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n-QUASIGROUP CRYPTOGRAPHIC PRIMITIVES: STREAM

CIPHERS

ADRIAN PETRESCU

Abstract. In this paper we present two new n-quasigroup stream ciphers
based on new n-quasigroup encryption scheme. Also, we present a prac-
tical implementation of these ciphers that has very good cryptographic
properties. The implementation is based on a design concept of mixing
two ”incompatible” group operations on the set Z28 .

1. Introduction

Computationally simple but cryptographically strong cryptographic sys-
tems have an important role for efficient digital communication tasks. There
is a need for simple cryptographic primitives to implement security in an en-
vironment having limited storage and processing power.

Quasigroups based ciphers lead to particular simple yet efficient ciphers.
Almost all results obtained in the application of binary quasigroups in

cryptology and coding theory to the end of eighties years of the XX-th century
are described in [2] and [3]. A short survey of the known results related to
the applications of binary quasigroups for constructing authentication codes,
ciphers, and one-way functions is presented in [4].

As far as we know, the only attempts to construct n-quasigroup ciphers
are our proposals [8] and [9].

In this paper, we propose two n-quasigroup symmetric-key stream ciphers:
a self-synchronized stream cipher and a new type of stream cipher, a totally
asynchronous stream cipher.

A totally asynchronous stream cipher is a cipher that cannot recover from
an error introduced in the process of communication.
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Although this property can be seen as a disadvantageous one, there are
in fact several useful applications of such ciphers provable secure stream ci-
pher that can guarantee data integrity authentication without using Message
Authentication Code or Secure Hash Function.

The implementation of these new ciphers is based on a design concept of
mixing two ”incompatible” group operation on the same set.

This paper is organized as follows. Section 2 presents a short overview
of n-quasigroups. In Section 3 we show the cryptographic properties of n-
quasigroup string functions. Section 4 describes a 3-quasigroup encrypting
scheme. In Section 5 we present an implementation of a 3-quasigroup self-
synchronizing stream cipher and a 3-quasigroup totally asynchronous stream
cipher. Conclusions are drawn in Section 6.

2. n-quasigroup definitions

Recall several notions and results which will be used in what follows.
We shall denote the sequence xm, xm+1, . . . , xn by {xi}ni=m or xnm. Ifm > n,

then xnm will be considered empty.
A non-empty set A together with an n-ary operation α : An → A, n ≥ 2

is called n-groupoid and is denoted by (A,α). For n = 2 we have a binary
groupoid.

An n-groupoid (A,α) is called an n-quasigroup [1] if the equation

(1) α(ai−11 , x, ani+1) = b

has a unique solution x for any an1 , b ∈ A and every i ∈ Nn = {1, . . . , n}.
An equivalent definition, known as combinatorial definition is: an n-

quasigroup is an n-groupoid such that in the equation

(2) α(xn1 ) = xn+1

knowledge of any n of the arguments xn+1
1 specifies the (n+ 1)-th uniquely.

A primitive n-quasigroup [8] is an algebra (A,α, αn
1 ), α, αi : An → A,

i ∈ Nn such that the identities

(3) α(xi−11 , αi(x
n
1 ), xni+1) = xi

(4) αi(x
i−1
1 , α(xn1 ), xni+1) = xi

i ∈ Nn, are satisfied.
We note that the operations α, α1, . . . , αn are mutually defined:

(5) α(xn1 ) = xn+1 ⇔ αi(x
i−1
1 , xn+1, x

n
i+1) = xi,

i ∈ Nn.
An n-quasigroup (A,α) yields a primitive n-quasigroup (A,α, αn

1 ) called
the corresponding primitive n-quasigroup: define αi : An → A,
αi(a

i−1
1 , b, ani+1) = x, the unique solution of equation (1).
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In turn, a primitive n-quasigroup (A,α, αn
1 ) yields n-quasigroups (A,α),

(A,αi), i ∈ Nn.
Let (A,α) be an n-quasigroup and [fn1 ; f ] an ordered system of permuta-

tions of the set A. We define a new quasigroup operation β on A as follows:

(6) β(xn1 ) = f−1(α{fi(xi)}ni=1)

The n-quasigroups (A,α) and (A, β) are called isotopic and [fn1 ; f ] an
isotopy of (A, β) to (A,α).

The isotopism of n-quasigroups gives us the power to generate a large
number of isotopic n-quasigroups.

3. n-quasigroup string functions

In this section we show the cryptographic potentials of n-quasigroup string
functions, as a new paradigm in cryptography.

To simplify the notation, we shall consider n = 3. The generality of results
is not affected.

Let (A,α, α1, α2, α3) be a 3-quasigroup and denote by A+ the set of all
nonempty words formed by the elements of A. For each a1a2a3a4 ∈ A+ we
define six maps Fi, Gi : A+ → A+, i = 1, 2, 3, as follows:

(7)

F1(x1 . . . xn) = y1 . . . yn,
y1 = α(x1, a1, a2),
y2 = α(x2, a3, a4),
yj = α(xj , yj−2, yj−1), if j > 2;

(8)

G1(x1 . . . xn) = y1 . . . yn
y1 = α1(x1, a1, a2),
y2 = α1(x2, a3, a4),
yj = α1(xj , xj−2, xj−1), if j > 2;

(9)

F2(x1 . . . xn) = y1 . . . yn
y1 = α(a1, x1, a2),
y2 = α(a3, x2, a4),
yj = α(yj−2, xj , yj−1), if j > 2;

(10)

G2(x1 . . . xn) = y1 . . . yn
y1 = α2(a1, x1, a2),
y2 = α2(a3, x2, a4),
yj = α2(xj−2, xj , xj−1), if j > 2;

(11)

F3(x1 . . . xn) = y1 . . . yn
y1 = α(a1, a2, x1),
y2 = α(a3, a4, x2),
yj = α(yj−2, yj−1, xj), if j > 2;
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(12)

G3(x1 . . . xn) = y1 . . . yn
y1 = α3(a1, a2, x1),
y2 = α3(a3, a4, x2),
yj = α3(xj−2, xj−1, xj), if j > 2.

We call these maps 3-quasigroup string functions with initial value
(IV) a1a2a3a4.

The maps F3 and G3 are generalizations for n-quasigroups of Markovski’s
binary quasigroup transformations e and d, respectively [6].

The maps Fi and Gi, i = 1, 2, 3 have several useful properties for crypto-
graphical purposes.

1. The maps Fi and Gi are permutations on A+ : FiGi = GiFi = 1A+ as
a consequence of (3) and (4).

2. Each map Fi can lead to a self-synchronizing stream cipher.
For example, let m = m1 . . .mn ∈ A+ be a plaintext c = F3(m) = c1 . . . cn

its ciphertext and c′ = c1 . . . cj−1c
′
jcj+1 . . . cn, c

′
j ∈ A the received text. Then

G3(c
′) = m1 . . .mj−1m

′
jm
′
j+1m

′
j+2mj+3 . . .mn for some m′j ,m

′
j+1,m

′
j+2 ∈ A.

This result follows directly from the definition of G3.
3. Each map Gi can leads to a totally asynchronous stream cipher.
For example, if we use G3 as encrypting function and F3 as decrypting

function, then the rest of message after a ciphertext value error is garbled:

m′j = α(mj−2,mj−1, c
′
j),

m′j+1 = α(mj−1,m
′
j , cj+1),

m′j+2 = α(m′j ,m
′
j+1, cj+2),

m′j+3 = α(m′j+1,m
′
j+2, cj+3), . . .

4. Each map Fi(Gi) can lead to a stream cipher resistive on the brute
force attack.

For example, suppose that an intruder knows a cipher text c = c1, . . . , cn =
F1(x1 . . . xn), where x1 . . . xn represents the unknown plaintext. Then, for re-
covering the quasigroup operation α which is the key of the encrypting method,
it should solve a system of equations of the form (7). Taking into account (5),
the following statement is true.

Let c1 . . . cn ∈ A+ be a given string. For any 3-quasigroup operation β on
A and any elements a1, a2, a3, a4 ∈ A, there are uniquely determined elements
x1, . . . , xn ∈ A such that the equality Fi(x1 . . . xn) = c1 . . . cn (Gi(x1 . . . xn) =
c1 . . . cn) holds.

Indeed, for example, if i = 1 we have

c1 = β(x1, a1, a2)⇔ x1 = β1(c1, a1, a2)

c2 = β(x2, a3, a4)⇔ x2 = β1(c2, a3, a4)

cj = β(xj , cj−2, cj−1)⇔ xj = β1(cj , cj−2, cj−1)
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if j > 2.
So, the system Fi(x1 . . . xn) = c1 . . . cn has as many solutions as there are

3-quasigroup operations on the set A.
If |A| = m (cardinality of A), then there are at least m!(m − 1)! . . . 2!1!

binary quasigroup operations on A. From each binary quasigroup (A, ·) we
can derive two 3-quasigroups, α(x1, x2, x3) = (x1 · x2) · x3 and β(x1, x2, x3) =
x1 · (x2 · x3).

Such 3-quasigroups are called reducible. But there exist irreducible 3-
quasigroups with carrier A. Hence the number of 3-quasigroups (A,α) is very
large.

5. If an intruder knows both the plaintext and the corresponding cipher-
text, in some cases it can’t recover quasigroup operation α (see Section 5).

6. Each map Fi has a nice scrambling property. The following is true.
Let m = m1 . . .mn ∈ A+ be an arbitrary string and let c = c1 . . . cn =

Fi(m). If n is large enough, then the distribution of elements cj , j ∈ Nn is
uniform.

4. A 3-quasigroup encryption scheme

Let (A,α, α1, α2, α3) be a 3-quasigroup called the seed quasigroup. De-
note by M the message space and C denotes the ciphertext space. We
put M = C = A+. For each element a ∈ A, let fa be a permutation of A.
K = A8 × {1, 2, 3} is called the key space. An element k = a1a2 . . . a8i is
called a key.

From section 3, it follows that the quasigroup operation α must be kept
secret. But is not a good idea to use all the time the same quasigroup. The
isotopism of quasigroups gives us the power to use a large number of isotopic
quasigroups to seed quasigroup.

To simplify the notation we put fj = faj . Using the subkey a1a2a3a4, we
define a new quasigroup operation β on A as follows:

β(x1, x2, x3) = f−14 (α(f1(x1), f2(x2), f3(x3)).

For the 3-quasigroup (A, β, β1, β2, β3), consider the quasigroup string func-
tion Fi and Gi, i = 1, 2, 3, with initial value a5a6a7a8.

Finally, we get two stream ciphers:
- a self-synchronizing stream cipher if for each i = 1, 2, 3, Fi is the encryp-

tion function and Gi the decryption function.
- a totally asynchronous stream cipher if for each i = 1, 2, 3, Gi is the

encryption function and Fi the decryption function.
The seed quasigroup (A,α, α1, α2, α3), the key space, the set {fa | a ∈ A}

and the definitions of string functions Fi and Gi are public knowledge.
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The security of our ciphers lies solely on the key, not on the encryption
algorithm. Perfect secrecy in the sense of Shanon is obtained if a ”one-time”
key is used.

For other arity values of quasigroup operations, the encryption scheme is
similar.

5. A practical implementation

This section describes a very fast, strong and small 3-quasigroup self-
synchronizing stream cipher and a 3-quasigroup totally asynchronous stream
cipher.

From the practical viewpoint, the most important quasigroups are of order
28-byte encoding and 216-word encoding. The usage of a general 3-quasigroup
in computation requires to store its Cayley table. For a quasigroup of order n,
this table has n3 elements. In particular (28)3 = 16MB. In order to overcome
the storage requirements for the Cayley table we consider as seed quasigroup
(Z256, α, α1, α2, α3), α(x, y, z) = x− y − z (mod 256).

To define permutations fa, we consider a new group operation ◦ on Z256 -
multiplication modulo 257. This kind of multiplication was first used in IDEA
cipher [5].

To generalize the discussion beyond the case of byte encoding [5], let n
be one of the integers 1, 2, 4, 8, 16. As of April 2009 the only know Fermat
primes are 2n + 1.

Let (Z∗2n+1, ·) denote the multiplicative group of the field Z2n+1 and let
(Z2n ,+) denote the additive group of the ring Z2n . Define the direct map

d : Z2n → Z∗2n+1, d(x) =

{
x, if x 6= 0

2n, if x = 0
,

and via d and its inverse d−1 define a new binary operation on Z2n ,

x ◦ y = d−1(d(x) · d(y)).

Then (Z2n , ◦) is a cyclic group isomorphic to (Z∗2n+1, ·).
On the set Z2n we have two group operations (Z2n ,+, ◦). These operations

are ”incompatible” in the sense that:

• no distributive law is satisfied:

x ◦ (y + z) 6= (x ◦ y) + (x ◦ z),
x+ (y ◦ z) 6= (x+ y) ◦ (x+ z);

• no generalized associative law is satisfied

x ◦ (y + z) 6= (x ◦ y) + z,
x+ (y ◦ z) 6= (x+ y) ◦ z.
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Meier and Zimmerman [7] proposed a good performance algorithm and
implementation for multiplication modulo 2n + 1. This algorithm requires a
total of six addition and subtractions, one 8 (16) bit multiplication and one
comparison and is based on the following result [5]. Let a, b be two n bit
non-zero integers in Z2n+1. Then

ab(mod(2n + 1)) =

{
ab(mod2n)− abdiv2n, if ab(mod2n) ≥ abdiv2n

ab(mod2n)− abdiv2n + 2n + 1, otherwise

where abdiv2n denotes the quotient when ab is divided by 2n.
Now, for each a ∈ Z256, define the permutation fa to be fa(x) = x ◦ a.
We define the key space K = Z9

256. For each key k = a1 . . . a8a9, we have

β(x1, x2, x3) = (x1 ◦ a1 − x2 ◦ a2 − x3 ◦ a3) ◦ a−14

β1(x1, x2, x3) = (x1 ◦ a4 + x2 ◦ a2 + x3 ◦ a3) ◦ a−11

β2(x1, x2, x3) = (x1 ◦ a1 − x2 ◦ a4 − x3 ◦ a3) ◦ a−12

β3(x1, x2, x3) = (x1 ◦ a1 − x2 ◦ a2 − x3 ◦ a4) ◦ a−13

Hence the decryption is essentially the same process as encryption.
We set i = 3 if a9 ≡ 0 (mod 3) and i = a9 (mod 3) otherwise.
Therefore, we have 232 3-quasigroups on Z28 and 3 ·232 pairs of encryption

and decryption functions.
The “incompatibility” of the operations + and ◦ implies a strong resistance

on known plaintext attack. If an intruder already knows both the plaintext
m = m1 . . .mn and the associated ciphertext c = c1 . . . cn, as far as we know,
brute force is the only method to recover the key from equations of the from

cj = (a1 ◦ cj−2 − a2 ◦ cj−1 − a3 ◦mj) ◦ a−14

for encryption function F3, for example.
The security of the proposed cipher needs further investigations. The

author hereby invite interested parties to attack this proposed cipher and will
be grateful to receive the results of any such attacks.

We note that an uniform distribution of the characters of the ciphertext
occurred in every of more than 50 experiments, even for short plaintexts.

The cipher was implemented in programming languages C + + and Java.
In assembly language the obtained code is tiny.

Finally, we present a simple speed test for a C + + implementation of this
cipher. We compared the average elapsed times in seconds to encrypt and
decrypt a file with that to copy the same file one byte at a time.

In a similar way we get a 3-quasigroup totally asynchronous stream cipher.
We interchange the maps Fi and Gi.
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Table 1. Speed test

File size File copy Encrypt Decrypt
489 KB 0.062 0.094 0.094
1.22 MB 0.170 0.219 0.219
2.11 MB 0.234 0.391 0.391
6.01 MB 0.672 1.141 1.141

6. Conclusions

These ciphers are appropriate for a fast online digital communication.
The ciphers structure facilitate a hardware implementation. The similarity

of encryption and decryption makes it possible to use the same device in both
encryption and decryption.

An extension to n-quasigroups of the encryption scheme (Section 4) is
obvious.

In order to improve the security of the proposed cipher, 3-quasigroups can
be replaced by n-quasigroups (n = 4, 5, . . . ) and/or Z28 can be replaced by
Z216 .
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