
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LV, Number 2, 2010

A NEW MULTIMEDIA STREAMING PLATFORM BASED

ON XPCOM COMPONENTS

OVIDIU RATOI, HALLER PIROSKA, GENGE BÉLA

Abstract. We propose a platform for distributed multimedia systems.
The proposed platform is implemented using the Netscape Portable Run-
time (NSPR) and the Cross-Platform Component Object Model (XP-
COM). This ensures system portability, flexibility and performance. The
platform is equipped with bandwidth management components that con-
trol the transfer rates between components, allowing real-time streaming
across multiple networks.

1. Introduction

Recent years have shown an increased interest towards multimedia rich
applications. Multimedia content ranges from text or simple images to audio
and video data or even animations. The increased availability of broadband
Internet connections leads the way towards applications that offer high quality
multimedia streaming over wide area networks. In this context there is a
need for solutions that enable application developers to quickly and effortlessly
develop this kind of applications.

In the same time software components technologies and component based
software engineering are maturing, in fact the use of components is a sign of
maturity in any field of engineering. The usage of software components offers
a lot of advantages the most important of them being reusability, a compo-
nent once developed may be reused in any number of applications, depending
of how generic are the services it offers. Also the task of applications devel-
opers changes from development of new software to composition of existing
pieces. Another characteristic property of software components is encapsula-
tion. This property hides the internal structure and exposes a well defined

Received by the editors: December 7, 2009.
2010 Mathematics Subject Classification. 68M10, 68M14.
1998 CR Categories and Descriptors. H.5.1 [Information Interfaces and Presenta-

tion]: Multimedia Information Systems – Audio input/output, Video;
Key words and phrases. Multimedia platform, XPCOM, NSPR.
This paper has been presented at the International Conference Interdisciplinarity in En-

gineering (INTER-ENG 2009), Târgu-Mureş, Romania, November 12–13, 2009.

47



48 OVIDIU RATOI, HALLER PIROSKA, GENGE BÉLA

interface through which the services are accessed. Encapsulation confers high
flexibility to component based software as individual components can be easily
replaced with improved ones as long as their interface remains identical.

Network communication was always an important issue when handling
multimedia content especially when real time streaming was involved. A re-
search team tackled this problem and proposed a multimedia applications mid-
dleware which regulated network traffic, optimized resource usage and offered
a high degree of portability to applications [6].

Our goal was to create an interactive Web application based on com-
ponents that allows bi-directional, real time communication between the re-
sources and the user. This paper describes the component based platform
proposed and implemented by us for multimedia transfer.

The paper is structured as follows. In section 2 we provide a short descrip-
tion of the Mozilla platform. In section 3 we provide a detailed description
of the proposed platform and we describe the interface exposed by the plat-
form and used by applications. A case study for the Multimedia Platform is
presented in section 4, where beside the test results made for different type
of applications the proposed platform provides an adaptive stream control
component. We end the paper with a conclusion and future work in section 5.

2. Mozilla Platform architecture

Mozilla is an open source portable platform, developed and maintained by
the Mozilla Foundation, best suited for rapid development of highly interactive
visual applications [4].

Mozilla based applications have three possibilities to access the Operating
System: using the JVM (Java Virtual Machine), using plugins or through an
API called NSPR (Netscape Portable Runtime). NSPR is a portable API de-
signed to provide operating system level services like threads and synchroniza-
tion support, file and network I/O, memory management, time management,
atomic operations or process creation.

XPCOM (Cross Platform Component Object Model) is Mozilla’s object
management and discovery system very similar to Microsoft COM and re-
motely to CORBA (Common Object Request Broker Architecture). It was
designed to provide greater flexibility to the platform and to applications de-
veloped on top of it. These components can be created in a variety of languages
ranging from C, C++ to JavaScript or Python and are accessed through a
set of interfaces they implement [7]. In order to provide greater portability
and implementation language independence, interfaces are described in a spe-
cial language called XPIDL (Cross Platform Interface Definition Language), a
variant of CORBA IDL. Object lifetime management and interface discovery



A NEW COMPONENT BASED ON XPCOM COMPONENTS 49

are implemented in a Microsoft COM style, by reference counting and special
methods for querying all implemented interfaces.

Using the Mozilla platform, we focused on the development of streaming
components, capable of receiving multimedia data from different sources, de-
code it, and deliver it to the user interface. The modular architecture of the
Mozilla platform enables developers to add or remove modules with little ef-
fort, fitting the software to the available hardware and adjusting functionality
to match product requirements. Our components adjust the transfer rate con-
tinuously, monitoring the devices and network capabilities. The need of the
self-managing components was recently introduced in Web technologies [5],
but not in implementations.

Another novelty of our approach is that the platform supports not only
binary streaming (through binary channels), but also a collection of channels
communicating through the use of messages specific to web services.

3. A Platform for Distributed Multimedia Applications

3.1. Platform model description. A well known method for providing a
high degree of transparency and portability to distributed applications is po-
sitioning an intermediate layer called by us Multimedia Platform between the
operating system and the application. In Figure. 1a the multilayer structure
of a multimedia applications platform is presented.

(a) Multimedia Platform
Architecture

(b) Platform Connection Model

Figure 1. Multimedia platform design



50 OVIDIU RATOI, HALLER PIROSKA, GENGE BÉLA

The bottom layer in this architecture is represented by the network which
provides host computer interconnection and basic data transmission services.
On the following level we have the operating system which provides services
ranging from process management or memory organization to communication
and synchronization. Above the operating system we can find the Multimedia
Platform which is divided into two sections: one channel layer (described
later in this paper) and a service layer. On top of the Multimedia Platform
there is the application layer which contains multimedia sources or multimedia
consumers.

The Multimedia Platform offers a service for data streaming between mul-
timedia sources and consumers. Whenever a consumer needs data from a
source a stream between them has to be established. The communication is
based on the concept of channels. A channel is a logical communication link
between two software entities, as presented in Figure 1b. The communication
requires the existence of a connection between each pair of communicating
applications. Channels embody communication protocols, while access is pro-
vided through one single interface.

3.2. Platform interfaces description. In the current form the platform
provides six types of channels, but the Multimedia platform architecture of-
fers an easy way to add more channels. Each type of channel represents one
component, which is loaded by the platform. The interface implemented by
the channels is the same for all of them. A general view of the channel archi-
tecture is presented in Figure 2.

Figure 2. Multimedia Platform Architecture



A NEW COMPONENT BASED ON XPCOM COMPONENTS 51

For the moment applications can chose from the following channel types:
XSOAPServerChannel, XSOAPClientChannel, XUDPServerChannel, XUD-
PClientChannel, XTCPServerChannel and XTCPClientChannel. The reason
for introducing the concept of the UDP server and client channels was to cre-
ate a similarity between the concept of a TCP connection and a UDP one. By
using these channel types, applications that make use of TCP channels can be
very easily switched to UPD channels.

The SOAP channels are created for developing applications based on WEB
Services architecture. It provides SOAP communication protocol for creat-
ing both server and client applications. The main problem with today’s dis-
tributed systems is interoperability. Web Services intend to solve this problem
by introducing software components that are capable of being accessed via
standard network protocols such as but not limited to SOAP over HTTP [2].

SOAP (i.e. Simple Object Access Protocol) provides a simple mechanism
for exchanging structured and typed information through the form of XML
messages [1]. In order for our platform to support a standard web service
interface, our platform has a SOAP-based channel capable of sending and
receiving standard SOAP messages. For the implementation of the SOAP
transport we used the open source gSOAP library [3].

The SOAP standard does not only provide a means for exchanging XML
data, but also binary data through the use of base64 or hex encodings. Because
of this, integrating streaming data into SOAP messages becomes a straight-
forward process.

4. Multimedia platform case study

4.1. Channel traffic load. Once the platform was operational we tested it
for maximum traffic load. For this purpose, one client and one server appli-
cation was designed based on the proposed platform. Both applications were
developed as stand-alone applications and neither of them had a graphical
interface. The purpose of those two applications was to exchange messages at
maximum speed. Once the messages ware received, they ware extracted from
the platform and erased as quickly as possible, with no other processing made.

The tests were made over the internet using two Windows machines on a
period of 160 minutes with a 1 minute sampling time. For testing purposes
we used the TCP type of channels. The results are shown in Figure 3a and
Figure 3b.

The first test used 1024 B packets and the second one used packets 10
times bigger. The spikes on the graph appeared when the internal queue size
reached the maximum value and, as a failsafe measure, the platform stopped
reading data from the channels. In this case the channel traffic load showed



52 OVIDIU RATOI, HALLER PIROSKA, GENGE BÉLA

(a) 1024 B packets (b) 10024 B packets

Figure 3. Test results at 1 minute time interval

a decrease until some of the incoming messages were processed. As we can
see from the graphics the maximum traffic load over the internet using the
current architecture of the platform is in the range of 4000 to 5000 Kb of
data. This value is a satisfying one for a client-site application used in real
time multimedia streaming, and especially for a web-based client application.

4.2. Video streaming application test results. For testing the platform
in a multimedia environment we had created a stream server running in XUL-
Runner and a web-based client application running in Mozilla Firefox 2.0.0.20.
Both of them used the proposed multimedia platform. For the client applica-
tion, the interaction between the browser and the platform was made using
Java Script. For testing purposes we opened several instances of the client ap-
plication that were connected to the stream server. Several sources were also
connected to the stream server and the client applications received frames
from them.

Using the model presented above, the video streaming application was
tested on several platforms with variable number of cameras. Three parame-
ters were measured: Incoming Bandwidth resulting from data received on the
communication channel established with the stream server, Outgoing Band-
width resulting from the total size of the video frames transmitted to and
displayed by the user interface and Queue Size representing the number of
video frames stored in the object waiting queue. All tests were conducted
with the same application, stream server and cameras on a period of 10 min-
utes with a 4 seconds sampling interval. Once again the TCP based channels
were used again. The results are presented in the following figures.

Test results show that the application performs well on both Windows
and Mac OS environments and although there are oscillations in bandwidth,
the waiting queue never grows bigger than two frames which, considering a
data rate of 7-10 fps from each camera, translates into a very small delay,
even when receiving stream from three different cameras. The performance of



A NEW COMPONENT BASED ON XPCOM COMPONENTS 53

(a) Windows XP (b) Mac OS X

Figure 4. Mesured Bandwidth

(a) Bandwidth (b) Queue size

Figure 5. Mozilla on Linux

the same application is significantly worst in the Linux environment especially
when video stream is received from more than one camera. The operating
systems are not responsible for the different performances of the platform. As
a mater of fact, the Incoming Bandwidth on all of the tested platforms was
in the same range. The differences ware because of the Outgoing Bandwidth.
Mozilla Firefox has a different behavior on those environments when rendering
frames. Figure 5a shows that when displaying images from three different
cameras the difference between incoming and outgoing bandwidth is quite
high, which produces an abrupt accumulation of frames in the waiting queue,
as it can be seen from Figure 5b. From this increase of the waiting queue size
results an unacceptable delay in the video stream.

4.3. Adaptive stream control. For using an adaptive stream control, the
stream servers need to have a mechanism for setting the prescribed value for



54 OVIDIU RATOI, HALLER PIROSKA, GENGE BÉLA

client bandwidth. Exploiting this facility could improve applications perfor-
mance on some platforms by reducing delays in stream, especially when a large
number of devices are observed. Because the internet bandwidth can vary in
time and the application is an interactive one where the number of devices
from which stream is received can vary in time, an adaptive control mecha-
nism has to be implemented. A possible solution would be to introduce a new
XPCOM component responsible for gathering parameter values measured by
the channels and taking control decisions according to them.

In the proposed model the Band Management Control component has a
passive role. Every channel reports periodically to it the Incoming Bandwidth.
The Outgoing Bandwidth is also computed periodically. The adaptive control
algorithm is using those two values along with the Queue Size for computing
the maximum Incoming Bandwidth for each channel. This value is send to the
streaming server, which in turn will set the prescribed value for client band-
width. Because out stream server accomplishes this by dropping some frames
video quality will decrease but there will not be any delays, thus maintaining
the real-time quality of the stream. Test results are presented in Figure 6a
and Figure 6b.

(a) Controlled bandwidth (b) Queue size

Figure 6. Adaptive stream control

Figure 6b clearly shows that when bandwidth control is present, even if
images from 3 cameras are received, the size of the waiting queue decreases
and then maintains its value in a relatively small interval, under 20 frames.
Taking into account that the number of frames captured from a camera in one
second ranges between 7 and 10 frames this produces only a small, acceptable,
delay in the video stream.

4.4. Scalability issues. Further tests have been made in order to demon-
strate that the model we proposed is scalable. Four separate channels were
used each handling up to 3 different streams summing up to a total of 12



A NEW COMPONENT BASED ON XPCOM COMPONENTS 55

simultaneous video streams. The system performance can be seen in Figure
7a and Figure 7b. These are the results only for one operating system but the
others behave in a very similar manner. Figure 8 shows the response in case
of a variable number of streams.

(a) Bandwidth (b) Queue size

Figure 7. Scalability response

Figure 8. Response to variable number of streams

5. Conclusions and future work

In this paper we proposed a component based, real time streaming, portable,
Web platform for distributed multimedia applications, developed on the Mozilla
Platform.



56 OVIDIU RATOI, HALLER PIROSKA, GENGE BÉLA

Based on this model we implemented a set of components that can be used
in any kind of multimedia streaming application. Furthermore a monitoring
and control mechanism was presented, which allows the application to dynam-
ically change transfer rates in order to reduce delays in the stream caused by
slow presentation rates.

This approach also simplifies the development of multimedia centered ap-
plications and ensures their transparency, portability and performance. By
providing a unique interface for all supported channel types, application de-
velopers can easily change the underlying transport and channel type.

As future work we intend to extend the adaptive stream control mech-
anism and to prepare the multimedia platform for usage in a dynamic QoS
environment. This means that applications could fine tune the adaptive con-
trol mechanism in such a way that different types of multimedia content should
be treated different. What this means is the fact that audio streams could be
preferred over video ones or even the other way around if necessary.

References

[1] Don Box et all, Simple Object Access Protocol, http://www.w3.org/TR/2000/NOTE-
SOAP-20000508

[2] Jeffrey C. Broberg, Glossary for the OASIS WebService Interactive Applications,
http://www.oasis-open.org/committees/wsia/glossary/wsia-draft-glossary-03.htm

[3] Robert A. van Engelen and Kyle Gallivan, The gSOAP Toolkit for Web Services and
Peer-To-Peer Computing Networks, in the proceedings of the 2nd IEEE International
Symposium on Cluster Computing and the Grid (CCGrid2002), pp. 128-135, May 21-24,
2002.

[4] Alan Grosskurth, Ali Echihabi, Concrete Architecture of Mozilla.
[5] H. Liu and M. Parashar, Rule-based Monitoring and Steering of Distributed Scientific

Applications, in International Journal of High Performance Computing and Networking
(IJHPCN), issue 1, 2005.

[6] M. Lohse, M. Repplinger, P. Slusallek, An Open Middleware Architecture for Network-
Integrated Multimedia, in Proceedings of the Joint International Workshops on Interactive
Distributed Multimedia Systems and Protocols for Multimedia Systems: Protocols and
Systems for Interactive Distributed Multimedia, Portugal, pp. 327-338, 2002.

[7] Doug Turner, Ian Oeschgeri, Creating XPCOM Components,in Brownhen Publishing,
2003.

”Petru Maior” University of Târgu Mureş, Department of Electrical En-
gineering, Nicolaie Iorga St., No. 1, Târgu Mureş, 540088, Romania

E-mail address: oratoi@engineering.upm.ro, phaller@upm.ro, bgenge@upm.ro


