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ABOUT SELECTING THE “BEST” NASH EQUILIBRIUM

RODICA IOANA LUNG

Abstract. Most games simulating real-wold situations present multiple
Nash equilibria. The problem of selecting one equilibrium is tackled using
a generative relation for Nash equilibria. The equilibria ascending most
strategies from a randomly generated population of strategies can be con-
sidered. Numerical examples are used to illustrate the method.

1. Introduction

The problem of selecting one equilibrium of a normal form game has been
addressed in the literature in different ways. According to [1] there are three
main approaches to deal with multiple Nash equilibria.

One is to introduce an equilibrium selection mechanism that specifies
which equilibrium is picked up. Examples include random equilibrium se-
lection, in [4], and the selection of an extremal equilibrium, as in [7].

The second approach is to restrict attention to a particular class of games,
such as entry games, and search for an estimator which allows for identification
of payoff parameters even if there are multiple equilibria. For example the
models in [5, 6] and [3] study situations in which the number of firms is unique
even though there may be multiple Nash equilibria. They propose estimators
in which the number of firms, rather than the entry decisions of individual
agents, is treated as the dependent variable.

A third method [12] Tamer, uses bounds to estimate an entry model.
The bounds are derived from the necessary conditions for pure strategy Nash
equilibria, which say that the entry decision of one agent must be a best
response to the entry decisions of other agents. In [2] Berry and Reiss survey
the econometric analysis of discrete games.

In this work a new selection method based on a generative relation for
Nash equilibria for normal form games is proposed. The Nash ascendancy
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[8] relation can be used to compute Nash equilibria using Natural Computing
methods such as Evolutionary Algorithms. In the case of multiple equilibria
it can also be used to differentiate between them by determining which one
ascends more strategies from a randomly generated population of strategies.

2. Nash ascendancy relation

A finite strategic game is defined by Γ = ((N,Si, ui), i = 1, n) where:

• N represents the set of players, N = {1, ...., n}, n is the number of
players;

• for each player i ∈ N , Si represents the set of actions available to him,
Si = {si1 , si2 , ..., simi

} where mi represents the number of strategies
available to player i and S = S1×S2× ...×SN is the set of all possible
situations of the game;

• for each player i ∈ N , ui : S → R represents the payoff function.

Denote by (sij , s
∗
−i) the strategy profile obtained from s∗ by replacing the

strategy of player i with sij i.e.

(sij , s
∗
−i) = (s∗1, s

∗
2, ..., s

∗
i−1, sij , s

∗
i+1, ..., s

∗
1).

The most common concept of solution for a non cooperative game is the
concept of Nash equilibrium [9, 10]. A collective strategy s ∈ S for the game
Γ represents a Nash equilibrium if no player has anything to gain by changing
only his own strategy.

Several methods to compute NE of a game have been developed. For a
review on computing techniques for the NE see [9].

Consider two strategy profiles s∗ and s from S. An operator k : S×S → N
that associates the cardinality of the set

k(s∗, s) = |({i ∈ {1, ..., n}|ui(si, s∗−i) ≥ ui(s
∗), si ̸= s∗i }|

to the pair (s∗, s) is introduced.
This set is composed by the players i that would benefit if - given the

strategy profile s∗ - would change their strategy from s∗i to si, i.e.

ui(si, s
∗
−i) ≥ ui(s

∗).

Let x, y ∈ S. We say the strategy profile x Nash ascends the strategy
profile y in and we write x ≺ y if the inequality

k(x, y) < k(y, x)

holds.
Thus a strategy profile x dominates strategy profile y if there are less

players that can increase their payoffs by switching their strategy from xi to
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yi than vice-versa. It can be said that strategy profile x is more stable (closer
to equilibrium) then strategy y.

Two strategy profiles x, y ∈ S may have the following relation:

(1) either x dominates y, x ≺ y (k(x, y) < k(y, x))
(2) either y dominates x, y ≺ x (k(x, y) > k(y, x))
(3) or k(x, y) = k(y, x) and x and y are considered indifferent (neither x

dominates y nor y dominates x).

The strategy profile s∗ ∈ S is called non-ascended in Nash sense (NAS) if

@s ∈ S, s ̸= s∗such that s ≺ s∗.

In [8] it is shown that all non-ascended strategies are NE and also all NE
are non-ascended strategies. Thus the Nash ascendancy relation can be used
to characterize the equilibria of a game.

3. Selection of Nash Equilibria

Using the ascendancy relation an equilibrium can be characterized by the
number of strategies it ascends. The equilibrium ascending most strategy
profiles may be considered to be the most “popular’ equilibrium and thus a
selection method is proposed.

In order to approximate the number of strategies ascended by an equilib-
rium the following method of comparing equilibria is proposed.

A population of strategies of size R is uniformly random generated 100
times. For each equilibrium and each population the number of strategies
ascended by the equilibrium and the number of strategies that are indifferent
to the equilibrium is computed.

The ratio of that number to R is a number between 0 and 1 representing a
measure of ascendancy of that equilibrium. The average of these numbers over
the 100 populations is denoted by Ma and can be used to compare different
equilibria of a game.

The corresponding standard deviation Sa is also computed. These mea-
sures represent simple descriptive statistics tools that indicate the potential of
the method.

4. Numerical examples

Several normal form games presenting multiple Nash Equilibria are pre-
sented. The size R is considered of 100000 strategies. Each game is presented
by its payoff matrix and the Nash equilibria. For each NE, Ma(NE) and
Sa(NE) are presented.
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P1-P2 1 2
1 1,3 4,2
2 2,1 1,3

Table 1. Payoff table for Game 1

The payoff space illustrated for each game is generated by representing
100000 uniformly generated strategies. This representation is used in multi-
objective optimization and offers some extra input in the features of the game.

4.1. Game 1. The first game has been chosen for illustration purposes. It
is a game with two players each having two strategies. The payoff matrix is
presented in Table 1. This game has one mixed NE at (2/3, 1/3) and (3/4, 1/4).
Th e payoff space is visualized in Figure 1. All tested strategies are ascended
by the NE of the game and Ma(NE) = 100000 and Sa(NE) = 0.

Figure 1. Game1. The circle represents the NE

4.2. Game2. This game represents a discrete four step version of the cen-
tipede game [11]. It is a two player game with two strategies for each player.
The payoff matrix is presented in Table 2.

This game has two NE presented in Table 3, one in pure form and one in
mixed form, both having the same payoff illustrated in Figure 2.

According to our experiments, both NE ascend the same number of strate-
gies as Ma(NE1) = Ma(NE2) = 1 and Sa(NE1) = Sa(NE2) = 0. this is a
specific feature for this game. Whatever the second player will chose, when
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P1-P2 1 2
1 3,1 3,1
2 2,6 12,4

Table 2. Payoff table for Game 2

NE 1 2 Payoffs
1 1,0 1,0 (3,1)
2 1,0 0.9, 0.1 (3,1)

Table 3. NEs for Game 2

Figure 2. Game2. The circle represents the payoff for the two NE

the first one plays it first strategy the payoff for both is the same and there is
no point in choosing between the two NE.

4.3. Game 3. The third game has two players each of them having three
strategies available and payoffs in Table 4. It presents three Nash equilibria,
two pure and one in mixed form as presented in Table 5. The pure Nash
Equilibria weakly Pareto dominate the mixed one (Figure 3).

The results of our experiments are also presented in Table 5. These indicate
a slightly ’higher popularity“ of the mixed NE over the pure ones even though
is weakly dominated by both. However, further statistical tools have to be
used to determine if the difference between results is significant.
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P1-P2 1 2 3
1 5,5 10,8 6,7
2 8,10 8,8 10,8
3 7,6 8,10 5,5

Table 4. Payoff table for Game 3

NE 1 2 Payoffs Ma Sa

1 0.4, 0.6, 0 0.4,0.6,0 (8,8) 0.9904 0.0002
2 1,0,0 0,1,0 (10,8) 0.9809 0.0004
3 0,1,0 1,0,0 (8,10) 0.9810 0.0004

Table 5. NEs for Game 3

Figure 3. Payoff space for Game3. Circles represent payoffs
of the three NE

4.4. Game 4. The fourth game is a two player game, each with three strate-
gies. It presents nine NEs, three in pure form and six in mixed form. Payoffs
are given in Table 6, the equilibria and results in Table 7 and the payoffs space
is illustrated in Figure 4. According to these results, the ’best’ choice would
be the last NE yielding a payoff (2, 2).

5. Conclusions and further work

An attempt to introduce a new method for selecting between multiple
Nash Equilibria of a normal form game is made in this paper.
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P1-P2 1 2 3
1 3,1 0,0 0,1
2 1.5,1 2,2 1.5,1
3 0,1 0,0 3,1

Table 6. Payoff table for Game 4

NE P1 P2 Payoffs Ma Sa

1 0.5,0.5,0 0.5714, 0.4285,0 (1.71,1) 0.7899 0.0011
2 0.5,0.5,0 0.5,0,0.5 (1.5,1) 0.8925 0.0009
3 0,0.5,0.5 0.5,0,0.5 (1.5,1) 0.8924 0.0009
4 0,0.5,0.5 0, 0.4285,0.5714 (1.71,1) 0.7898 0.0012
5 1,0,0 1,0,0 (3,1) 0.8670 0.0010
6 1,0,0 0.5,0,0.5 (1.5,1) 0.8670 0.0010
7 0,0,1 0.5,0,0.5 (1.5,1) 0.8669 0.0009
8 0,0,1 0,0,1 (3,1) 0.8669 0.0009
9 0,1,0 0,1,0 (2,2) 0.9620 0.0005

Table 7. NEs for Game 4

Figure 4. Payoff space for Game4. Circles represent payoffs
of the NE

An ascendancy relation is used to determine which of the NE is most
’popular’ or ascends most strategies from a randomly generated set. Some
simple numerical experiments illustrate the use of this method.
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Further work includes the use of statistical inference tools in order to
evaluate the significance of the results.
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