
STUDIA UNIV. BABE��BOLYAI, INFORMATICA, Volume LV, Number 1, 2010

COALGEBRAIC APPROACH FOR PROGRAM BEHAVIOR

IN COMONADS OVER TOPOSES

VILIAM SLODI�ÁK, VALERIE NOVITZKÁ

Abstract. The practical goal of program behavior studies is to enhance
program and system performance. A behavior of running program can
be described by evaluating the coalgebraic structure over a collection of
algebraic terms on state space. Coalgebras are de�ned by polynomial end-
ofunctors. We formulate the coalgebras in categories. Toposes are special
kind of categories de�ned by axioms saying roughly that certain construc-
tions one can make with sets can be done in a category. We use approach
via toposes and comonads as dual structures to monads. In our paper we
introduce the main ideas of our approach for describing the behavior of
systems by coalgebras and we illustrate it on the simple examples of data
structure queue.

1. OVERVIEW

The aim of programming is to force the computer to execute some actions
and to generate expected behavior. The notion of observation and behavior
have played an important rôle in computer science. This behavior can be
positive, e.g. desired behavior, or negative, e.g. side e�ect that must be
excluded from the system. The description of the behavior of a computer
system is non-trivial matter. But some formal description of such complex
systems is needed if we wish to reason formally about their behavior. This
reasoning should achieve the correctness or security of these systems. The
dynamical features of formal structures involve a state of a�airs which can be
possibly observed and modi�ed. We can consider the computer state as the
combined contents of all memory cells. A user is able to observe only a part
of this state and he can modify this state by typing commands. As a reaction,
the computer displays certain behavior.

Received by the editors: April 10, 2010.
2010 Mathematics Subject Classi�cation. 18B25, 18C15.
1998 CR Categories and Descriptors. G.2.0 [Mathematics of computing]: Discrete

mathematics � General ; F.3.2 [Logics and meanings of programs]: Semantics of Pro-
gramming Languages � Algebraic approaches to semantics.

Key words and phrases. Program behavior, Category, Coalgebra, Comonad, Topos.
15



16 VILIAM SLODI�ÁK, VALERIE NOVITZKÁ

2. BASIC ASPECTS ABOUT PROGRAM BEHAVIOR

The practical objective of program behavior studies is to enhance program
and system performance. The knowledge resulting from these studies may be
useful in designing new programs and also may be employed to increase the
performance of existing programs and systems [4]. The basic idea of the be-
havioral theory is to determine the relation between internal states and their
observable properties. The internal states are often hidden. Computer scientist
have introduced many formal structures to capture the state-based dynamics,
e.g. automata, transition systems, Petri nets, or the behavior discovery and
veri�cation problem as a graph grammar induction [20]. Horst Reichel �rstly
introduced the notion of behavior in the algebraic speci�cations [14]. The basic
idea was to divide types in a speci�cation into visible and hidden ones. Hidden
types capture states and they are not directly accessible. The execution of a
computer program causes generation of some behavior that can be observed
typically as computer's input and output [6]. The observation of program be-
havior can be formularized using coalgebras. A program can be considered as
an element of the initial algebra arising from the used programming language.
In other words it is an inductively de�ned set P of terms [11, 16]. This set forms
a suitable algebra F (P )→ P where F is an endofunctor constructed over the
signature of the operations appointed to execution by a program. Each lan-
guage construct corresponds to certain dynamics captured in coalgebras. The
behavior of programs is described by the �nal coalgebra P → G(P ) where the
functor G captures the kind of behavior that can be observed. Shortly, gener-
ated computer behavior amounts to the repeated evaluation of a (coinductively
de�ned) coalgebraic structure on an algebra of terms. Thus coalgebraic behav-
ior is generated by an algebraic program. Therefore the algebras are used for
constructing basic structures used in computer programs and coalgebras act
on the state space of computer describing what can be observed externally. In
our research we are interested into coalgebras because the theory of coalgebras
is one of the most promising candidates for a mathematical foundation for
computer systems, equipped with both ample applicability and mathematical
simplicity. Applicability we conceptualize as mathematical representation of
computer system that should be able to serve multifarious theoretical problems
in computer systems and their solutions. Mathematical simplicity is a source
of abstraction which brings wide applicability.

3. COALGEBRAIC APPROACH

The starting notion in coalgebraic approach is the signature used in the
theory of algebraic speci�cations [3]. A signature is a couple Σ = (T,F)



COALGEBRAIC APPROACH FOR PROGRAM BEHAVIOR 17

consisting of a set of types T and a set of function symbols F . In a signature
we distinguish:

• constructor operations which tell us how to generate (algebraic) data
elements;
• destructor operations, also called observers or transition functions, that
tell us what we can observe about our data elements;
• derived operations that can be de�ned inductively or coinductively.

If we de�ne a derived operation f inductively, we de�ne the value of f on all
constructors. In a coinductive de�nition of f we de�ne the values of all de-
structors on each outcome f(x).

Example. Let σ be an arbitrary type of queue's elements. We de�ne the
signature for the data structure queue as parameterized signature Queue(σ):

Queue(σ) :
new : → Queue(σ)
error : → σ
addq : Queue(σ), σ → Queue(σ)
front : Queue(σ)→ σ
remove : Queue(σ)→ Queue(σ)
isEmpty : Queue(σ)→ Bool
length : Queue(σ)→ nat
if − then− else : Bool,Queue(σ), Queue(σ)→ Queue(σ)

The operations new and addq are constructors. Operations remove and front
are destructors. Operations isEmpty and length are derived operations and
they can be de�ned inductively [11]. ut
Operations in a signature determine polynomial endofunctor F that can be
constructed inductively from using constants, identities, products, coproducts
and exponents. Let C be a category. An F -algebra

a = [cons1, . . . , consn] : F (C)→ C

describes internal structure of a program system and consists of co-tuple of
constructors [11]. For the program behavior the dual notion of algebra, that
is the coalgebra, is necessary. A G-coalgeba

c = 〈destr1, . . . , destrn〉 : C→ G(C).

provides observable properties of a system [7, 11].

For a polynomial endofunctor G a G-coalgebra is a pair (U, c), where carrier-set
U is a set called state space and c : U → G(U) is the coalgebraic structure or



18 VILIAM SLODI�ÁK, VALERIE NOVITZKÁ

operation of the coalgebra (U, c). It is also known as coalgebra dynamics. The
di�erence between F -algebra and G-coalgebra is the same as between construc-
tion and observation [11]. While F -algebra tells us how to construct elements
in the carrier set by the algebraic structure a : F (A) → A going into A, in
the case of coalgebra, the coalgebraic operation c : U → G(U) goes out of U .
Usually a program can be considered as an element of the many-typed algebra
that arises from used programming language. Each language construct also
corresponds to certain dynamics which can be described via coalgebras. The
program's behavior is thus described by suitable coalgebra acting on the state
space of the mathematical machine, i.e. computer [9].

In coalgebras we do not know how to form the elements of U ; but we have
only the operations working on U , which may give some information about
U . Therefore, states can be imagined as a black box and we have only limited
access to the state space U . G-coalgebras are also models of the corresponding
signatures, but instead of the case of F -algebras, these coalgebras are based
on destructor operations.

4. CATEGORIES FOR COALGEBRAS

Coalgebraic concept is based on category theory. The notion of coalgebra
is the categorical dual of algebras [2, 5]. Program can be considered as an ele-
ment of the many-typed algebra that arises from used programming language.
Behavior of the program is thus described by suitable coalgebra acting on the
state space of the mathematical machine, i.e. computer [9].

4.1. Coalgebras in category. Now consider the category of carrier-sets de-
noted C with carrier-sets as objects and maps between sets as morphisms. It
is a category of sets; according the de�nition this category is a topos [1, 16].
We denote by Coalg the category of coalgebras, which we are able construct
for any polynomial functor G : C→ C. For this category we de�ne:

• objects of this category are coalgebras over F , e.g. (U, c), (V, d), . . .;
• morphisms are coalgebra homomorphisms between coalgebras, e.g. f :

(U, c)→ (V, d), . . .;
• every object has identity morphism and coalgebra homomorphisms are
composable.

It is well known that in the category Coalg of G-coalgebras for a given end-
ofunctor G : C → C the terminal object can be constructed as a limit of a
certain descending chain [15]. If this category has terminal object then from
every object there is just one morphism to the terminal object. This object
is �nal G-coalgebra that is unique up to isomorphism. A �nal G-coalgebra



COALGEBRAIC APPROACH FOR PROGRAM BEHAVIOR 19

can be obtain from the pure observations. Finality provides a tool for de�ning
functions into �nal G-coalgebra. A function f : U → V we de�ne so that we
describe direct observations with simple next steps as G-coalgebra on V . A
function f arises by steps repeating this process [11].

Example. We can de�ne constructors of signature Queue(σ) coalgebraically
as follows. Let

G(Q) = 1 + (Q× I)

be the polynomial functor. We claim that the �nal G-coalgebra de�ned over
G is the pair (IN, next) where map

next : IN → 1 + (IN × I)

is de�ned as

next(q) =

{
κ1(∗) if q is empty
κ2(q

′, i) if q = addq(q′, i)

where κ1, κ2 are the �rst and the second injections (co-projections) of the
coproduct. The �rst value of this operation expresses the observation when the
queue is empty, i.e. we cannot get any element of the queue. The second value
expresses that the operation next returns the element (observable value) i of the
queue q and the another queue q′ without this element, where q = addq(q′, i).
It holds that

q′ = remove(q) i = front(q)

so we obtain

q = addq(q′, i) = addq (remove (q) , front (q))

Then the constructor new can be de�ned as the unique operation new :→
Queue(σ) in the commutative diagram at the Fig. 1.

1
new

- IN

1 + (1× I)

κ1

?

id + (new × id)
- 1 + (IN × I)

∼= next

?

Figure 1. Coalgebraic de�nition of the new operator

We are able to de�ne analogously another operations as it was derived in
[11, 16].

ut



20 VILIAM SLODI�ÁK, VALERIE NOVITZKÁ

As it was introduced, we can construct category of coalgebras Coalg for any
polynomial functor G : C→ C. For a carrier-sets homomorphisms in the cat-
egory C we de�ne morphisms between appropriate coalgebras in the category
Coalg

f : (U, c)→ (V, d)

such that the diagram at Fig. 2 commutes.

U
f
- V

GU

c

?

Gf
- GV

d

?

Figure 2. Homomorphism of coalgebras and carrier-sets

It follows from the diagram, that there holds the equality

Gf ◦ c = d ◦ f

It is clear that the coalgebraic approach is based on categories. The polyno-
mial functors induced by signatures are endofunctors, i.e. their domain and
codomain is the same category. The power and expressibility of coalgebraic
approach will depend on the concrete categorical structure used for particular
programming paradigms [7]. It seems be reasonable that suitable categories
will be models of type theories [10, 16]. Their structure and properties ensure
the correct treating of data type structures used in all programming paradigms.

It was proved in [2] that the functors

UG : Coalg→ C FG : C→ Coalg

form a pair of adjoint functors.

Functor UG is the forgetful functor and it assigns to each coalgebra its carrier-
set and to each coalgebra homomorphism the function between carrier-sets:

UG
((
U,U

c−→ GU
))

= U UG (f) = f

Analogously we de�ne generating functor FG. It assigns to each carrier-set
the appropriate coalgebra and to each function between carrier-sets it assigns



COALGEBRAIC APPROACH FOR PROGRAM BEHAVIOR 21

coalgebra homomorphism:

FG (U) =
(
GU,GU

δU−→ GGU
)

FG (f) = Gf

where δ is comonadic operation co-multiplication and GGU can be shortly re-
drawn as G2U .

Functors UG and FG form an adjoint pair of functors FG a UG
FG a UG

which means that their composition is polynomial functor G

UG ◦ FG = G

This functor is considered as a functor for comonad over category of carrier-
sets [1, 16]. As we de�ned the pair of adjoint functors FG and UG, we consider
the co-unit of comonad ε as the co-unit of adjunction [18, 19].

5. COMONADIC APPROACH AND COALGEBRAS

From one point of view, a monad is an abstraction of certain properties of
algebraic structures. From another point of view, it is an abstraction of certain
properties of adjoint functors. Theory of monads has turned out to be an
important tool for studying toposes [2, 16]. We are interested to explanation of
categorical formulation of coalgebras for program behavior. Comonads allow us
to utilize the properties of coalgebras in categories. While comonads have very
important connection to toposes, we will be concerned about the representation
of coalgebras via comonads in toposes.

5.1. De�nition of comonad. Comonad (or cotriple) is dual construction to
monad. The comonad over category C is the monad over opposite category
Cop.

Comonad is a mathematical structure G = (G, ε, δ) which consists of

• endofunctor G : C→ C;
• co-unit natural transformation ε : G→ idC;
• co-multiplication natural transformation δ : G→ G2.

Morphisms ε and δ are natural transformations of the functor G. They are
subject to the condition that the diagrams at Fig. 3 and Fig. 4 commute.
Coherence triangle at Fig. 4 is the combination of two commutative triangles.
It de�nes left and right identity according to de�nition of the category. The
component of εG at some object X is the component of ε at GX, whereas the
component of Gε at X is G(εX) (as at Fig. 6); similar descriptions apply to



22 VILIAM SLODI�ÁK, VALERIE NOVITZKÁ

G3 �
Gδ

G2

G2

δG

6

�
δ

G

δ

6

Figure 3. Coherence square for comonad

G �
εG

G2 Gε
- G

G

δ

6

idG

-
�

id
G

Figure 4. Coherence triangle for comonad

δ at Fig. 5.

We say that the comonad is left-exact if the functor G is left exact. Functor G
is left exact, when it preserves binary products, terminal object and equalizers
[2]. For coalgebras we de�ne commutative coherence diagrams over comonad
(Fig. 5 and Fig. 6).

G2U �
Gc

GU

GU

δU

6

�
c

U

c

6

Figure 5. Coherence square for coalgebra

Coherence square at Fig. 5 is the basic diagram for generating functor FG. We
are able to construct coalgebra dynamics with that relations for functors (Fig.



COALGEBRAIC APPROACH FOR PROGRAM BEHAVIOR 23

U �
εU

GU

U

c

6
�

id
U

Figure 6. Coherence triangle for coalgebra

6). For coalgebras and their state spaces we de�ne relation by the commutative
diagram at Fig. 5.
It follows from the diagram at Fig. 5 that the following equation holds:

Gf ◦ c = d ◦ f

It means that all paths from the object U into the object GV in diagram con-
structed as compositions of corresponding arrows are equal in the commutative
diagram at Fig. 5.

The diagrams at Fig. 5 and Fig. 6 satisfy the de�nition of comonadic natural
transformations and express how to de�ne coalgebra dynamics and construc-
tion of coalgebra dynamics by the generating functor FG. They also show the
de�nition of comonad by coalgebras.

5.2. The de�nition of topos. Now we formulate basic aspects about toposes.
Toposes are important in theoretical informatics for the purpose of modeling
computations [1, 13, 17]. A topos is a special kind of category de�ned by ax-
ioms saying roughly that certain constructions one can make with sets can be
done in a category [12]. If we want a topos to be a generalized mathematical
theory, we suppose that a set of hypotheses or axioms are formulated in pred-
icate logic. They implicitly de�ne some kind of structure of objects and some
properties of morphisms in the category E . A topos is really a structure of a
general theory de�ned by axioms formulated possibly in higher-order logic [16].
An elementary topos is such one whose axioms are formulated in the �rst-order
logic, i.e. an elementary topos is the generalized axiomatic set theory.

A topos is a special category satisfying important conditions. There are many
de�nitions of topos. In the following text we follow this de�nition:
A topos is a category E which satis�es the following properties:

• it is cartesian closed category;
• it has �nite limits;



24 VILIAM SLODI�ÁK, VALERIE NOVITZKÁ

• it has representable subobject functor.

5.3. Coalgebras in toposes. In [11, 16] we formulated algebras in monadic
terms. Analogously we formulated here coalgebras in monads. Kleisli cate-
gories are powerful tool for formulating properties of coalgebras over monads.
We are able to formulate coalgebras also in categorical terms over comonad.
In [16] we showed that toposes as special categories are able to formulate the
properties of coalgebras in categorical terms. Category of carrier-sets consists
of sets as objects and functions as morphisms between them. While category
of sets is a topos [1, 8], the category of carrier-sets is also topos.

We de�ned coalgebraic operation new in chap. 4.1. Now we will consider the
codomain of next - namely 1 +

(
IN × I

)
as the subobject classi�er Ω. This

classi�er together with de�ned morphism true will classify whether the subob-
jects of a given object 1 according to which elements belong to the subobject.
We redraw the diagram in Fig. 1 as the diagram in Fig. 7.

1
id1 - 1

IN

new

-

1 + (1× I)

κ1

?

id1 + (new × idI)
- 1 + (IN × I)

κ′1

?�

ne
xt

Figure 7. Coalgebraic de�nition of the new operator in topos

The morphism true : 1 → Ω is here de�ned as a pair of morphisms into
coproduct:

true : 1
κ′1 -

next ◦ new
- Ω

where Ω = 1 + (IN × I). It satis�es the assumption about elements of queue
that

next(q) =

{
κ1(∗) if q is empty
κ2(q

′, i) if q = addq(q′, i)



COALGEBRAIC APPROACH FOR PROGRAM BEHAVIOR 25

so we are able with subobject classi�er to construct coalgebra operations in
topos.

Comonad G = (G, ε, δ) in which G is left-exact functor is called left-exact

comonad. It holds that for topos E and for the left-exact comonad G in E the
category Coalg of coalgebras of G is also a topos [2]. From this property we are
able to de�ne previous constructions in toposes - we can de�ne the properties
of coalgebras in terms of toposes. For example the notion of subcoalgebra and
the bisimilarity relation [6] we formulate as a subobject [16].

6. Conclusion

In our paper we presented the main ideas of our approach to the behav-
ioral theory. We explained polynomial endofuctor that is the basic concept in
algebraic and coalgebraic approach. The concepts we illustrated on the data
structure queue that is simple enough for examples but quite rich for explaining
behavioral concepts. We sketched out the comonadic approach based on the
toposes and we showed how to construct coalgebraic operation in topos. The
topos theory is a powerful tool for de�ning the behavior of program systems.
Our future research will extend this approach with the Kleisli categories and
monads and with the correct proving of the bisimilarity of the states. We also
want to extend this approach to some paradigms of programming including
object-oriented programming and logic programming.

Acknowledgment

This work was supported by VEGA Grant No.1/0175/08: Behavioral categor-
ical models for complex program systems.

References

[1] Barr, M., and Wells, C. Category Theory for Computing Science. Prentice Hall
International, 1990. ISBN 0-13-120486-6.

[2] Barr, M., and Wells, C. Toposes, Triples and Theories. Springer-Verlag, 2002.
[3] Ehrig, H., and Mahr, B. Fundamentals of Algebraic Speci�cation I.: Equations and

Initial Semantics. No. 6. EATCS, 1985. Monographs on Theoretical Computer Science.
[4] Ferrari, D. The improvement of program behavior. Computer 9 (1976), 39�47.
[5] Hasuo, I. Tracing Anonymity with Coalgebras. PhD thesis, Radboud University Ni-

jmegen, 2008.
[6] Jacobs, B. Introduction to coalgebra. Towards Mathematics of States and Observations

(draft) (2005).
[7] Jacobs, B., and Rutten, J. A tutorial on (co)algebras and (co)induction. Bulletin

of the European Association for Theoretical Computer Science, No. 62 (1997), 222�259.
[8] Johnstone, P. Topos Theory. Academic Press Inc., London, 1977.



26 VILIAM SLODI�ÁK, VALERIE NOVITZKÁ

[9] Mihályi, D. Behaviour of algebraic term sequences. In Pietriková A., Slodi£ák V.,
F®z® L. editors: 7th PhD Student Conference and Scienti�c and Technical Competition
of Students of Faculty of Electrical Engineering and Informatics Technical University of
Ko²ice, Slovakia (2007), FEI TU Ko²ice, pp. 153�154. ISBN 978-80-8073-803-7.

[10] Novitzká, V., Mihályi, D., and Slodi£ák, V. Categorical models of logical sys-
tems in the mathematical theory of programming. In MaCS'06 6th Joint Conference
on Mathematics and Computer Science, Book of Abstracts (2006), University of Pécs,
Hungary, pp. 13�14.

[11] Novitzká, V., Mihályi, D., and Verbová, A. Coalgebras as models of systems be-
haviour. In International Conference on Applied Electrical Engineering and Informatics,
Greece, Athens (2008), pp. 31�36.

[12] Novitzká, V. Logical reasoning about programming of mathematical machines. In
Acta Electrotechnica et Informatica (March 2005), Ko²ice, pp. 50�55.

[13] Phoa, W. An introduction to �brations, topos theory, the e�ective topos and modest
sets. The University of Edinburgh, 2006.

[14] Reichel, H. Behavioural equivalence - a unifying concept for initial and �nal speci�ca-
tion methods. In 3rd Hungarian Computer Science Conference (1981), no. 3, Akadémia
kiadó, pp. 27�39.

[15] Schubert, C., and Dzierzon, C. Terminal coalgebras and tree-structures. In 18th
Conference for Young Algebraists (2003), University of Potsdam, Potsdam, Germany.

[16] Slodi£ák, V. The Rôle of Toposes in the Informatics. PhD thesis, Technical University
of Ko²ice, Slovakia, 2008. (in slovak).

[17] Slodi£ák, V. The toposes and their application in categorical and linear logic. In
6th PhD Student Conference and Scienti�c and Technical Competition of Students of
Faculty of Electrical Engineering and Informatics Technical University of Ko²ice (2006),
elfa s.r.o., pp. 121�122.

[18] Turi, D. Category Theory Lecture Notes. Laboratory for Foundations of Computer
Science, University of Edinburgh, 2001.

[19] Wisbauer, R. Algebras versus coalgebras. University of Düsseldorf, Germany, 2007.
[20] Zhao, C., Kong, J., and Zhang, K. Program behavior discovery and veri�cation:

A graph grammar approach. IEEE Transactions on Software Engineering 99, PrePrints
(2010).

Faculty of Electrical Engineering and Informatics, Technical University

of Ko²ice

E-mail address: viliam.slodicak@tuke.sk, valerie.novitzka@tuke.sk


