŞERBAN

a hash table using unique identifier for each object. When a method is invoked
on the proxy object the RemotePlatformManager delegates the responsibility
to the MyPlatformManager witch invokes the method on the remote object.
When the proxy object is disposed from client side then the remote object is
deleted from hash table.

A parameter type of a proxy object’s method can be in one of the following
situations:

• A standard type: String, byte, short, int, long, char, float, double,
boolean. In this case the parameter is transmitted by value.

• A proxy type. In this situation the object identifier is sent to the
RemotePlatform, in order to identify the real object.

• A client type. In this case the parameter is stored in a hash table on
the ClientPlatform and an automatically generated identifier is passed
to the RemotePlatform. The RemotePlatform will use the identifier in
order to create a proxy object for the real client side object.

Figure 4 describes the passing parameter mechanism for the situations
presented above.

The return type of a proxy object’s method can be in one of the following
situations:

• A standard type: String, byte, short, int, long, char, float, double,
boolean. In this case the parameter is transmitted by value.

• A proxy type. In this situation the object identifier is sent from the Re-
motePlatform to the ClientPlatform, on the client side a proxy object
is created that represents the real remote object.

• A client type. In this case on the RemotePlatform there is a proxy ob-
ject to a real client object. The parameter object identifier is sent from
RemotePlatform to the ClientPlatform in order to identify the client
real object and this client object is returned by the proxy method.

RemotePlatformManager andMyPlatformManager are responsible for com-
munication between platforms. The communication can be implemented using
different protocols such as: TCP/IP, shared memory, HTTP etc. In this re-
search the TCP/IP has been chosen for sending XML data in order to realize
the communication.

3.3. The developed framework for interoperability. During this research
a framework for interoperability between .NET and Java has been developed.
Current version allows only Java classes to be used in .NET. On the following
three listings the request XML files for the next three scenarios are presented:

• create a remote object
• invoke a method on a remote object
• delete a remote object



A PROPOSED APPROACH FOR PLATFORM INTEROPERABILITY 95

ProxyObject RemoteObject
f(5)

type of x is 

a standard data 

type

RemotePlatformManager MyPlatformManager

f(5)invoke

<Parameter type="int" 

value="5" link="value" />

ProxyObject RemoteObject
1. f(p)

type of p is 

a proxy data 

type

RemotePlatformManager MyPlatformManager

5. f(o)2. invoke
<Parameter type="ProxyTypeP" 

value="guid" 

link="reference" />

p:ProxyTypeP

3. getId

managedObjects

4. getObjectById

o:TypeP

proxy for

proxy for

ProxyObject RemoteObject
1. f(o)

type of o is 

a client data 

type

RemotePlatformManager MyPlatformManager

5. f(p)2. invoke
<Parameter type="ProxyTypeP" 

value="guid" 

link="proxy" />

o:TypemanagedObjects p:TypeP

3. add(id,o) 4. Create

proxy for

Figure 4. Passing parameter by value or by reference

Listing 1. Create Instance XML Request

1 <?xml version="1.0" encoding="utf-16"?>

2 <Request type="createInstance">

3 <Class>cars.Car</Class>

4 <Guid />

5 <MethodName />

6 </Request>

Listing 2. Invoke XML Request

1 <?xml version="1.0" encoding="utf-16"?>

2 <Request type="invokeOnInstance">

3 <Class />

4 <Guid>63eba091-4ec1-4be1-bc9c-0f656efddc54</Guid>

5 <MethodName>setPrice</MethodName>

6 <Parameter type="int" value="12" link="value"/>



96 PAUL HORAŢIU STAN AND CAMELIA ŞERBAN

7 </Request>

Listing 3. Delete Instance XML Request

1 <?xml version="1.0" encoding="utf-16"?>

2 <Request type="delete">

3 <Class />

4 <Guid>63eba091-4ec1-4be1-bc9c-0f656efddc54</Guid>

5 <MethodName />

6 </Request>

The type attribute of the Request element can have the following values:

• createInstance in order to create a remote object. In this situation the
element Class is used in order to identify the remote object class. A
constraint on the remote object is to have a parameter less construc-
tor. Using reflection the remote object is instantiated and an object
identifier is generated and returned.

• invokeOnInstance in order to invoke a method on a remote object. In
this case the Guid element is used to identify the remote object. The
method name and the list of parameters is used to identify the remote
object’s method. The method is invoked using reflection and the result
is returned. The response XML will be presented later.

• delete in order to delete an instance of an object. In this case the Guid
is used to identify the remote object and to remove it from the remote
objects hash table.

In the following paragraph we discuss the Parameter XML element. The
attribute link can have the following two values:

• value in this case the value attribute represents the parameter value
• reference in this case the value attribute represents the object identifier
for a remote object.

The type attribute represents the parameter type, it can be one of the following
standard type String, byte, short, int, long, char, float, double, boolean or a
full remote type name.

The following three listings present the XML responses for the three re-
quest types:

Listing 4. Create Instance XML Response

1 <?xml version="1.0"?>

2 <Response type="Done">

3 <ErrorMessage/>

4 <Guid>85eec14b-f6ba-4783-af87-0d69fda884c2</Guid>



A PROPOSED APPROACH FOR PLATFORM INTEROPERABILITY 97

5 <Value type="" value="" link="value"/>

6 </Response>

Listing 5. Invoke XML Response

1 <?xml version="1.0"?>

2 <Response type="Done">

3 <ErrorMessage/>

4 <Guid/>

5 <Value type="void" value="null" link="value"/>

6 </Response>

Listing 6. Delete Instance XML Response

1 <?xml version="1.0"?>

2 <Response type="Done">

3 <ErrorMessage/>

4 <Guid/>

5 <Value type="" value="" link="value"/>

6 </Response>

The type attribute can have the following two values:

• Done if the request was successfully executed. In this case the Guid
is the object identifier if a create instance request was made and the
Value element is the method return parameter if an invoke request was
made. The Value has the same attributes like the Parameter attribute.

• Error if some error occurred on the RemotePlatform. In this case the
ErrorMessage element contains the full message error.

4. Conclusions and Future Work

The main contributions of this paper are: a new approach of the interop-
erability issues between different platforms, regarding data types and objects,
and a new development interoperability framework between Java and .NET,
this can be easily extended to other platforms.

The novelty of the proposed solution resides in: using a proxy object in
order to avoid serialization for each remote object and the parameter objects
are executed in their own address space, that is the address space of the process
which has created themselves.

A disadvantage of the proposed technique is the increasing of the execu-
tion time because there should be executed open connection operations and
parameter values movements, but the main algorithms complexity is not af-
fected. The proof of the proposed concept can be extended into a commercial



98 PAUL HORAŢIU STAN AND CAMELIA ŞERBAN

application server that should allow the deploy/access process for the routines
written on different platforms.

5. Acknowledgment

The authors wish to thank for the financial support provided from pro-
grams co-financed by the SECTORAL OPERATIONAL PROGRAMME HU-
MANRESOURCES DEVELOPMENT, ContractPOSDRU 6/1.5/S/3 “Doc-
toral studies: through science towards society”. (Paul Horaţiu Stan)

This research has been supported by the the Romanian CNCSIS through
the PNII-IDEI research grant ID 550/2007. (Camelia Şerban)

The authors would like to thank professor Bazil Pârv and professor Ioan
Lazăr for their precious help.

References

[1] Clemens Szyperski, Beyond Object-Oriented Programming, second edition, ACM Press
New York 2002

[2] Ethan Cerami, Web Services Essentials: Distributed Applications with XML-RPC,
SOAP, UDDI and WSDL, O’Reilly Media, Inc. February 2002.

[3] Schach, Stephen R., Object-Oriented Software Engineering McGraw-Hill Science/Engi-
neering September 2007.

[4] David Chappell. Introducing SCA, July 2007.
[5] SCA Service Component Architecture, Assembly Model Specification 2007.
[6] B Nolan, B Brown, L Balmelli, T Bohn, U Wahli Model Driven Systems Development

with Rational Products IBM 2008.
[7] Erich Gamma, Richard Helm, and Ralph Johnson, and John Vlissides, Design Pat-

terns: 50 specific ways to improve your use of the standard template library. Pearson
Education, Inc 1995.

[8] Beck Kent. Test Driven Development: By Example. Addison-Wesley Professional, 2003.
[9] Christian Bauer, Gavin King, Hibernate in Action: Practical Object/Relational Map-

ping, Manning Publications August 2004.
[10] Vincent Massol, JUnit in Action, Manning Publications November 2003.
[11] William Grosso, Java RMI (Java Series), O’Reilly Media, Inc. Octomber 2001.
[12] Ingo Szpuszta, Mario Rammer, Advanced .NET Remoting 2nd Edition, APRESS Feb-

ruary 2005.
[13] James Snell Programming Web Services with SOAP
[14] http://www.w3.org/TR/soap, accessed on April 06, 2010
[15] http://en.wikipedia.org/wiki/CORBA, accessed on April 06, 2010
[16] http://msdn.microsoft.com/en-us/library/kew41ycz.aspx, accessed on April 06, 2010
[17] http://java.sun.com/j2se/1.4.2/docs/guide/rmi-iiop, accessed on April 06, 2010

Babeş-Bolyai University, Department of Computer Science,, 1 Kogalniceanu
St., 400084, Cluj-Napoca, Romania,

E-mail address: horatiu@cs.ubbcluj.ro, camelia@cs.ubbcluj.ro


