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HILL-CLIMBING SEARCH IN EVOLUTIONARY MODELS

FOR PROTEIN FOLDING SIMULATIONS

CAMELIA CHIRA

Abstract. Evolutionary algorithms and hill-climbing search models are
investigated to address the protein structure prediction problem. This is a
well-known NP-hard problem representing one of the most important and
challenging problems in computational biology. The pull move operation is
engaged as the main local search operator in several approaches to protein
structure prediction. The considered approaches are: (i) a steepest-ascent
hill-climbing search guided by pull move transformations, (ii) an evolution-
ary model with problem-specific crossover and pull move mutations, and
(iii) an evolutionary algorithm based on hill-climbing search operators.
Numerical experiments emphasize the advantages of the latter approach
for several difficult protein benchmarks.

1. Introduction

Protein folding simulations aim to find minimum-energy protein structures
starting from an initially unfolded chain of amino acids. The prediction of
protein structures having minimum energies represents an NP-hard problem
[1, 3]. The paper addresses this problem in the simplified hydrophobic-polar
(HP) lattice model extensively engaged in computational experiments due to
its simplicity [8], yet being able to generate significant results.

Several approaches to protein structure prediction based on evolutionary
and/or hill-climbing search are investigated. The paper compares the per-
fromance of a pure hill-climbing search algorithm, a simple evolutionary al-
gorithm and an evolutionary model based on hill-climbing search operators.
The common feature of these approaches is the usage of pull move transfor-
mations [5] as the main local search operator. Pull move operations result
in a single residue being moved diagonally causing the potential transition of
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Figure 1. A protein configuration for sequence SE =
HHHPHPPPPPH in the square lattice having the energy
value of −2. Black squares represent H residues and white
squares are P residues.

connecting residues in the same direction in order to maintain a valid protein
configuration [5]. Pull moves are engaged in different strategies in each model
investigated.

Numerical experiments for bidimensional HP lattice protein sequences are
carried out for all the models presented in the paper. Comparative results
indicate a better performance of the evolutionary algorithm based on hill-
climbing operators.

The paper is organised as follows: the protein structure prediction problem
in the HP model is briefly described, pull move transformations are reviewed,
the three models discussed in the paper are presented and numerical results
and comparisons are given.

2. The Protein Structure Prediction Problem in the HP model

Simplified lattice protein models like the HP model [2] have become impor-
tant tools for studying proteins being extremely useful in the initial approx-
imation of the protein structure and in the investigation of protein folding
dynamics.

In the HP model, a protein structure with n amino acids is viewed as a
sequence S = s1...sn where each residue si,∀i can be either H (hydropho-
bic or non-polar) or P (hydrophilic or polar). A valid protein configura-
tion forms a self-avoiding path on a regular lattice with vertices labelled
by amino acids. Figure 1 presents a configuration example for protein se-
quence SE = HHHPHPPPPPH (black squares denote H residues and white
squares represent P residues).

Two residues are considered topological neighbors if they are adjacent
(either horizontally or vertically) in the lattice and not consecutive in the
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sequence (for example in Figure 1 the pair of residues labelled 2 and 5 form a
H-H topological contact).

In the HP model, the energy associated to a protein conformation takes
into account every pair of H residues which are topological neighbors. Every
H-H topological contact contributes -1 to the energy function. The aim is
to find the protein configuration having minimum energy. This solution will
correspond to the protein configuration with the maximal number of H-H
topological contacts.

The energy of the protein conformation presented in Figure 1 is −2 (given
by H-H contacts 2− 5 and 2− 11).

3. Pull Moves in the HP Square Lattice Model

Pull move transformations have been introduced in [5] as a local search
strategy for the bidimensional HP model. Incorporated in a tabu search algo-
rithm, pull moves have been able to detect new lowest energy configurations
for large HP sequences having 85 and 100 amino-acids [5].

A pull move operation starts by moving a single residue diagonally to an
available location. A valid configuration is maintained by pulling the chain
along the same direction (not necessarily until the end of the chain is reached
- a valid conformation can potentially be obtained sooner).

A pull move transformation can be applied at a given position i from the
considered HP sequence.

Let (xi, yi) be the coordinates in the square lattice of residue i at time t.
Let L denote a free location diagonally adjacent to (xi, yi) and adjacent (either
horizontally or vertically) to (xi+1, yi+1). Location C denotes the fourth corner
of the square formed by the three locations: L, (xi, yi) and (xi+1, yi+1). A pull
move is possible if location C is free or equals (xi−1, yi−1). In the latter case,
the pull move transformation consists of moving the residue from location
(xi, yi) to location L. In the case that C is a free location, the first step is to
move residue from position i to location L and the residue from position (i−1)
to location C. The pull move transformation continues by moving all residues
from (i − 2) down to 1 two locations up the chain until a valid configuration
is reached.

Figure 2 presents an example of a pull move transformation for HP se-
quence SE = HHHPHPPPPPH. The pull move is applied for residue H
at position i = 3 for which a free location L horizontally adjacent to residue
i+ 1 (between residues 4 and 10 in Figure 2.a) is identified. Location C (the
location between residues 3 and 11 in Figure 2.a) is free in this example and
therefore the pull move will cause moving the residue 3 to location L and
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Figure 2. Pull move transformation for HP sequence
HHHPHPPPPPH at position 3

residue 2 to location C. The remaining residue 1 (only one in this example)
is moved up the chain two positions (see Figure 2.b).

Lesh et al [5] prove that the class of pull moves is reversible and complete.

4. Evolutionary and Hill-Climbing Search

This paper investigates the performance of the following three models in
solving the protein structure prediction problem: (i) a hill-climbing search
algorithm, (ii) a simple evolutionary algorithm based on dynamic crossover
and pull moves as mutation, and (iii) an evolutionary model based on hill-
climbing search operators.

All three proposed models use the same problem representation (commonly
engaged in genetic algorithms for this problem [7, 4]). A protein configuration
(problem solution or chromosome) is encoded using an internal coordinates
representation. For a protein HP sequence with n residues S = s1...sn, the
chromosome length is n − 1 and each position in the chromosome encodes
the direction L(Left), U(Up), R(Right) or D(Down) towards the location of
the current residue relative to the previous one. For the working example in
Figure 1 the chromosome is LLURRRDDLL.

The fitness function used corresponds to the energy value of the protein
configuration (as given in Section 2).

4.1. Hill-Climbing Search Model. A simple hill-climbing search model
based on pull moves is described (see HC scheme below). The algorithm
applies pull move transformations for a protein configuration each iteration
within a steepest ascent hill-climbing procedure.

Hill-climbing search starts by randomly generating one valid configuration
for the given HP sequence and setting it as the current hilltop. Pull moves
are applied at each position i, i = 1, ..., n (where n is the length of the HP
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Hill-Climbing Search based on Pull Moves (HC)
Set current hilltop to a randomly generated configuration rand c
Set best c to current hilltop
Add best c to hilltop array
while (maximum number of hc iterations not reached) do
for i=1 to n do
Generate new configuration ci by applying a
pull move transformation at position i in current hilltop
if (ci has better fitness than best c) then
Set best c to ci

end if
end for
if (better configuration best c found) then
Set current hilltop to best c

else
Save best c in hilltop array
Set rand c to a new randomly generated configuration
Set current hilltop and best c to rand c

end if
end while
Return best solution from hilltop array

sequence) resulting in the generation of n new configurations. If any of them
has a better fitness value than the current hilltop it replaces the latter one. If
no improvement is achieved and the maximum number of hill-climbing itera-
tions has not been reached, the current hilltop is saved in a list of hilltops and
then reinitialized with a new randomly generated configuration.

4.2. Evolutionary Algorithm with Pull Moves. In the evolutionary ap-
proach (see EA scheme) to the protein structure prediction problem, a chro-
mosome represents a possible protein configuration for a given HP sequence.

The population size is fixed and offspring are asynchronously inserted in
the population replacing the worst parent within the same generation.

For the recombination of genetic material, a one-point dynamic crossover
operator is specified. Given two parent chromosomes p1 and p2 and a randomly
generated cut point χ, two offspring are created as follows. The genes before
the crossover point χ are copied from one parent. The second part of the
offspring is taken from the other parent in such a way that a valid configuration
is maintained. This means that each position j, j = χ, .., n− 1 is copied from
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Evolutionary Algorithm with Pull Moves (EA)
t = 0
Generate P (t) with pop size individuals randomly
while (maximum number of generations not reached) do
for each individual i in P (t) do
Apply crossover with probability p c
Select mate j using binary tournament selection
Generate random cut point χ
Generate offspring o = crossover(i, j, χ)
if o has better fitness than i or j then
Replace worst(i, j) with o in P (t)
Replace random individual from P (t) with mutation(o)

end if
Apply pull move mutation with probability p m
Generate random pull move position k
Generate mutated chromosome m by pull move in i at position k
if m has better fitness than i then
Replace i with m in P (t)

end if
end for
t = t+ 1

end while

the second parent and checked for potential collisions with positions 0 to j−1
already copied in the chromosome current substring. If a conflict arises then
a random direction leading to a valid position is selected and used in the
offspring. The best of the two offspring generated replaces the worst parent if
a better fitness was generated.

Pull move transformation is engaged as the mutation operator. For each
individual selected for mutation, a random position is generated and a pull
move transformation is applied at that position. The new mutated chromo-
some resulted replaces the parent if it has a better fitness value.

Furthermore, the offspring generated by crossover is transformed using
pull move mutation and replaces an individual from the current population at
random. This feature facilitates the diversification of genetic material and is
also engaged in the evolutionary model with hill-climbing operators (presented
in the following subsection).

4.3. Evolutionary Model based on Hill-Climbing Operators. In the
third model investigated (see EA-HCO scheme), a population of configurations
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Evolutionary Algorithm with
Hill-Climbing Operators (EA-HCO)
t = 0
Generate P (t) with pop size individuals randomly
while (maximum number of generations not reached) do
Randomly select p1 and p2 from P (t)
while (maximum number of hc iterations not reached) do
for k = 1 to n do
Generate random cut point χ
Generate offspring ok = crossover(i, j, χ)

end for
Set o to best(ok), k = 1..n
if o has better fitness than p1 or p2 then
Replace worst(p1, p2) - also in P (t) - with o
Replace random individual from P (t) with mutation(o)

else
Set p1 and p2 to new randomly selected individuals from P (t)

end if
end while
Hill-climbing pull move mutation for hc iterations
t = t+ 1

end while

is evolved by hill-climbing crossover and mutation. The evolutionary algorithm
uses the same genetic operators described in section 4.2 (dynamic crossover
and pull move mutation) with the difference that they are applied now in a
steepest ascent hill-climbing manner.

Crossover is engaged for randomly selected pairs of individuals in a hill-
climbing mode [6]. The best-fitted offspring replaces the worst parent within
the same generation. If no better offspring is identified, both parents are
replaced by new randomly selected chromosomes. The process continues until
the maximum number of hill-climbing iterations is reached.

Mutation implements a steepest ascent hill-climbing procedure using the
pull move operation. This process is able to generate a variable number of new
individuals which replace parents within the same generation (if they have a
better fitness value).

The hill-climbing pull move mutation step works in similar way with the
procedure described in section 4.1 for hill-climbing search except that new
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Table 1. Bidimensional HP instances used in experiments

Inst. Size Sequence E∗

S1 20 1H 1P 1H 2P 2H 1P 1H 2P 1H 1P 2H 2P 1H 1P 1H -9
S2 24 2H 2P 1H 2P 1H 2P 1H 2P 1H 2P 1H 2P 1H 2P 2H -9
S3 25 2P 1H 2P 2H 4P 2H 4P 2H 4P 2H -8
S4 36 3P 2H 2P 2H 5P 7H 2P 2H 4P 2H 2P 1H 2P -14
S5 48 2P 1H 2P 2H 2P 2H 5P 10H 6P 2H 2P 2H 2P 1H -23

2P 5H
S6 50 2H 1P 1H 1P 1H 1P 1H 1P 4H 1P 1H 3P 1H 3P 1H -21

4P 1H 3P 1H 3P 1H 1P 4H 1P 1H 1P 1H 1P 1H 1P
1H 1H

individuals required for mutation are not generated anew but they are selected
at random from the current population.

The number of individuals undergoing recombination and mutation each
generation is dynamic as the hill-climbing operators modify the same structure
until no further improvement can be generated and then continue with new
individuals. An explicit selection for the next generation is not required as
offspring are asynchronously inserted in the population as soon as they are
created.

5. Numerical Experiments

The three models presented in the previous section are engaged in a set of
numerical experiments for the bidimensional HP protein sequences presented
in Table 1 (the known energy denoted by E∗ is given for each instance).

The following parameter setting is engaged in the experiments:

• For the hill-climbing search model based on pull moves (refered to as
HC), the number of hc iterations is 10000.

• For the evolutionary algorithm based on pull moves (refered to as
EA), the population size is 100, the number of generations is 300, the
crossover probability is 0.8 and the mutation probability is 0.2.

• For the evolutionary algorithm based on hill-climbing operators (ref-
ered to as EA-HCO), the population size is 100, the number of gen-
erations is 300, the offspring number in crossover hill-climbing is 50
and the number of hill-climbing iterations hc for both crossover and
mutation is set to 100.

The initial population for the evolutionary algorithms contains randomly
generated chromosomes representing valid configurations (each chromosome is
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Table 2. Comparison of results achieved by the three investi-
gated models for the HP problem

Inst. Size E∗ HC EA EA-HCO

S1 20 -9 -9 -9 -9
S2 24 -9 -8 -9 -9
S3 25 -8 -6 -8 -8
S4 36 -14 -10 -13 -14
S5 48 -23 -17 -20 -23
S6 50 -21 -15 -19 -21

Figure 3. One of the protein configuration detected by EA-
HCO for sequence S4 = 3P 2H 2P 2H 5P 7H 2P 2H 4P 2H 2P
1H 2P having the best-known energy value of −14

iteratively generated in a random manner until a conformation free of collisions
in the HP square lattice model is found).

Table 2 presents comparative results for the HP sequences considered (the
results of the best run out of 25 are reported). The known optimum energy
E∗ for each problem instance and the energy values detected by the three
investigated models HC, EA and EA-HCO are given in separate columns.

Evolutionary search based on hill-climbing operators is able to detect op-
timal solutions for all HP instances considered. Figure 3 shows one of the
optimal protein configurations detected by EA-HCO for instance S4.
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Table 3. Percentage of succesful runs and the average gener-
ation number producing the best energy value for the EA and
EA-HCO models

Inst. EA EA-HCO
E Succ. Runs Avg. Gen. E Succ. Runs Avg. Gen.

S1 -9 92% 126.74 -9 100% 11.68
S2 -9 76% 153.26 -9 100% 16.20
S3 -8 64% 161.00 -8 100% 27.32
S4 -13 12% 235.00 -14 64% 141.68
S5 -20 4% 277.00 -23 8% 250.50
S6 -19 12% 221.33 -21 56% 182.07

Table 2 indicates that the evolutionary model based on hill-climbing search
operators outperforms the other two approaches investigated. It can be ob-
served that all three models are able to detect the best-known solution for the
first sequence considered S1 having a length of 20. As the size of the protein
sequence grows (and therefore the complexity of the search space increases),
the power of hill-climbing search and evolutionary search alone gets lower.

Hill-climbing search (model HC in table 2) results are far from the optimum
for the sequences S2 to S6 with lengths from 24 to 50. Evolutionary search
(model EA in table 2) is able to identify optimum solutions for sequences
S1, S2 and S3 but fails to guide the search towards the optimum for higher-
size sequences. This problem is succesfullly overcome by the same operators
applied in a hill-climbing manner in model EA-HCO - able to detect optimum
energy values for all sequences considered.

The number of succesful runs (those in which the optimum energy has been
detected) out of the 25 runs considered is studied in a further comparison
between the EA and EA-HCO models. Moreover, the generation number
producing the best energy value is recorded each run. Table 3 shows the
results obtained in the following mode: for each HP sequence, the procentage
of successful runs and the average generation number detecting an optimum
(or best energy value) are given for the two evolutionary algorithms compared.
It should be noted that table 3 considers succsesful runs those in which the
best energy was obtained if the optimum was not found. This is the case of
EA results for sequences S4, S5 and S6.

Table 3 clearly emphasizes the better performance of the EA-HCO model
compared to EA. The percentage of successful runs is higher for each HP
instance when the evolutionary algorithm based on hill-climbing search is used.
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Furthermore, EA-HCO is able to detect the optimal solution in all 25 runs for
several protein sequences. The EA-HCO model also outperforms EA with
regard to the average generation in which the best energy configuration is
identified. Hill-climbing search operators integrated in an evolutionary model
are able to detect optimal solutions in the early stages of the search process.
More generations are required as the protein sequence size increases. Even for
such sequences, the EA-HCO is able to find the optimum solution earlier in
the search compared to the stage where the EA model finds the best solution
(not the optimum as EA fails to find optimum solutions for sequences S4, S5
and S6).

Numerical results and comparisons clearly emphasize the benefits of hill-
climbing search operators integrated in evolutionary models compared to ei-
ther hill-climbing or evolutionary search for protein structure prediction.

6. Conclusions and Future Work

Hill-climbing and evolutionary search models are studied for solving the
protein structure prediction problem. The results presented emphasize the
benefits of integrating hill-climbing search operators in an evolutionary algo-
rithm.

Future work refers to the investigation of EA-HCO performance for other
protein sequences and the extension of the proposed model to include other
search operators.
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