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ACTION RECOGNITION USING DTW AND PETRI NETS

TAMÁS VAJDA

Abstract. This paper proposes a new approach for recognition in monoc-
ular video the human behavior sequence. We use a simple to complex ap-
proach in action recognition by decomposing it to its basic elements. The
human body parts motions are tracked and classified individually. The
body parts motions are matched using an adapted Dynamic Time Warp-
ing (DTW) method, an approximation of DTW algorithm that has linear
time and space complexity. The adapted DTW uses a three step approach
and in the second step we may eliminate the most of the incorrect template
which reduces the time for comparing the entire template database. The
results of the DTW matching are used to activate hierarchical Petri Nets
used to classify the behavior.

1. Introduction

Recognizing human behavior from monocular video sequences is one of
the most promising application of computer vision. The behavior recognition
has two big issues: the first one is the human tracking which represents the
measurement stage and the second is the recognition stage which is the mea-
surement processing stage. We will focus here mostly on the second issue.
The behavior recognition is challenging because of the high degree of motions,
the coarsest human model is represented by 28 dimensions, and missing or
erroneous measurement. Due to the high degree of motion, the actions can
be often classified into several categories simultaneously. Some activities have
a natural compositional structure. Behavior is composed mostly from basic
action units (run and hand-wave, walk and shake hands). Even the transition
between simple activities naturally has temporal segments of ambiguity and
overlap. The research devoted to human motion recognition is extensive, we
refer to [5, 11, 8] for comprehensive surveys. A common approach to recog-
nize or model sequential data like human motion is the use of Hidden Markov
Model (HMM) on both 2D observations [9, 12] and 3D observations. In HMM
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[1] sequential data is modeled using a Markov model that has finite states.
We must choose and determine the number of states in advance for a motion,
but the motion can have different time length. Therefore, it is difficult to set
the optimal number of state corresponding to each motion. Recently, there
has been increasing interest in using conditional random field (CRF) [2, 3] for
learning of sequences. The advantage of CRF over HMM is its conditional na-
ture, resulting in relaxation of the independence assumption, which is required
by HMM to ensure tractable inference [4]. But all these methods assume that
we know the number of states for every motion. Other approaches make use of
templates or global trajectories of motion. Using global trajectories is highly
dependent from the environment where the system is built, and can separate
the composed action which introduces high interclass variation making it hard
to classify the motion [6, 7]. Another problem of using global trajectories in
action recognition is that it is very difficult to find the silence point which
mark the possible beginning of a new action. The main contribution of this
paper is the introduction of novel action representation. Using the decom-
position method we can create an environment independent representation of
different actions by representing every body part motion relative to its parent.
The second contribution is DTW adaptation for human motion recognition.
In this paper we will also demonstrate that the Petri Nets are suitable for
behavior recognition.

2. Pictorial structure based human detection and posture
estimation

The first step for behavior recognition is the measurement. In our case we
want to know the current configuration of the human body, its relation to other
moving objects, and its relation to its environment. To achieve this goal we
used the Pictorial structure method introduced by Felzenszwalb [13]. In this
approach the human body is modeled by a collection of parts in a deformable
configuration, with ”spring-like” connections between pairs of parts. These
connections are modeling spatial relations between parts. Appearances and
spatial relationships of individual parts can be used to detect an object. Best
match of the pictorial structures depends on how well each part matches its
location and how well the locations agree with the deformable model. Match-
ing a pictorial structure does not involve making any decisions about location
of individual parts; more work is to find a global minimum of energy function
without any initialization.

The pictorial structure model can be represented as an undirected graph
G = {V,E}, where V represents the body parts set and E represents the
relation between parts. An instance of the object is given by its configuration
L = {l1 . . . ln} where li is the location of part vi.
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To find the best match of a body configuration within an image we find
the L∗ that minimizes the sum

(1) arg max
L

(
n∑
i=1

mi(li) +
∑

(vi,vj)εE

dij(li, lj))

where mi(li) measures the cost of mismatching part vi. with location li and
dij(li, lj) measures the cost of deforming the model when placing vi at location
li and vj at lj . To measure this deformation we use Mahalanobis distance. By
using the statistical framework proposed by Felzenszwalb the Pictorial struc-
tures can be viewed as an energy minimization problem in terms of statistical
estimation. In this framework we need the model parameters M = (u,E, c)
where u = u1 . . . un are appearance parameters, E indicates connections be-
tween parts and c = {cij |(vi, vj)εE} represents connection parameters. These
parameters are learned from training examples.

Using the Posterior Sampling method, we get for every frame the optimal
location and configuration of body model.We used the pictorial structure on a
background-subtracted image and a feature image. As result of detection we
get the body’s relative configuration, the absolute position of body parts.

3. Action decomposition

Human motion can be represented in many ways: silhouette, volumetric
representation of motion, temporal templates or global trajectories. We have
two ways to represent motion: global trajectories, or decomposing the motion
to its basic elements. Because the human motion can be compositional or
concurrent, the global trajectories are not the best choice. Some actions need
only legs for example walk, run, jump, and some only the hand: handshaking,
waving. For this reason we decomposed the action to its basic elements - to
body part motions. To make the recognition easier, we track every body part
individually and relative to its parents body part. Using this approach we can
use only those basic motions (body part motions) in the classification which
are relevant so we can easily recognize composed motion too. The first and
most significant motion is the torso motion. Here we look at two elements,
the motion relative to the image (global motion) and the angular motion.

The torso represents the root of body parts in the pictorial structure. The
upper legs, and upper arms are connected to the torso and we analyze only
their angular motion between -270 and +270 grades. The absolute motion is
tracked between -180 and +180. The 180 and 270 values represent a buffer
zone. If the motion angle is above 180 or below -180, we will have two possible
time series. Three events can reset one of the time series: the angular motion
returns quickly between -180 and 180 degrees; the DTW matching for one of
them has a strong result or the angle is increased above 270 or decreased below
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Figure 1. Relative motion of the upper leg relative to the torso

Figure 2. Full resolution time series of waving - upper arm

-270. (Figure 1). The lower legs are connected and their angular motions are
relative to the upper legs. Also the lower arm angular motions are tracked
relatively to the upper arm. We do not track the motion of the head. In
Figure 2. a time series of motion is presented for the upper arm representing
the waving action.

The most important point in the motion series are the peaks and the
still (constant) points, because they mark a change in the motion direction.
Knowing that the same action can be done at different speed the time between
two direction changes in a body part motion is not so relevant.

4. Dynamic-Time Warping method for behavior recognition

Body part motions are time series in which every measurement is an el-
ement from the series with constant time periods between them. The best
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way to compare saved template motion and measurement, which can be time
series of different length, is the dynamic time warping (DTW) algorithm. The
DTW compares two time series where we note the template series with T and
the measurement with X, of lengths |T | and |X|,

(2)
X = x1, x2, ..., xi, ...x|X|
T = t1, t2, ..., tj , ...x|T |

construct a warping path W

(3)
W = w1, w2, ..., w|k|

max(|X|, |T |) ≤ k ≤ |X|+ |T |

where k is the length of the warping path at the nth element of the warping
path is

(4) wn = (i, j)

where i, j are an index from time series X, and T . Every index of both time
series is to be used in the warping path and need to increase monotonically
in the warp path. The minimum-distance warping path is optimal, where the
distance of a warping path W is

(5) Dist(W ) =
n=k∑
n=1

Dist(wni, wnj)

Dist(W ) is the distance of warping path W , and Dist(wni, wnj) is the distance

between the two data point indexes in the nth element of the warp path. A
two-dimensional |X| by |T | cost matrix D is constructed, where the value at
D(i, j) is the minimum distance warping path that can be constructed from
the two time series X ′ = x1, x2, . . . , xi and T ′ = t1, t2, . . . , tj . The value at
D(|X|, |T |) will contain the minimum-distance warping path between time
series X and T . To find the minimum-distance warp path, every cell of the
cost matrix must be filled.

(6) D(i, j) = Dist(i, j) + min(D(i− 1, j), D((i, j − 1), d(i− 1, j − 1))

D(i, j) is the minimum warp distance of two time series of lengths i and j, if
the minimum warp distances are already known for all slightly smaller por-
tions of that time series that are a single data point away from lengths i and
j. After the entire matrix is filled, the warping path is actually calculated
in reverse order performing a greedy search that evaluates cells to the left,
down, and diagonally to the bottom-left starting at D(|X|, |T |) to D(1, 1).
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Whichever of left, down, and diagonally adjacent cells has the smallest value
is added to the beginning of the warping path found so far, and the search
continues from that cell. The search stops when D(1, 1) is reached. To speed
up and to avoid the marginalized warping path a slop constrain is introduced
by Sakoe-Chiba [14]. Our adapted DTW version uses a merged version of Fats
DTW introduced by Stan Salvador and Philip Chan [12] and the Sakoe-Chiba
band constrain[14]. The adapted version of DTW algorithm uses a multilevel
approach with following key operations:

(1) Shrink — Shrinks a time series into a smaller time series, that repre-
sents only the peak or constant values from the time series;

(2) Coarse DTW — Finds a minimum-distance warping path for the shrunk
series and uses that warping path as an initial guess for the full ”res-
olution’s” minimum-distance warp path;

(3) Final DTW — Refines the warping path projected from a lower resolu-
tion through local adjustments of the warping path using Sakoe-Chiba
constrain.

There are some major enhancement compared to the Stan Salvador and
Philip Chan’s FastDTW algorithm. The first is in the coarsening step. The
FastDTW only computes an average of the neighborhood values and run sev-
eral times to produce many different resolutions of the time series. Using this
method to shrink the time series we may lose important information and get
a low compression of the data. Compared to other time series in the series
representing human body part motions the most significant moments are the
direction changes. The shrinking average operation smooths the time series
causing loss of information. In our approach instead of averaging the time
series we use a heuristic selection of the data keeping only the peaks and con-
stant values from the series. This is done by keeping only those xi elements
from X if the one of the next two conditions is true:

(7) ((xi ≤ xi−1) ∧ (xi ≥ xi+1))||((xi ≥ xi−1) ∧ (xi ≤ xi+1))

The resulting time series is a smaller one or equal to the original time
series and we lose very low amount of information.

Figure 3 represents the original time series, of waving upper arm and the
shrunken series. The second step we make a classical DTW comparison of
the shrunken templates and the shrunken input. Using this comparison we
can eliminate the majority of the template and only few template need to be
compared at higher resolution.

Figure 4 shows the shrunk time series cost matrix and the projection of
this to the original resolution cost matrix. Projection takes a warping path
calculated at a lower resolution and determines what cells in the next higher
resolution time series the warping path passes through. This projected path
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Figure 3. The original and the shrink time series of waving -
upper arm

Figure 4. The coarse and the full resolution cost matrix with
warping path

is then used as heuristic during solution refinement to find a warping path at
a higher resolution. To make it faster we use Sakoe-Chiba band constrain.
The Final DTW step is a refinement, finds the optimal warping path in the
neighborhood of the projected path, where the size of the neighborhood is
determined locally by the distance between two consecutive points in shrunk
series and the difference between the length of the template series and the
input series. This will find the optimal warping path through the area of the
warping path that was projected from the lower resolution.

The motion templates are computed using a dataset of labeled motion.
For these motions the shrunken time series is computed. We choose as start-
ing point the median shrunken time series of a motion. Using this series we
compute a mean of all time series. The resulted template will be of the same
length as the median series.
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Figure 5. Output of the system single person

5. Behavior Recognition using Petri Nets

Human motion has two types: short timescales and basic motion (sus-
tained (running, walking, jogging, etc.- typically periodic), punctuate (jump,
punch, kick), parametric (reach, etc.)), and long timescale and complex com-
posite motion ( walking and waving, reading a book, etc.) The motion struc-
ture is a hierarchical one. The complex behavior is composed of simple motion,
and the motion is composed of simple movements — “basic action”. The use
of Petri Net was proposed by many researchers but they applied it only to
complex behavior based on the recognized basic action. We proposed the ex-
tension of this Petri Networks to recognize the basic action too, and the input
for this network is represented the output of the DTW. The DTW comparison
only categorize the body part motion into the classes. Each class has an as-
sociated place in the network. If the DTW categorizes a body part motion in
a class the associated place get a token. Using the Petri nets synchronization
procedure we can decide about the actual basic activity.

To exemplify this we model a simple walking behavior. The step state is
activated by the adapted DTW and the repeated activation of the step state
activates the walking state in Figure 5. In the Petri Net the states may or
may not represent a behavior. By adding new labeled states we may extend
the Petri net to recognize new motion.

6. Experiments

We used the detected position and the configuration of the pictorial struc-
ture to measure the speed of torso and to track the relative motion of the body
parts relative to their parents. These parameters are compared to the saved
templates using the adapted FastDTW and are eliminated at an early stage if
the distance between the coarse variant of the series is bigger than a threshold.
To construct the templates database we have annotated and saved 4 different
actions from 10 different videos. For every body part we compared the saved
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Figure 6. Output of the system single person

Figure 7. Output of the system two person

motion series with the adapted DTW. If the difference between them is too
large they are dropped. If they are similar we choose the median series from
them. To recognize the behavior a hierarchical Petri Net was used. The net
was designed manually and the parameters were tuned by experiment. For
experiments indoor scenes were used, with simple and composed actions. In
Figures 6 and 7 we present an output of the system.

7. Conclusions

Two improvements of human action recognition have been presented: an
efficient representation of motion by decomposing it to its basic elements and
a FastDTW algorithm adapted for human motion recognition purpose. The
angular motion representation introduced by the paper is efficient by reducing
the matching problem to a 1D matching problem. By using a domain bigger
than 360 degrees with the two hypothesis approach we eliminate the error
introduced by the angle between +180 and -180. Using the adapted DTW
the recognition is two time faster than with the FastDTW because we can
eliminate many of templates at the first step at coarse comparison. Using
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the motion decomposition and the hierarchical Petri Nets we were able to
recognize also the composite actions such as standing and handshaking.
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