
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LV, Number 2, 2010

ADAPTIVE RESTRUCTURING OF OBJECT-ORIENTED

SOFTWARE SYSTEMS

ISTVAN GERGELY CZIBULA AND GABRIELA CZIBULA

Abstract. In this paper we approach the problem of adaptive refactoring,
the process of adapting the class structure of a software system when new
application classes are added. We have previously introduced an adaptive
clustering method that deals with the evolving structure of any object ori-
ented application. The aim of this paper is to extend the evaluation of the
proposed method on the open source case study JHotDraw, emphasizing,
this way, the potential of our approach.

1. Introduction

Improving the software systems design through refactoring is one of the
most important issues during the evolution of object oriented software systems.
Refactoring aims at changing a software system in such a way that it does not
alter the external behavior of the code, but improves its internal structure.
We have introduced in [1] a clustering approach, named CARD (Clustering
Approach for Refactorings Determination), for identifying refactorings that
would improve the class structure of a software system.

But real applications evolve in time, and new application classes are added
in order to met new requirements. Consequently, restructuring of the modi-
fied system is needed to keep the software structure clean and easy to main-
tain. Obviously, for obtaining the restructuring that fits the new applications
classes, the original restructuring scheme can be applied from scratch on the
whole extended system. However, this process can be inefficient, particularly
for large software systems. That is why we have proposed in [2] an adaptive
method that deals with the evolving application classes set. The proposed
method extends our original approach previously introduced in [1].
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The rest of the paper is structured as follows. Our clustering based ap-
proach for adaptive refactorings identification is described in Section 2. For
the adaptive process, a Core Based Adaptive Refactoring algorithm, named
CBAR, is proposed. Section 3 indicates several existing approaches in the
direction of automatic refactorings identification. An evaluation of CBAR on
the open source case study JHotDraw is provided in Section 4. Some conclu-
sions of the paper and further research directions are given in Section 5.

2. Core Based Adaptive Refactoring. Background

In the following we will briefly review our clustering approach from [2] for
adapting the class structure of a software system when it is extended with new
applications classes.

2.1. Initial Restructuring Phase. We have introduced in [1] a clustering
approach, named CARD, for identifying refactorings that would improve the
class structure of a software system. First, the existing software system is
analyzed in order to extract from it the relevant entities: classes, methods,
attributes and the existing relationships between them: inheritance relations,
aggregation relations, dependencies between the entities from the software
system. After data was collected, the set of entities extracted at the previous
step are re-grouped in clusters using a clustering algorithm. The goal of this
step is to obtain an improved structure of the existing software system. The
last step is to extract the refactorings which transform the original structure
into an improved one, by comparing the newly obtained software structure
with the original one.

For re-grouping entities from the software system, a vector space model
based clustering algorithm, named kRED (k-means for REfactorings Deter-
mination), was introduced in [1].

In the proposed approach, the objects to be clustered are the elements
(called entities) from the considered software system, i.e., S = {e1, e2, . . . , en},
where ei, 1 ≤ i ≤ n can be an application class, a method of a class or
an attribute of a class. Each entity is measured with respect to a set of
l features (l representing the number of application classes from S), A =
{C1, C2, . . . , Cl}, and is therefore described by an l-dimensional vector: ei =
(ei1, ei2, . . . , eil), eik ∈ <, 1 ≤ i ≤ n, 1 ≤ k ≤ l. The distance between two
entities ei and ej from the software system S is computed as a measure of dis-
similarity between their corresponding vectors, using the Euclidian distance.

2.2. The Adaptive Refactoring Phase. During the evolution and main-
tenance of S, new application classes are added to it in order to met new
functional requirements. Let us denote by S ′ the software system S after
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extension. Consequently, restructuring of S ′ is needed to keep its structure
clean and easy to maintain. Obviously, for obtaining the restructuring that
fits the new applications classes, the original restructuring scheme can be ap-
plied from scratch, i.e., kRED algorithm can be applied considering all entities
from the modified software system S ′. However, this process can be inefficient,
particularly for large software systems.

That is why we have extended the approach from [1] and we have proposed
in [2] an adaptive method, named CBAR (Core Based Adaptive Refactoring),
that deals with the evolving application classes set. Namely, the case when
new application classes are added to the software system and the current
restructuring scheme must be accordingly adapted, was handled. The main
idea is that instead of applying kRED algorithm from scratch on the modified
system S ′, we adapt (using CBAR) the partition obtained by kRED algorithm
for the initial system S, considering the newly added application classes.

The extension of the application classes set from S means that the num-
ber of entities in S ′ increases, and the vectors characterizing the entities,
increase, as well. Therefore, the entities have to be re-grouped to fit the
new application classes set. Let us consider that the set C1, C2, . . . , Cl of
application classes from S is extended by adding s (s ≥ 1) new applica-
tion classes, Cl+1, Cl+2, . . . , Cl+s. Consequently, the set of attributes will
be extended with s new attributes, corresponding to the newly added ap-
plication classes. The vector for an extended entity ei ∈ S, 1 ≤ i ≤ n
is extended as e′i = (ei1, . . . , eil, ei,l+1, . . . , ei,l+s) and a set of new entities
{e′n+1, e

′
n+2, . . . , e

′
n+m} is added to S ′. This set corresponds to the entities

from the newly added application classes, Cl+1, Cl+2, . . . , Cl+s.
The CBAR method starts from the partitioning of entities from S into

clusters established by applying kRED algorithm in the initial restructuring
phase. Let K = {K1,K2, . . . ,Kl} be the initial clusters (restructured appli-

cation classes) of S, Ki ∩Kj = ∅, i 6= j,
l⋃

v=1
Kv = S. CBAR determines then

K′ = {K ′
1,K

′
2, . . . ,K

′
l+s} the new partitioning of entities in S ′ after application

classes set extension. It starts from the idea that, when adding few applica-
tion classes, the old arrangement into clusters (partition K) can be adapted
in order to obtain the restructuring scheme of the extended software system.
The algorithm determines those entities within each cluster Ki (1 ≤ i ≤ l)
that have a considerable chance to remain together in the same cluster. They
are those entities that, after application classes extension, still remain closer
to the centroid (cluster mean) of cluster Ki. These entities form what is called
the core of cluster Ki, denoted by Corei. We denote by CORE the set of all
cluster cores, CORE = {Core1, Core2, . . . , Corel}.
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The cores of all clusters Ki, 1 ≤ i ≤ l, will be new initial clusters from
which the adaptive partitioning process begins. The extended partition K′

should also contain initial clusters corresponding to the newly added applica-
tion classes. Therefore, the centroids corresponding to clusters Kl+1,Kl+2, . . . ,
Kl+s are chosen to be the newly added application classes.

Next, CBAR proceeds in the same manner as kRED [1] algorithm does.
The CBAR algorithm can be found in [2, 3]. As experiments show, the result is
reached by CBAR more efficiently than running kRED again from the scratch
on the feature-extended entity set.

3. Related Work

There are various approaches in the literature in the field of refactoring.
But, only very limited support exists in the literature for automatic refactor-
ings detection.

Deursen et al. have approached the problem of refactoring in [4]. The
authors illustrate the difference between refactoring test code and refactoring
production code, and they describe a set of bad smells that indicate trouble
in test code, and a collection of test refactorings to remove these smells.

Xing and Stroulia present in [13] an approach for detecting refactorings by
analyzing the system evolution at the design level.

A search based approach for refactoring software systems structure is pro-
posed in [9]. The authors use an evolutionary algorithm for identifying refac-
torings that improve the system structure.

An approach for restructuring programs written in Java starting from a
catalog of bad smells is introduced in [5].

Based on some elementary metrics, the approach in [12] aids the user in
deciding what kind of refactoring should be applied.

The paper [11] describes a software vizualization tool which offers support
to the developers in judging which refactoring to apply.

Clustering techniques have already been applied for program restructuring.
A clustering based approach for program restructuring at the functional level is
presented in [14]. This approach focuses on automated support for identifying
ill-structured or low cohesive functions. The paper [8] presents a quantitative
approach based on clustering techniques for software architecture restructuring
and reengineering as well as for software architecture recovery. It focuses on
system decomposition into subsystems.

A clustering based approach for identifying the most appropriate refactor-
ings in a software system is introduced in [1].

To our knowledge, there are no existing approaches in the literature in the
direction of adaptive refactoring, as we have approached in [2].
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4. JHotDraw Case Study

In this section we present an experimental evaluation of CBAR algorithm
on the open source software JHotDraw, version 5.1 [7].

It is a Java GUI framework for technical and structured graphics, devel-
oped by Erich Gamma and Thomas Eggenschwiler, as a design exercise for
using design patterns. Table 1 gives an overview of the system’s size.

Classes 173
Methods 1375

Attributes 475
Table 1. JHotDraw statistic.

The reason for choosing JHotDraw as a case study is that it is well-known
as a good example for the use of design patterns and as a good design. Our
focus is to test the accuracy of CBAR algorithm described in Subsection 2.2
on JHotDraw.

4.1. Quality Measures. In the following we will present several measures
that we propose for evaluating the obtained results from the restructuring
point of view and from the adaptive process point of view, as well.

4.1.1. Quality measures for restructuring. In order to capture the similarity
of two class structures (the one obtained by a clustering algorithm and the
original one) we will use three measures.

Each measure evaluates how similar is a partition of the software system
S determined after applying a clustering algorithm (as kRED or CBAR) with
a good partition of the software system (as the actual partition of JHotDraw
is considered to be).

In the following, let us consider a software system S consisting of the
application classes set {C1, C2, . . . , Cl}. We assume that the software system
S has a good design (as JHotDraw has) and K = {K1, . . .Kl} is a partition
reported by a clustering algorithm (as kRED or CBAR).

Definition 1. [1] Accuracy of classes recovery - ACC.
The accuracy of partition K with respect to the software system S, denoted

by ACC(S,K), is defined as:

(1) ACC(S,K) =
1

l

l∑
i=1

acc(Ci,K),
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where acc(Ci,K) =

∑
k∈MCi

|Ci ∩ k|
|Ci ∪ k|

|MCi
| . MCi is the set of clusters from K that

contain elements from the application class Ci, is the accuracy of K with respect
to application class Ci, i.e. MCi = {Kj | 1 ≤ j ≤ l, |Ci ∩Kj | 6= 0}.

ACC defines the degree to which the partition K is similar to S. For a
given application class Ci, acc(Ci,K) defines the degree to which application
class Ci, all its methods and all its attributes were discovered in a single
cluster. Based on Definition 1, it can be proved that ACC(S,K) ∈ [0, 1].
ACC(S,K) = 1 iff acc(Ci,K) = 1, ∀ Ci 1 ≤ i ≤ l, i.e., each application class
was discovered in a single cluster. In all other situations, ACC(S,K) < 1.

Larger values for ACC indicate better partitions with respect to S, mean-
ing that ACC has to be maximized.

Definition 2. PRECision of Methods discovery - PRECM.
The precision of methods discovered in K with respect to the software sys-

tem S, denoted by PRECM(S,K), is defined as:

PRECM(S,K) =
1

|nm|
∑

m is a method from S
precm(m,K),

where precm(m,K) is the precision of K with respect to the method m and
nm is the number of methods from all the application classes from S, i.e.

precm(m,K) =

{
1 if m was placed in the same class as in S
0 otherwise

PRECM(S,K) defines the percentage of methods from S that were cor-
rectly discovered in K (we say that a method is correctly discovered if it is
placed in its original application class). Based on Definition 2, it can be proved
that PRECM(S,K) ∈ [0, 1]. PRECM(S,K) = 1 iff precm(m,K) = 1 for all
m, i.e., each method was discovered in its original application class. In all
other situations, PRECM(S,K) < 1.

Larger values for PRECM indicate better partitions with respect to S,
meaning that PRECM has to be maximized.

Definition 3. PRECision of Attributes discovery - PRECA.
The precision of attributes discovery in partition K with respect to the

software system S, denoted by PRECA(S,K), is defined as:

PRECA(S,K) =
1

na

∑
a is an attribute from S

preca(a,K),
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where preca(a,K) is the precision of K with respect to the attribute a and
na is the number of attributes from all the application classes from S, i.e.

preca(a,K) =

{
1 if a was placed in the same class as in S
0 otherwise

PRECA(S,K) defines the percentage of attributes from S that were cor-
rectly discovered in K (we say that an attribute is correctly discovered if it
is placed in its original application class). Based on Definition 3, it can be
proved that PRECA(S,K) ∈ [0, 1]. PRECA(S,K) = 1 iff preca(a,K) = 1
for all a, i.e., each attribute was discovered in its original application class. In
all other situations, PRECA(S,K) < 1.

Larger values for PRECA indicate better partitions with respect to S,
meaning that PRECA has to be maximized.

4.1.2. Quality measures for the adaptive process. As quality measures for CBAR
algorithm we will consider the number of iterations and the cohesion of the
core entities. In other words, we measure how the entities in Corej (1 ≤ j ≤ l)
remain together in clusters after CBAR algorithm ends.

As expected, more stable the core entities are and more they remain to-
gether with respect to the initial sets Corej , better was the decision to choose
them as seed for the adaptive clustering process.

We express the cohesion of the set of cores CORE = {Core1, . . . , Corel}
as:

(2) Coh(CORE) =

l∑
j=1

1
no of clusters where the entities in Corej ended

l
The worst case is when each entity from each Corej ∈ CORE ends in a

different final cluster. The best case is when each Corej remains compact and
it is found in a single final cluster. So, the limits between which Coh(CORE)
varies are given below, where the higher the value of Coh(CORE) is, better
was the cores choice.

Based on the definition of Coh(CORE), it can be proved that

(3)
1

l
≤ Coh(CORE) ≤ 1.

4.2. Experimental results. Let us consider JHotDraw system from which
we have removed 2 application classes: StorableInput and ColorMap. We
denote the resulting system by S. Therefore, S consists of 171 application
classes (l = 171). After applying kRED algorithm on S we have obtained
a partition K in which there were 3 misplaced methods. The names of the
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methods that were proposed to be moved is shown in the first column of Table
2. The suggested target class is shown in the second column.

Element Type Target class
PertFigure.writeTasks Method StorableOutput

PolygonFigure.distanceFromLine Method Geom
StandardDrawingView.

drawingInvalidated
Method DrawingChangeEvent

Table 2. The misplaced elements.

Let now extend S with the 2 application classes that were initially re-
moved from JHotDraw, StorableInput and ColorMap. We denote by S ′
the extended software system, which, in fact, is the entire JHotDraw system.
Consequently, the number of application classes from S ′ is 173 (s = 2).

There are two possibilities to obtain the restructured partition K′ of the
extended system S ′.

A. To apply kRED algorithm from scratch on the entire JHotDraw sys-
tem.

B. To adapt, using CBAR algorithm, the partition K obtained after ap-
plying kRED algorithm before the system’s extension.

In the following we will briefly detail variants A and B.

A. After applying kRED algorithm for JHotDraw case study (S ′), we have
obtained a partition K′ characterized by the following quality measures:

• ACC = 0.9829.
• PRECM = 0.997.
• PRECA = 0.9957.

In the partition K′ there were 4 methods and 2 attributes that were mis-
placed in the partition obtained after applying kRED algorithm. The names of
the elements (methods, attributes) that were proposed to be moved is shown
in the first column of Table 3. The suggested target class is shown in the
second column.

B. We have adapted, using CBAR algorithm, the partition K obtained
after applying kRED algorithm before the system’s extension. The partition
K′ obtained this way is characterized by the following quality measures:

• ACC = 0.9721.
• PRECM = 0.9949.
• PRECA = 0.9957.
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Element Type Target class
PertFigure.writeTasks Method StorableOutput
PertFigure.readTasks Method StorableInput

PolygonFigure.distanceFromLine Method Geom
StandardDrawingView.

drawingInvalidated
Method DrawingChangeEvent

ColorEntry.fName Attribute ColorMap
ColorEntry.fColor Attribute ColorMap

Table 3. The misplaced elements.

In the partition K′ there were 7 methods and 2 attributes that were mis-
placed in the obtained partition. The names of the elements (methods, at-
tributes) that were proposed to be moved is shown in the first column of
Table 4. The suggested target class is shown in the second column.

Element Type Target class
PertFigure.writeTasks Method StorableOutput

PertFigure.write Method StorableOutput
CompositeFigure.write Method StorableOutput
PertFigure.readTasks Method StorableInput

PertFigure.read Method StorableInput
PolygonFigure.distanceFromLine Method Geom

StandardDrawingView.
drawingInvalidated

Method DrawingChangeEvent

ColorEntry.fName Attribute ColorMap
ColorEntry.fColor Attribute ColorMap

Table 4. The misplaced elements.

From Table 4 we can observe that CBAR algorithm determines 3 more
refactorings than kRED algorithm:

(i) The Move Method refactoring PertFigure.write to class StorableOut-
put.

(ii) The Move Method refactoring CompositeFigure.write to class Storable-
Output.

(iii) The Move Method refactoring PertFigure.read to class StorableInput.

From our perspective, all these refactorings can be justified. We give below
the justification for these refactorings.

(i),(ii) PertFigure.write method is responsible with the persistence of an Pert-
Figure instance. PertFigure class has the following attributes: an in-
stance of java.awt.Rectangle and two lists of Storable objects. These
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attributes need to be persisted when a PertFigure instance is written.
The class StorableOutput is responsible for persisting primitive data
types (int, boolean) but also contains method for storing java.awt.Color
and Storable objects. Creating a method in class StorableOutput that
stores a java.awt.Rectangle object or a list of Storable objects is justi-
fied by the fact that the StorableOutput class already contains similar
methods. Moving these functionalities to the StorableOutput class can
help to avoid code duplication.

(iii) StorableInput class provides generic functionality for reading primitive
and user defined data. The instances stored using StorableOutput class
can be retrieved using StorableInput class. The identified refactoring
suggests the need for an additional method in StorableInput class to
handle the retrieval of java.awt.Rectangle, list of Storable instances.
As in the case of StorableOutput class, adding this functionality into
the StorableInput will avoid code duplication.

In our opinion, applying the Move Method refactorings suggested at (i),
(ii) and (iii) does not extend the responsibilities of the modified classes, but in
some situations we may obtain classes with multiple responsibilities. Further
improvements will deal with these possible problems.

We comparatively present in Table 5 the results obtained after applying
kRED and CBAR algorithms for restructuring the extended system S ′.

Table 5. The results

Quality measure kRED for 173 classes CBAR for 173 classes

No. of iterations 6 4
ACC 0.9829 0.9721

PRECM 0.997 0.9949
PRECA 0.9957 0.9957

Coh - 0.8912

From Table 5 we observe the following:

• CBAR algorithm finds the solution in a smaller number of iterations
than kRED algorithm. This confirms that the time needed by CBAR
to obtain the results is reduced, and this leads to an increased efficiency
of the adaptive process.
• The accuracy of the results provided by CBAR are preserved (the

additional refactorings identified by CBAR were justified below).
• The choice of the cluster cores in the adaptive process was good enough

(the cohesion is close to 1).
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5. Conclusions and Future Work

We have extended in this paper the evaluation of CBAR algorithm pre-
viously introduced in [2] on the open source case study JHotDraw. CBAR
is a clustering based method for adapting the class structure of a software
system when new application classes are added to the system. The considered
experiment shows the potential of our approach.

Further work will be done in order to isolate conditions to decide when
it is more effective to adapt (using CBAR) the partitioning of the extended
software system than to recalculate it from scratch using kRED algorithm. We
also plan to improve the method for choosing the cluster cores in the adaptive
process and to apply the adaptive algorithm CBAR on other open source case
studies and real software systems.
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