
CONTENTS

Invited Lectures

H. Horacek, Knowledge Representation within an Intelligent Tutoring System . . . 3

Z. Horváth, L. Lövei, T. Kozsik, R. Kitlei, A. N. V́ıg, T. Nagy,

M. Tóth, R. Király, Modeling Semantic Knowledge in Erlang for Refactoring . . 7

A. Pretschner, An Overview of Distributed Usage Control . 17

Knowledge in Computational Linguistics

A. Varga, G. Puşcaşu, C. Orăşan, Identification of Temporal Expressions in

the Domain of Tourism . 29

D. Tătar, E. Tămâianu-Morita, G. Czibula, Segmenting Text by Lexical

Chains Distribution .33

A. Iftene, D. Trandabat, Recovering Diacritics using Wikipedia and Google . 37

A. Oneţ, An Approach on Multilevel Text Mining . 41

M. Cremene, F. C. Pop, S. Lavirotte, J.-Y. Tigli, Natural Language

Based User Interface for On-demand Service Composition . 45

S. Cojocaru, E. Boian, M. Petic, Derivational Morphology Mechanisms in

Automatic Lexical Information Acquisition . 49

L. Machison, Named Entity Recognition for Romanian . 53

R. Zehan, Web Interface for Rouge Automatic Summary Evaluator 57

Z. Minier, Feature Selection in Text Categorization Using `1-regularized SVMs . 61

S. Irimiaş, A Romanian Stemmer . 65

A. Perini, D. Tătar, Textual Entailment as a Directional Relation Revisited . . 69

A. D. Mihiş, Ontological Solving of the Team Building Problem73

C. Forascu, A Romanian Corpus of Temporal Information – a Basis for

Standardisation .77

P. Szilágyi, Compacting Syntactic Parse Trees into Entity Relationship Graphs 81

L. Ţâmbulea, A. Sabău, From Databases to Semantic Web .85

C. Bogdan, Domain Ontology of the Roman Artifacts Found in the Tomis

Fortress . 89
xi

Knowledge Processing and Discovery

R. N. Turcaş, Zs. Marian, O. Iova, The Autonomous Robotic Tank (ART):

An Innovative Lego Mindstorm NXT Battle Vehicle . 95

A. Gog, C. Chira, D. Dumitrescu, Distributed Asynchronous Collaborative

Search . 99

C. Chira, C.-M. Pintea, D. Dumitrescu, A Step-Back Sensitive Ant Model

for Solving Complex Problems . 103

L. Dioşan, A. Rogozan, J.-P. Pecuchet, Improving Definition Alignment

by SVM with a Kernel of Kernels .107

D. Dumitrescu, R. I. Lung, T. D. Mihoc, Equilibria Detection in

Electricity Market Games . 111

I. Drugus, Universics – a Structural Framework for Knowledge Representation .115

I. Salomie, M. Dı̂nşoreanu, C. B. Pop, S. L. Suciu, Knowledge

Aquisition from Historical Documents . 119

M. Cremene, O. Sabou, D. Pallez, T. Baccino, Eye-tracking Data

Exploration within Interactive Genetic Algorithms . 123

L. Csato, Z. Bodó, Decomposition Methods for Label Propagation 127

A. Perini, Group Selection in Evolutionary Algorithms . 131

A. Sirghi, Sustainable Development Game .135

S. Irimiaş, Designing Search Strategies for Robots Using Genetic Programming

and Microsoft Robotic Studio .139

O. Şerban, Modeling Multiagent Irational Algorithms for Games 143

R. M. Berciu, Coevolution For Finding Subgame Perfect Equilibria in

2-Period Cumulated Games .147

M. D. Nadăş, Blog Zeitgeist .151

V. Varga, C. Săcărea, A. Takacs, A Software Tool for Interactive

Database Access Using Conceptual Graphs . 155

Z. Bodó, Zs. Minier, Semi-supervised Feature Selection with SVMS 159

A.-R. Tănase, Sensitive Ants Algorithm for Routing in Telecommunication

Networks . 163

A. Miron, Emergency Service Systems and Robots . 167
xii

P. V. Borza, O. Gui, D. Dumitrescu, Applications of Self-Organizing Maps

in Bio-Inspired Artificial Vision Models . 171

H. S. Jakab, L. Csato, Q-learning and Policy Gradient Methods 175

Knowledge in Software Engineering

G. Czibula, I. G. Czibula, A. M. Guran, G. S. Cojocar, Decision

Support System for Software Maintenance and Evolution . 181

I. G. Czibula, A Clustering Approach for Transforming Procedural into

Object-Oriented Software Systems . 185

B. Pârv, I. Lazăr, S. Motogna, I. G. Czibula, L. Lazăr, COMDEVALCO

Framework - Procedural and Modular Issues . 189

I. Lazăr, S. Motogna, B. Pârv, Rapid Prototyping of Conversational Web

Flows . 194

V. Petraşcu, D. Chiorean, D. Petraşcu, Component Models’ Simulation

in ContractCML .198

M. Frenţiu, H. F. Pop, Effort Estimation by Analogy Using a Fuzzy

Clustering Approach .202

C. Enăchescu, D. Rădoiu, Software Cost Estimation Model Based on Neural

Networks . 206

D. Rădoiu, C. Enăchescu, Ontology Development: A Software Engineering

Approach .211

A. Vajda, Duration Estimation of a Work Package .215

I. A. Leţia, M. Costin, A Formal Concept Analysis Approach to Ontology

Search .219

C. Şerban, High Coupling Detection Using Fuzzy Clustering Analysis 223

V. Niculescu, Efficient Recursive Parallel Programs for Polynomial

Interpolation . 227

M. Lupea, Skeptical Reasoning in Constrained Default Logic Using Sequent

Calculus .231

A. Vasilescu, Algebraic Model for the Synchronous SR Flip-Flop Behaviour . . . 235

D. Suciu, Reverse Engineering and Simulation of Active Objects Behavior 239
xiii

E. Scheiber, Parallelization of an Algorithm with an Unknown Number of

Tasks Using a Fixed Number of Workers .244

C. Chisăliţă-Creţu, Andreea Vescan, The Multi-Objective Refactoring

Sequence Problem . 249

S. Jibotean, R. Boian, Virtual Reality Rehabilitation Environment For

Obsessive-Compulsive Disorder . 254

Knowledge in Distributed Computing

S. Buraga, A. Iacob, DISMY – a Semantic Grid System Based on Linda,

P2P and ALCHEMI .261

A. Sterca, Zs. Marian, A. Vancea, Distortion-Based Media-Friendly

Congestion Control . 265

S. Dragoş, R. Dragoş, Web Analytics for Educational Content 268

C. Cobârzan, Node Ranking in a Dynamic Distributed Video Proxy-Caching

System . 272

D. Cojocar, BBUFs: Architecture Overview . 276

T. Ban, Concept Paper: Generating and Assessing Test Papers Complexity

Using Predictions in Evolutionary Algorithms . 280

D. Cojocar, F. M. Boian, BBUFs: Replication Strategies 284

D. Bufnea, New Data Mining Techniques for Macroflows Delimitation in

Congestion Control Management . 288

C. Costa, HypergraphDB – A Peer-to-Peer Database System 292

R. Boian, D. Cojocar, Moving Excess Data Into External Peer-to-Peer

Storage .296

T. Cioară, I. Anghel, I. Salomie, M. D̂ınşoreanu, A. Rarău, A Self-

Configuring Middleware for Developing Context Aware Applications 300

H. Oros, F. M. Boian, Challenge-Response Entity Authentication Techniques 304

V. Chifu, I. Salomie, A. Riger, V. Rădoi, D. Inoan, A Web Service

Composition Approach Based on a Service Cell Graph Model 308

A. Crăciun, A. Sterca, RDDNS – Resource-based Dynamic DNS 312

A. Dărăbant, Clustering Algorithms in OODB Fragmentation – A

Comparative Evaluation . 315
xiv

F. M. Boian, C. Aldea, On Evaluating the Performance Parameters in a

Distributed System . 319

C. Amariei, E. Onica, S. Buraga, Enhancing Yahoo! Search Results Using

Linked Open Data .323

A. Crăciun, Server-Side Mobile Applications . 327

M. C. Florea (Bizon), Virtualization, the Solution for Dynamic IT 331

xv

KNOWLEDGE IN

SOFTWARE ENGINEERING

KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2009
Cluj-Napoca (Romania), July 2–4, 2009, pp. 181–184

A MULTIAGENT DECISION SUPPORT SYSTEM FOR ASSISTING
SOFTWARE MAINTENANCE AND EVOLUTION

GABRIELA CZIBULA(1), ISTVAN GERGELY CZIBULA(1), ADRIANA MIHAELA GURAN(1) ,
AND GRIGORETA SOFIA COJOCAR(1)

Abstract. The development of tools for building performant, open, scalable and
continuously adaptable software systems is a major challenge in software engi-
neering and artificial intelligence researches. The problems related to the main-
tenance and the evolution of software systems are essential, a major requirement
being to develop methodologies for the structural and behavioral optimization of
the systems. In this paper we propose an intelligent multiagent decision support
system for assisting software developers during the maintenance and evolution of
software systems. The proposed system is part of a research project that aims at
developing machine learning techniques for the structural and behavioral adap-
tation of software systems during their maintenance and evolution. The current
status of our work is also presented.

1. Introduction

The concept of decision support system (DSS) is very broad, because there are
many approaches to decision-making, and because of the wide range of domains in
which decisions are made. A DSS can take many different forms. In general, we can
say that a DSS is a computerized system that facilitates decision making.

The main objective of our research is to use machine learning techniques [1] for
structural adaptation of software systems during their maintenance and evolution
and for their behavioral self-adaptation, as well. The developed techniques will be
incorporated in an intelligent multiagent decision support system for assisting software
developers in the maintenance and evolution of software systems.

The aim of this paper is to propose an intelligent multiagent decision support
system (DSSEM - Decision Support System for Software Evolution and Maintenance)
for assisting software developers during the maintenance and evolution of software
systems. For the structural adaptation of software systems and for their behavioral
self-adaptation we propose to use machine learning [1] techniques.

The rest of the paper is structured as follows. Section 2 presents the motivation
of our approach. The architecture of DSSEM system is presented in Section 3. Some
conclusions and future research directions are given in Section 4.

2000 Mathematics Subject Classification. 68N99, 68T99, 68T05.
Key words and phrases. software engineering, decision support system, refactoring, machine

learning.

c©2009 Babeş-Bolyai University, Cluj-Napoca

181

182 GABRIELA CZIBULA ET AL

2. Our approach

In the lifecycle of software systems changes appears continuously, because of new
functional requirements. These new requirements impose the necessity of adaptive op-
timization of the systems during their evolution. In order to meet these requirements,
both structural and behavioral changes of the systems are needed. The structural
changes refer to the improvement of the internal structure of the system in order to
adapt itself to the new requirements, and the behavioral changes refer to optimizing
the behavior of the system in order to adapt its interaction to the dynamicity of its
external environment (users, other systems).

The main objective of our reasearch is the development of machine learning meth-
ods and models for structural adaptation and behavioral self-adaptation of software
systems during their maintenance and evolution. We focus our researches on two
essential problems related to the maintenance and evolution of software systems, pro-
gram comprehension and software reengineering. In order to validate the obtained
theoretical results, we aim at developing an intelligent multiagent decision support
system for assisting software developers in the maintenance and evolution of software
systems.

Two subfields of software engineering which deal with activities related to software
systems understanding and their structural changes are program comprehension and
software reengineering. Both subfields study activities from the maintenance and
evolution of software systems phases. We briefly analyze, in the following, the main
aspects related to the activities from the previously mentioned domains which are the
focus of our researches.

Program comprehension [2] is the domain that deals with the processes (cogni-
tive or other kind) used by the software developers in order to understand software
systems. It is a vital software engineering and maintenance activity, necessary for
facilitating reuse, inspection, maintenance, reverse engineering, reengineering, migra-
tion, and evolution of existing software systems. Esentially, it focuses on developing
metholologies and tools to facilitate the understanding and the management of the
increasing number of legacy systems.

Some important activities in program comprehension that we intend to automate
are: design patterns identification, concept location and aspect mining.

Software reengineering was defined by Chikofsky and Cross in [3] as the inspection
and modification of a software system in order to rebuild it in a new form. Recent
researches reveal the importance of software reengineering in the maintenance and
evolution of software systems [4]. Software reengineering consists of modifying a
software system after it has been reversed engineered to understand it, to add new
functionalities or to correct existing errors.

3. DSSEM system

In this section we propose a distributed decision support system for assisting
developers in the maintenance and evolution of software systems. As the system is
distributed and it requires flexible and autonomous decisions, it has been identified
as a multiagent one. The following classes of agents were distinguished at the level

DECISION SUPPORT SYSTEM FOR SOFTWARE MAINTENANCE AND EVOLUTION 183

of the multiagent system: Software developers (human agents); Personal Assistant
Agents (PA); Decision Support Agents (intelligent mobile agents - DSA).

The system that we propose in this paper is a distributed system consisting of
some local nodes, where software developers are assisted by DSSEM in activities
related to software maintenance and evolution (as presented in Section 2), and a
central location that supervises the local nodes.

We assume that at each local node, the human agent (software developer) use
his/her favourite IDE (Integrated Development Environment) for developing a soft-
ware application SA. At each local node, a personal assistant agent PA is also avail-
able. Each time a software developer needs assistance in a task related to refactoring,
design pattern identification, or other tasks supported by DSSEM (see Section 2) PA
agent is activated. PA is a software agent that is responsible for interacting with the
IDE in which the user develops its application.

On the central location six kinds of decision support agents exist: an agent re-
sponsible for design patterns identification, one responsible for concept location, one
responsible for crosscutting concerns identification, one responsible for introducing
design patterns, one responsible for refactoring, and one responsible for the behav-
ioral adaptation of the system. All of them are sleeping until they receive a specific
message and they become activated. After a software developer authenticates on a
local node and request assistance for an activity, its personal assistant agent PA sends
an awakening message to the coresponding decision support agent.

Once activated, an instance of the corresponding decision support agent DSA
migrates to the local node, where its interaction with the personal assistant agent
PA starts (DSA agent receives the information that PA agent has collected about the
software application SA). After the task of DSA agent is completed, it sends the
results to PA agent that will communicate the information to the software developer.
After this, DSA migrates back to the central location. DSA are intelligent agents
that accomplish their tasks by using machine learning [1] techniques.

We can conclude that the advantages of the DDSEM system proposed in this
paper are: (1) It benefits from the advantages that the agent based technology offers
- especially autonomy and flexibility [5]. (2) It offers protection of confidential infor-
mation by using the mobile agent technology. Maintaining security [6] implies that
the software developer’s intelectual property (source code) might be highly sensitive
data that should not leave its location. In such cases, the mobile-agent model [7] offers
a solution: a mobile agent is sent to the local node, and at the end of the process the
mobile agent is destroyed on the location itself. (3) DSSEM system can be simply
adapted to any IDE and/or programming languages (such as Eclipse, Visual Studio;
Java, C++), only by changing the behavior of PA.

We have implemented a prototype of DSSEM system, in which the functionality of
refactorings identification is added. In this direction, RDSA agent was developed, i.e.,
an instance of DSA agent that is responsible for identifying refactorings that improve
the structure of a software system. For refactorings identification we use a clustering
approach that we have previously introduced in [8]. The identified refactorings are
suggested to the software developer, that can decide if the refactorings are appropriate.

184 GABRIELA CZIBULA ET AL

4. Conclusions and furher work

We have proposed in this paper an intelligent multiagent decision support system
(DSSEM) that can be used for assisting software developers in some activities related
to the maintenance and evolution of software systems. We have presented the archi-
tecture of the proposed system, a scenario of using it, and we have also emphasized
the system’s importance.

Further work may be done in the following directions: to identify solutions for
improving the performance of DSSEM system using parallel computation; to extend
DSSEM system by including all the functionalities related to the structural adaptation
and behavioral self-adaptation of software systems; to experimentally validate DSSEM
multiagent system on real software systems.

ACKNOWLEDGEMENT. This work was supported by the research project ID 2268/2009,
sponsored by the Romanian National University Research Council.

References

[1] Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
[2] von Mayrhauser, A., Vans, A.M.: Program understanding: Models and experiments. Advances

in Computers 40 (1995) 1–38
[3] Cross, J., Chikofsky, E., May, C.: Reverse engineering. Advances in Computers 35 (1992) 199–254
[4] Tilley, S., Smith, D.: Legacy system reengineering. In: Int. Conference on Software Maintenance.

(1996) 9–12
[5] Weiss, G.E.: Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence.

MIT Press (1999)
[6] Borselius, N.: Mobile agent security. Electronics and Communication Engineering Journal 14

(2002) 211–218
[7] Nwana, H.S.: Software agents: An overview. Knowledge Engineering Review 11 (1995) 205–244
[8] Czibula, I., Serban, G.: Improving systems design using a clustering approach. IJCSNS Interna-

tional Journal of Computer Science and Network Security 6 (2006) 40–49

(1) Department of Computer Science, Babeş-Bolyai University, 1 M. Kogalniceanu
Street, Cluj-Napoca, Romania

E-mail address: {gabis, istvanc, adriana, grigo}@cs.ubbcluj.ro

KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2009
Cluj-Napoca (Romania), July 2–4, 2009, pp. 185–188

A CLUSTERING APPROACH FOR TRANSFORMING
PROCEDURAL INTO OBJECT-ORIENTED SOFTWARE SYSTEMS

ISTVAN GERGELY CZIBULA(1)

Abstract. It is well known that object-oriented programming has mechanisms
for constructing highly flexible, adaptable, and extensible systems. Legacy soft-
ware systems evolution often requires their reengineering to object oriented sys-
tems. In this paper we are focusing on the problem of automating the trans-
formation of procedural software systems into object-oriented systems. For this
purpose we propose a clustering approach and we develop a partitional clutering
algorithm that can be used for assisting software developers in the process of
migrating procedural code into object-oriented code. A simple example showing
how our approach works is also considered.

1. Introduction

It is well known that object-oriented programming has many advantages over con-
ventional procedural programming languages for constructing highly flexible, adapt-
able, and extensible systems [1].

Object-oriented concepts are useful concerning the reuse of existing software.
Therefore a transformation of procedural programs to object-oriented programs be-
comes an important process to enhance the reuse of procedural programs. It would
also be useful to assist by automatic methods the software developers in transforming
procedural code into an equivalent object-oriented one.

Unsupervised classification, or clustering, as it is more often referred as, is a data
mining activity that aims to differentiate groups (classes or clusters) inside a given
set of objects [2].

The main contributions of this paper are:

• To introduce a clustering approach for transforming non object-oriented soft-
ware systems into object-oriented ones. The proposed approach can be useful
during the evolution of non object-oriented software systems.

• To propose a k-medoids based clustering algorithm for our goal.

2000 Mathematics Subject Classification. 68N30, 62H30.
Key words and phrases. software engineering, object-oriented systems, clustering.

c©2009 Babeş-Bolyai University, Cluj-Napoca

185

186 ISTVAN GERGELY CZIBULA

The rest of the paper is structured as follows. A clustering approach for assisting
developers in the process of tranforming software systems written in procedural pro-
gramming languages into object-oriented systems is proposed in Section 2. Section 3
contains some conclusions of the paper and also outlines further research directions.

2. Our approach

Let S = {s1, s2, ..., sn} be a non object-oriented software system, where si, 1 ≤
i ≤ n can be a subprogram (function or procedure), a global variable, a user defined
type.

In the following we will refer an element s ∈ S as an entity.
In order to transform S into an object-oriented system, we propose an approach

consisting of two steps:
• Data collection - The existent software system is analyzed in order to ex-

tract from it the relevant entities: subprograms, local and global variables,
subprograms parameters, subprograms invocations, data types and modules,
source files or other structures used for organizing the procedural code.

• Grouping - The set of entities extracted at the previous step are grouped
in clusters. The goal of this step is to obtain clusters corresponding to the
application classes of the software system S.

In the Grouping step we propose a k-medoids based clustering algorithm, kOOS
(k-medoids for Transforming Software Sytems into Object-Oriented Software Sys-
tems).

In our clustering approach, the objects to be clustered are the entities from the
software system S, i.e., O = {s1, s2, . . . , sn}. Our focus is to group similar entities
from S in order to obtain groups (clusters) that will represent classes in the equivalent
object-oriented version of the software system S.

In order to express the dissimilarity degree between the entities from the software
system S, we will use an adapted generic cohesion measure [3]. Consequently, the
distance d(si, sj) between two entities si and sj is expressed as in Equation (1).

(1) d(si, sj) =

{
1− |p(si)∩p(sj)|

|p(si)∪p(sj)| if p(si) ∩ p(sj) 6= ∅
∞ otherwise

,

where, for a given entity e ∈ S, p(e) defines a set of relevant properties of e, expressed
as follows.

• If e is a subprogram (procedure or function) then p(e) consists of: the sub-
program itself, the source file or module where e is defined, the parameters
types of e, the return type of e if it is a function and all subprograms that
invoke e.

• If e is global variable then p(e) consists of: the variable itself, the source files
or modules where the variable is defined, all subprograms that use e.

• If e is a user defined type then p(e) consists of: the type itself, all subprograms
that use e, all subprograms that have a parameter of type e and all functions
that have e as returned type.

TRANSFORMING PROCEDURAL INTO OBJECT-ORIENTED SOFTWARE SYSTEMS 187

We have chosen the distance between two entities as expressed in Equation (1)
because it emphasizes the idea of cohesion. As illustrated in [4], “Cohesion refers to
the degree to which module components belong together”. Our distance, as defined in
Equation (1), highlights the concept of cohesion. It is very likely that entities with
low distances have to be placed in the same application class, and distant entities
have to belong to different aplication classes.

kOOS algorithm is a k-medois like algorithm that uses a heuristic for choosing
the initial medoids.

The entity chosen as the first medoid is the most “distant” entity from the set of
all entities (the entity that maximizes the sum of distances from all other entities).

At each step we select from the remaining entities the most distant entity relative
to the already chosen medoids. If the selected entity is close enough to the already
chosen medoids, then the process is stoped, otherwise the selected entity is added to
the medoids list and we try to choose a new medoid from the remaining entities.

We consider an entity close to a set of medoids if the distances between the entity
and any of the medoids are less than a given threshold. We have chosen the value
1 for the threshold because distances greater than 1 are obtained only for unrelated
entities (Equation (1)).

The idea of the above described heuristic is to choose medoids that will act as
seeds for the clusters that will represent application classes in the resulted object-
oriented system.

After selecting the initial medoids, kOOS behaves like the classical k-medoids
algorithm.

The main idea of the kOOS algorithm that we apply in order to group entities
from a software system is the following:

(i) The initial number p of clusters and the initial medoids are determined by
the heuristic described above.

(ii) The clusters are recalculated, i.e., each object is assigned to the closest
medoid. Empty clusters will be eliminated from the partition.

(iii) Recalculate the medoid i of each cluster k based on the following idea: if h is

an object from k such that
∑

j∈k

(d(j, h) − d(j, i)) is negative, then h becomes

the new medoid of cluster k.
(iv) Steps (ii)-(iii) are repeatedly performed until there is no change in the parti-

tion K.

Each cluster from the resulted partition will represent an application class from
the equivalent object-oriented version of the software system S.

We have successfully evaluated our approach on a simple code example written
in Borland Pascal.

3. Conclusions and further work

We have presented in this paper a partitional clustering algorithm (kOOS) that
can be used for assisting software developers in transforming procedural software

188 ISTVAN GERGELY CZIBULA

systems into object-oriented ones. We have also illustrated how our approach is
applied for transforming a simple program written in Pascal into an equivalent object-
oriented system. Advantages of our approach in comparison with existing similar
approaches are also emphasized.

Further work will be done in the following directions:
• To improve the distance function used in the clustering process.
• To extend our approach in order to also determine relationships (class hierar-

chies) between the application classes obtained in the object-oriented system.
• To apply kOOS algorithm on large software systems.

ACKNOWLEDGEMENT. This work was supported by the research project TD
No.411/2008, sponsored by the Romanian National University Research Council (CNC-
SIS).

References

[1] Newcomb, P., Kotik, G.: Reengineering procedural into object-oriented systems. In: WCRE ’95:
Proceedings of the Second Working Conference on Reverse Engineering, Washington, DC, USA,
IEEE Computer Society (1995) 237

[2] Han, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA (2005)

[3] Simon, F., Loffler, S., Lewerentz, C.: Distance based cohesion measuring. In: Proceedings of the
2nd European Software Measurement Conference (FESMA), Technologisch Instituut Amsterdam
(1999)

[4] Bieman, J.M., Kang, B.K.: Measuring design-level cohesion. Software Engineering 24 (1998)
111–124

(1) Department of Computer Science, Babeş-Bolyai University, 1 M. Kogalniceanu
Street, Cluj-Napoca, Romania

E-mail address: istvanc@cs.ubbcluj.ro

KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2009
Cluj-Napoca (Romania), July 2–4, 2009, pp. 189–193

COMDEVALCO FRAMEWORK - PROCEDURAL AND MODULAR
ISSUES

B. PÂRV, I. LAZĂR, S. MOTOGNA, I-G. CZIBULA, C-L. LAZĂR(1)

Abstract. This work is part of a series referring ComDeValCo - a framework for

Software Component Definition, Validation, and Composition. Its constituents

are: a modeling language, a component repository and a set of tools. The cur-
rent paper describes the status of the project after implementing procedural and

modular concepts.

1. Introduction

UML 2.0 introduced the action semantics, aimed to help the construction of
executable models [3]. The behavior of such models is completely defined down to
statement level, making possible their construction and execution by tools able to
interpret UML 2.0 semantics.

Unfortunately, this important breakthrough did not increased the use of UML
models in the software development process. The main reasons are at least the fol-
lowing: (1) UML is too general (being unified) and its semantics contains extension
points deferred to the concrete use of the language; (2) the construction of detailed
models (down to statement level) with existing tools is too dificult, these tools being
too general and (3) there is a lack of (agile) mature development processes based on
executable models.

The above premises were the starting point of the ComDeValCo project: a
framework for component definition, validation, and composition. Its constituents
are: a modeling language, a component repository, and a set of tools.

The software component model is described by an platform-independent mod-
eling language. Component repository represents the persistent part of the frame-
work, containing the models of all full validated components. The toolset is intended
to automate many tasks and to assist developers in performing component defini-
tion (DEFCOMP) and V & V (VALCOMP, SIMCOMP), maintenance of component
repository (REPCOMP), and component assembly (DEFSYS, VALSYS, SYMSYS,
GENEXE).

2000 Mathematics Subject Classification. 68N30.
Key words and phrases. Software component, Modeling languages and tools, Component repos-

itory, Component definition, Component validation, Component assembly.

c©2009 Babeş-Bolyai University, Cluj-Napoca

189

190 B. PÂRV, I. LAZĂR, S. MOTOGNA, I-G. CZIBULA, C-L. LAZĂR(1)

The original idea of ComDeValCo framework is to use a plaform-independent
modeling language able to model software components in a precise way and to em-
ploy a set of tools aimed to help developers in component and system definition and
validation processes. This paper represents a synthesis of early efforts regarding this
framework, most of them being described in separate papers.

The paper is organized as follows: after this introductory section, the next one
contains the results belonging to the procedural programming, continued in the third
section with modular issues. Last section contains some conclusions and discusses
future plans.

2. ComDeValCo: Procedural issues

First phase of the ComDeValCo project had two goals: completing the initial
object model and developing first versions of DEFCOMP and VALCOMP tools.

2.1. Initial object model. The initial object model was started during a feasibility
study performed in the first term of 2007. It has a layered architecture, from bottom
to top: (1) low-level (syntactical) constructions, (2) execution control statements and
(3) program units. Paper [13] contains a detailed discussion.

With this initial object model in mind, an action language PAL (Procedural
Action Language) was designed (see [4] for details). It has a concrete (textual) syntax
and graphical notations corresponding to statements and component objects.

2.2. Tools for procedural paradigm. The first version of DEFCOMP allows model
construction, execution, and testing, covering also some of the functionality of VAL-
COMP.

Program units can be expressed in both graphical or textual ways. The two
different editing perspectives of DEFCOMP are synchronized, acting on the same
model, which uses PAL meta-model.

VALCOMP tool was designed with the agile test-driven development process in
mind, allowing developers to build, execute, and test applications in an incremental
way, in short development cycles.

DEFCOMP has a debugging perspective also, and the developer can adnotate
the model with breakpoints. Besides assertions, used for testing and functional code,
PAL includes pre- and post-conditions for procedures/functions and invariants for
cycles.

Later on, DEFCOMP and VALCOMP were included in the so-called ComDe-
ValCo workbench, and are described in more detail in [1, 2, 7].

3. ComDeValCo: modular issues

The second phase of the ComDeValCo project had had two main goals: imple-
mentation of modular concepts and the design of component repository.

COMDEVALCO FRAMEWORK 191

3.1. Modeling language. The modeling language was improved in two different
directions, by (1) including module and execution environment, and (2) extending its
type system with structured types.

In order to ease the process of implementing modular concepts, an adaptable
infrastructure was created, based on a meta-model defining the concepts of module
and execution environment.

The module is considered in the general case, as a deployment unit, including
either (a) several data types, functions, and procedures - as in the traditional modular
programming model, or (b) several data types, including components - as in the case
of component-based programming. There are dependency relations between modules,
which must be specified during module definition phase and must be satisfied before
module execution.

Static execution environments load all modules of an application before starting
its execution. The proposed model loads modules and starts their execution provided
that all dependencies are solved. It also supports dynamic module load/unload facili-
ties. Some of the existing execution environments have these features - like OSGi [11],
which assembles Java applications from dynamic modules. Our proposal is described
in [5].

The initial modeling language used only primitive data types. Currently, its type
system includes a new ArrayType class, and PAL grammar was changed to allow the
definition of tables (vectors) and structured types, like lists. These achievements are
described in detail in [9], which proposes an extensible data type hierarchy.

3.2. Component repository. The interactions between component repositories, ComDe-
ValCo workbench and client applications are described in [5, 8].

The starting point in the work of providing a correct taxonomy for components
was the establishment of classification criteria. Several concrete approaches were
considered, including information domain and functionality. These criteria may be
used in searching of components stored in the repositories. All these matters are
discussed in great detail in [8].

The root of all objects managed by the component repository is RegistryObject
(see Figure 1), from which all components inherit (thru ExtrinsicObject class). In
order to provide a great degree of flexibility, the hierarchy contains distinct classes
for the two concepts: classification and classification scheme.

In order to describe the representation of components in the repository, an object
model was defined; it includes all component types covered by the modeling language
and allows for adding new ones.

Component representation format complies to OASIS RIM (Registry Informa-
tion Model) standard [10]. To achieve this, the class ExtrinsicObject was ex-
tended by subclasses specific to component-based applications: DModule, DComponent,
Capability - functionality, and Requirement - component dependencies .

3.3. The toolset. The functionality of DEFCOMP and VALCOMP tools was ex-
tended to include module and execution environment concepts. Papers [5, 6] describe

192 B. PÂRV, I. LAZĂR, S. MOTOGNA, I-G. CZIBULA, C-L. LAZĂR(1)

Figure 1. Representation of objects in repositories

in great detail UML stereotypes aimed to define these new constructs included in the
modeling language.

DEFSYS and VALSYS were initially considered as tools for developing/verifying
and validating software systems by assembling components taken from component
repositories. Later on, by adopting a test-driven development method, these two sub-
processes (component definition and system definition) were considered as a whole,
and DEFCOMP and VALCOMP tools address all needed functionality. This way, the
functionality of ComDeValCo workbench covers both component/software system
development/verification and validation activities. These results are described in more
detail in [2, 7].

4. Conclusions and Further Work

This paper describes procedural and modular aspects of the ComDeValCo
project. Future developments of the framework will include object-oriented and
component-based issues, as well as repository management and system-level tools.

These steps are considered within the planned evolution of the ComDeValCo
framework, which include activities for improving the modeling language and compo-
nent repository infrastructure, as well as continuous maintenance of the tools aimed to
operate in the component/system definition, validation, evaluation, and simulation.

Acknowledgements

This work was supported by the grant ID 546, sponsored by NURC - Romanian
National University Research Council (CNCSIS).

References

[1] Czibula, I-G., Lazăr, C-L, Prv, B., Motogna, S., Lazăr, I, ComDeValCo Tools for Procedural
Paradigm, Proc. Int. Conf. on Computers, Communications and Control (ICCC 2008), Felix
Spa, Romania, 15-17 May, 2008, (Int. J. of Computers, Communications and Control Suppl

Issue), pp. 243-247.

COMDEVALCO FRAMEWORK 193

[2] Czibula, I-G., ComDeValCo Workbench: Activity Modeling and Execution, Proc. Conf. Cluj
Academic Days, Computer Science Track, Cluj, Romania, June 4, 2008, pp. 67-74.

[3] Mellor, S.J., Balcer, M.J, Executable UML: A Foundation for Model-Driven Architecture,

Addison-Wesley, 2002.
[4] Lazăr, I., Pârv, B., Motogna, S., Czibula, I-G., Lazăr, C-L., An Agile MDA Approach for

Executable UML Activities, Studia UBB, Informatica, LII, No. 2, 2007, pp. 101-114.

[5] Lazăr, I., Pârv, B., Motogna, S., Czibula, I-G., Lazăr, C-L., iComponent: A Platform-
independent Component Model for Dynamic Execution Environment, in Proc. of 10th Int.

Symposium on Symbolic and Numeric Algorithms for Scientific Computing SYNASC 2008,

Timişoara, Romania, September 26-29, 2008. To appear in IEEE Press.
[6] Lazăr, I., Pârv, B., Motogna, S., Czibula, I-G., Lazăr, C-L., An Agile MDA Approach for the

Development of Service-Oriented Component-Based Applications, in Proc. Int. Conf. Complexity
and Intelligence of the Artificial and Natural Complex Systems CANS 2008, Târgu Mureş,

Romania, November 8-10, 2008. To appear in Int. J. of Comp., Comm. and Control.

[7] Lazăr, C-L., Lazăr, I., On Simplifying the Construction of Executable UML Structured Activi-
ties, Studia UBB, Informatica, LIII, No. 2, 2008, pp. 147-160.

[8] Motogna, S., Lazăr, I., Pârv, B., Czibula, I-G., Lazăr, C-L., Component Classification Criteria

for a Platform-independent Component Repository, in Proc. of 5th Int. Conf. of Applied Math-
ematics ICAM 2008, Baia Mare, Romania, September 18-20, 2008. To appear in Carpathian J.

Math.

[9] Motogna, S., Pârv, B., Lazăr, I., Czibula, I.G., Lazăr, C.L., Extension of an OCL-based Exe-
cutable UML Components Action Language, Studia UBB, Informatica, LIII, No. 2, 2008, pp.

15-26.

[10] OASIS Registry Information Model, http://docs.oasis-open.org/regrep/v3.0/regrep-3.0-os.zip
[11] OSGi Alliance, OSGi Service Platform Core Specification, Release 4, Version 4.1.(2007),

http://www.osgi.org/.
[12] Pârv, B., Motogna, S., Lazăr, I., Czibula, I.G., Lazăr, C.L., ComDeValCo - a framework for

software component definition, validation, and composition, Studia UBB, Informatica, LII, No.

2, 2007, pp. 59-68.
[13] Pârv, B., Motogna, S., Lazăr, ComDeValCo Framework - the modeling language for procedural

paradigm, Int. J. of Comp., Comm. and Control, III, No. 2, 2008, pp. 183-195.

(1) Department of Computer Science, Faculty of Mathematics and Computer Science,

Babeş-Bolyai University, 1, M. Kogălniceanu, Cluj-Napoca 400084, Romania
E-mail address: bparv,motogna,ilazar,czibula@cs.ubbcluj.ro

KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2009
Cluj-Napoca (Romania), July 2–4, 2009, pp. 194–197

RAPID PROTOTYPING OF CONVERSATIONAL WEB FLOWS

I. LAZĂR, S. MOTOGNA, AND B. PÂRV(1)

Abstract. In this paper we present a rapid prototyping development approach
for conversational web flows based on Model-Driven Architecture (MDA). Proto-

types are defined as executable UML models. In order to ensure simple and fast
definition of UML models, we apply the DRY (“don’t repeat yourself”) princi-

ple and the concept of “convention over configuration”. Update transformations

in the small may be applied on model elements in order to rapidly create new
elements based on some conventions.

1. Introduction

Prototyping refers to a development approach centered on developing prototypes
(executable model of a system that reflects a subset of its properties) early in the
development process, to allow early feedback and analysis [4]. Prototyping techniques
based on MDA rely on using the UML and profiles. Today, the effort of defining a
standard execution semantics for UML enters the final state of adoption through
Foundational UML (fUML) which defines a “basic virtual machine for the UML” [7].

The proposed solution is a prototyping approach for conversational web flows
based on the following techniques. The model prototypes are captured as executable
fUML models [7] and conform to iComponent profile [6]. For simple and fast defi-
nition of fUML models we use model transformations [3] for generating new elements
based on existing best practices for developing web applications.

After this introductory section, the next one presents iComponent profile, the
third section describes our rapid prototyping method, and the last one draws conclu-
sions and future development plans.

2. iComponent Profile

iComponent (injected component) [6] has been designed as a platform-indepen-
dent component model for service-oriented applications (SOA). Recently, we have
extended iComponent for prototyping SOA on OSGi platform [5] by adding new
stereotypes for domain classes and Model-View-Controller (MVC) architectures - see
Figure 1. A short description of this profile is given below (see [5]).

2000 Mathematics Subject Classification. 68U07, 68U20, 68U35.
Key words and phrases. rapid system prototyping, conversational web flow, executable UML,

contextual component, dependency injection.

c©2009 Babeş-Bolyai University, Cluj-Napoca

194

RAPID PROTOTYPING OF CONVERSATIONAL WEB FLOWS 195

Figure 1. iComponent Profile Extract

Entity and id can be used to mark instances from domain that have identity. View
corresponds to the view part of an MVC architecture and controllers are defined as
simple components having behavioral elements marked as actions.

For binding data between actions and views we use the context abstraction [2],
and the bijection mechanism [1] which is a generalization of the dependency injection
as follows. Whenever a component’s action is invoked, values from the contexts are
injected into the properties of the component being invoked, and also “outjected”
from the component’s properties back to the contexts.

In this paper we add new stereotypes for modeling two contexts of web appli-
cations: the request context and the conversation context which represent instances
required for processing a request, respectively a conversation. A conversation is a
unit of work from the point of view of the user and can span across multiple requests.
For instance, registering a new customer can be designed as a conversation composed
of two separate requests, submitting the account information and then the personal
details.

RequestScope and ConversationScope are used to associate components and their
properties to these contexts. Information flow direction must be specified using in
and out stereotypes.

View properties can be marked as input properties - for entering data, or as
output properties - for displaying data. The model part of MVC is represented by
all instances associated to the request and conversation contexts. By convention, a
view property is either directly mapped to a context property, or indirectly using a
selection expression written in OCL.

3. Development Approach

Each of the following subsections describes a step of our prototyping approach on
a simple case study for registering a new customer.

A. Create a new action. A creation wizard [3] can be used to rapidly create a
new action. Figure 2 - (a) presents the result of this creation process for a new index
action and a new Home owner component: a Home component type associated to
the RequestScope is created, an index operation is added which is described by an
empty index activity (not shown in Figure 2); an Index view is also created and a
simple out welcome property is associated to the request context. Now we can run
the model prototype, select a controller and then execute an action; a view is selected
in order to render the response - by convention, a view with the same name as the
action.

B. Create domain classes. Entities and value objects can be created using
any UML tool. We establish their properties and then run a generation wizard for

196 I. LAZĂR, S. MOTOGNA, AND B. PÂRV(1)

Figure 2. (a) Creating a New Action (b) Domain Classes

generating identity properties and basic persistence operations - Figure 2 - (b). See
[5] for more details about our Object-Relational Mapping infrastructure.

C. Create a new conversation and design its flow. As for actions, we are
prompted to enter the conversation name and to choose its owner component. Fig-
ures 3 and 4 present the result of creating a NewCustomer conversation and a new
EditCustomer owner component: an EditCustomer class associated to the Conver-
sationScope is created and a NewCustomer state machine is added in the context of
this class. At this stage, the generated artifacts do not contain other elements. For
saving space, Figures 3 and 4 show only the final result of the model prototype.

Now we design the states and the conversation flow. Before running the model
prototype we change the content of Index in order to execute our conversation - see
Figure 5. A view is dynamically generated for each state. At the moment, we have
obtained an executable conversation, but no data is presented. Next, we are going to
enhance our conversation by adding actions and establishing data bindings.

Figure 3. NewCustomer State Machine

D. Add actions to a conversation. At this step we add behaviors to the state
machine in order to produce the data required by the conversation. fUML activities
may be added for specifying behaviors to be performed on a transition when the
transition fires, or as entry/exit behaviors executed when a state is entered/exited. All
activities must belong to the component, in order to easily access the conversational
state. Figures 3 and 4 show the result of this process for our case study. initialize is
added to create a new customer instance, save is added to store the new customer,
and checkPassword is an intermediate step.

Figure 4. EditCustomer Controller

E. Generate views. Finally we can generate the views - see Figure 5. The views
contain only presentation elements together with their mappings, the navigation part
being defined by the state machine. When running the model prototype, actions

RAPID PROTOTYPING OF CONVERSATIONAL WEB FLOWS 197

corresponding to outgoing transitions of a state are dynamically added for each view.

Figure 5. Generated Views

4. Conclusions and Further Work

We have extended iComponent for modeling conversational web flows. The new
added stereotypes together with the introduced model transformations allow rapid
generation of executable fUML models. We have also extended the runtime infras-
tructure of our component model in order to obtain a framework for rapid prototyping
of web applications. As a future direction, we intend to refine the stereotypes for cre-
ating views, and to extend iComponent for bussiness processes.

ACKNOWLEDGEMENTS. This work was supported by the grant ID 546, sponsored by

NURC - Romanian National University Research Council (CNCSIS).

References

[1] JBoss. Seam Contextual Component Model. JBoss Inc., 2006.
[2] JCP. JSR-299: Contexts and Dependency Injection for Java. JCP, 2009.

[3] D.S. Kolovos, R.F. Paige, and F.A.C. Polack. Update transformations in the small with the

epsilon wizard language. Journal of Object Technology, 6(9):53–69, 2007.
[4] Fabrice Kordon and Luqi. An introduction to rapid system prototyping. IEEE Transactions on

Software Engineering, 28(9):817–821, 2002.

[5] I. Lazar, S. Motogna, B. Parv, I.-G. Czibula, and C.-L. Lazar. Rapid prototyping of service-
oriented applications on osgi platform. In 4th Balkan Conference in Informatics. Submitted,

2009.

[6] S. Motogna, I. Lazar, B. Parv, and I.-G. Czibula. An Agile MDA Approach for Service Oriented
Components. In 6th International Workshop on Formal Engineering Approaches to Software

Components and Architectures. Accepted, 2009.
[7] OMG. Semantics of a Foundational Subset for Executable UML Models. OMG, 2008.

(1) Department of Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania
E-mail address: {ilazar,motogna,bparv}@cs.ubbcluj.ro

KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2009
Cluj-Napoca (Romania), July 2�4, 2009, pp. 198�201

COMPONENT MODELS' SIMULATION IN ContractCML

VLADIELA PETRA�CU(1), DAN CHIOREAN(1), AND DRAGO� PETRA�CU(1)

Abstract. Through the support o�ered for simulation, executable modeling
provides models with a deeper analytical power. In the software components
�eld, simulation is highly valuable, since it allows performing component in-
teroperability checks. Within this paper, we propose a simulation method for
ContractCML component services in the context of the XMF framework.

1. Introduction
In [4], we have introduced ContractCML, a hierarchical component DSML focused

on representing components' usage contracts. To date, the language metamodel only
supports the �rst two contract levels (syntactic and semantic), but its highly extensible
architecture allows the two remaining ones (synchronization and quality-of-service) to
be easily added. The language was thought as the backbone of a framework meant to
support a rigorous speci�cation of software components, as well as their semantically
correct assembling into component-based applications.

Through the present paper, we intend to further contribute to such a framework,
by proposing a simulation method for ContractCML component services. Adding
simulation capabilities to our language is highly bene�cial, since it allows us to test
component assemblies and perform component interoperability checks early in a sys-
tem's lifecycle. The proposed method relies on our approach for representing compo-
nents' semantic contracts, which is detailed in [4]. The simulation takes place in the
context of the XMF framework [1],[3], being based on a XCore representation of the
ContractCML metamodel and the use of XOCL (an executable OCL-like language).

2. Proposed Simulation Method
To facilitate understanding of the proposed simulation method, we �rst recall the

metamodel concepts needed in order to represent syntactic and semantic contracts for
software components (diagrams are omitted due to space constraints of the paper, see
[4] for details). From a syntactic perspective, a ContractCML component Interface
consists of a collection of Services, each of which owns a sequence of Arguments.
The Design by Contract - style semantics of such an interface can be described by
means of its associated DBCSpecmetaclass instance. To accomplish this, each dBCSpec

2000 Mathematics Subject Classi�cation. 68N30, 68U20.
Key words and phrases. DSML, XMF, metamodel, software component, simulation.

c⃝2009 Babe³-Bolyai University, Cluj-Napoca

198

COMPONENT MODELS' SIMULATION IN ContractCML 199

owns an information model, instance of the InfoModel metaclass. An information
model can be thought of as a typical class model. However, among the classes in
the information model, there is one having a special status and which will be called
the main class of the information model in the following. This class, instance of
the InterfClass metaclass, owns operations having signatures identical to those of
the interface services. The other classes in the information model are referred to
as information-type classes; these are instances of an InfoTypeClass metaclass and
alltogether they abstract that part of a component's state that may be a�ected by the
execution of interface services. The main class should have at least one composition
relationship with an information-type class. The semantics of interface services is
expressed by means of pre/post-condition pairs, written as OCL expressions in the
context of the main class and in terms of the information-type classes.

As emphasized in [2], [4], the main purpose of an interface information model is
to support the speci�cation of level two semantic contracts for software components.
However, by employing an executable OCL-like language, such as XOCL [3], it be-
comes possible to use the information model for simulation purposes as well. Namely,
we may simulate a service belonging to the provided interface of a component by
de�ning an XOCL body for its homonymous operation located in the main class of
the interface's information model, and then executing it. Simulation of a provided
interface service will be thus performed in terms of the interface's information model.
Still, this simple technique works only for components that have no requirements on
the environment. In order to realistically simulate those having both provisions and
requirements, it became necessary to enrich the ContractCML metamodel, enabling
it to represent not only usage contracts, but also realization contracts.

Unlike usage contracts, which are for clients, realization contracts are for the com-
ponent realizers/implementors [2]. A realization contract attached to a component
type contains information regarding the way in which its provided services should be
designed in terms of the required ones. In [2] these interactions are described using
UML collaboration diagrams. In ContractCML, we allow expressing such contracts
by means of a special type of class, called RealizationClass, an instance of which
may be attached to a component type (Figure 1). Any RealizationClass instance

Figure 1. ContractCML ComponentTypes

attached to a component type has to ful�ll two mandatory constraints, both of them
being formalized as metamodel WFRs: (1) it has to inherit all main classes from
the information models of interfaces exposed through the component type's provided

200 VLADIELA PETRA�CU(1), DAN CHIOREAN(1), AND DRAGO� PETRA�CU(1)

ports, and (2) it has to hold a reference to each main class from the information model
of each required interface. The realization contracts themselves are then expressed by
overriding the inherited methods (which perform simulation in terms of the interface
information models) such that they delegate calls to the owned references. In case a
certain component type has no required interfaces (acting as a leaf in a component
architecture), then no overriding is needed, the simulation of a provided service being
performed at the level of the information model attached to the interface to which
the service belongs.

Figure 2. ContractCML Architectures

Apart from representing realization contracts, we have added a Simulator class at
the metamodel level. In order to simulate any of the services provided by a particular
component instance, it is necessary to create such a Simulator object. It is assumed
that the component instance is part of an architecture in which its requirements are
provided by other component instances and so on. The Simulator constructor takes
the component instance as an argument, which it uses in order to instantiate what
we have called a simulationBase. The latter is, in fact, a completely and recursively
con�gured instance of the RealizationClass corresponding to the argument's com-
ponent type. We give in the following the XOCL body of the Simulator operation
returning the simulation base. All navigations involved in describing the operation
can be tracked in �gures 2 and 1.
@Operation getSimulationBase(inst:ComponentInstance):XCore :: Element

let arch = inst.architecture;
compType = inst.component.componentType then
cls = compType.realizationClass then res = cls()

in @For reqPort in compType.requiredPorts do
let portName = reqPort.name;

binding = arch.assemblyBindings ->select(b|
b.fromEnd.port = reqPort and b.fromInstance = inst)->sel then

instance = binding.toInstance then
reqInstance = getSimulationBase(instance)

in res.set(portName ,reqInstance)
end

end;
res

end
end

COMPONENT MODELS' SIMULATION IN ContractCML 201

Having such a base con�gured, simulation of a service provided by the component
instance is achieved by calling the simulate operation on its corresponding Simulator
instance. The service itself, as well as the sequence of values for its arguments should
be passed as parameters.
@Operation simulate(service:Service ,arguments:Seq(Element)): XCore:: Element

let cls = self.simulationBase.of() then
op = cls.allOperations ()->select(o|

o.name.asSymbol () = service.name.asSymbol ())->sel
in op.invoke(self.simulationBase ,arguments ,null)
end

end

3. Conclusions
Through this paper, we have provided a simulation method for ContractCML

components' services within the XMF execution framework. To date, we do not know
of similar approaches to simulation in the literature. The feasibility of our proposal
has been proved using a variant of the Reservation System case study from [2]. For
now, the simulations are executed inside the XMF console, but the development of a
graphical concrete syntax for ContractCML and of an associated graphical editor are
planned as future work.

4. Acknowledgement
This research has been realized in the framework of the IDEI research project

�Frame based on the extensive use of metamodeling for the speci�cation, implemen-
tation and validation of languages and applications�, code ID_2049, �nanced by the
Romanian National University Research Council (CNCSIS).

References
[1] XMF Web page: http://itcentre.tvu.ac.uk/∼clark/xmf.html.
[2] John Cheesman and John Daniels. UML Components: A Simple Process for Specifying

Component-Based Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2000.

[3] Tony Clark, Paul Sammut, and James Willans. Applied Metamodeling. A Foundation for Lan-
guage Driven Development. Ceteva, 2008.

[4] Vladiela Petra³cu, Dan Chiorean, and Drago³ Petra³cu. ContractCML - a Contract Aware Com-
ponent Modeling Language. Tenth International Symposium on Symbolic and Numeric Algo-
rithms for Scienti�c Computing (SYNASC'08), 2008. (to appear).

(1) Babe³-Bolyai University of Cluj-Napoca, Romania
E-mail address: {vladi,chiorean,petrascu}@cs.ubbcluj.ro

KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2009
Cluj-Napoca (Romania), July 2–4, 2009, pp. 202–205

EFFORT ESTIMATION BY ANALOGY USING A FUZZY
CLUSTERING APPROACH

MILITON FRENŢIU (1) AND HORIA F. POP(1)

Abstract. Estimation of cost and time to develop a software product P is a well
known problem. Among the possible ways to do it is analogy with old finished
projects. We describe an experiment using different versions of the Fuzzy c-
Means algorithm, to find projects similar to P . Then the information about
these projects is used to estimate the effort needed to build P .

1. Introduction

Estimation of cost and optimal time to develop a software product is a well known
problem. There are various methods to solve this problem:

• expert opinion, i.e. guessing on personal experience;
• analogy with already finished projects;
• decomposition of the system into its smallest components and estimating the

effort to build each component;
• models using mathematical formulas to compute the cost.

There are some models for cost estimation. Here we mention COCOMO I [Boe81],
Albrecht’s Function Points [Alb83], and COCOMO II [Boe85]. The COCOMO I is
based on the size of the product, which is unknown at the beginning of the software
process. Albrecht’s model is based on the requirements and uses the information about
the input data, the needed results, the files used in the system and the inquiries made
by the user. COCOMO II effort estimation equations are adjusted basic equation
using 17 cost drivers and five scale factors. These cost drivers are personnel attributes,
process attributes, product attributes, and computer attributes.

To predict by analogy the cost (effort) and time to develop a software system P
means to find the most similar finished system S and to use its known characteristics
for prediction [She96]. The most similar system is that one which is closest to P in
the Euclidean space.

First problem that arise is to define and compute the similarity of two projects S
and P . We need some important characteristics of these projects, and the possibility
to obtain these characteristics from the requirements of the projects. They appear in
Albrecht’s model, or in COCOMO2, and may be quantifications for the complexity

2000 Mathematics Subject Classification. 68N30.
Key words and phrases. Software metrics, Cost estimation, Fuzzy clustering.

c©2009 Babeş-Bolyai University, Cluj-Napoca

202

EFFORT ESTIMATION BY ANALOGY USING A FUZZY CLUSTERING APPROACH 203

of the system, the required reliability, the number of inputs, the number of outputs,
the number of files, the number of screens and so forth. If we use n characteristics
to describe a project, it is represented as a point in the n-dimensional Euclidean
space. The similarity of two projects may be defined as the distance between the
corresponding points.

Estimating the cost of P by analogy is reduced to finding the closest previously
completed similar project S. Then the actual data from the project S is extrapolated
to estimate the cost of P .

An improvement to the above described method is to select some projects most
similar to P and to deduce the cost for the proposed project from data of these most
similar completed projects. Here we suggest using both the well-established Fuzzy
Hierarchical Clustering procedure and as well a restricted approach thereof, to find
the class C of the most similar projects to P .

The cost of P is computed as a weighted average of Cost(P ;S) for S ∈ C, i.e.

Cost(P) =
∑

w(S)× Cost(P ; S), S ∈ C

where the costs Cost(P ; S) are estimations of Cost(P) based on information available
for project S, the weights w(S) are determined based on the membership degrees of
all items in the class and the sum of all w(S) for all S ∈ C is 1. Alternate estimations
of the cost will be studied in a future paper.

2. Restricted Fuzzy Clustering

Let us consider a set of classified objects, X = {x1, . . . , xp} ∈ Rs and the fuzzy
partition P = {A1, . . . , An} corresponding to the cluster substructure of the set X.
Let x0 ∈ Rd be an object that needs to be classified with respect to the fuzzy partition
P .

The algorithm we are presenting here computes the optimal fuzzy partition P̃
corresponding to the set X̃ = X ∪ {x0}, by using a mechanism similar to Fuzzy n-
means, with the difference that the membership degrees of the objects in X to the
classes Ai, i = 1, . . . , n may not be modified.

In what follows we consider a metric d in the Euclidean space Rs. We will
suppose that d is norm induced, so d(x, y) = (x − y)T M(x − y), x, y ∈ Rs, where M
is a symmetrical and positively defined matrix.

The objective function we have in mind for our problem is similar to that for the
Fuzzy n-Means Algorithm:

J̃(P̃ , L) =
n∑

i=1

p∑

j=0

(
Ai(xj)

)2
d2

(
xj , Li

)
,

with the mention that Ai(xj) are kept constant for each i and for j = 1, . . . , p.
The main result with respect to determining the fuzzy partition P̃ and its repre-

sentation L minimizing the function J̃ is the following

204 MILITON FRENŢIU (1) AND HORIA F. POP(1)

Theorem. (i) The fuzzy partition P̃ = {A1, . . . , An} has the minimum value of
the function J(·, L) if and only if

(1) Ai(x0) =
1∑n

k=1
d2(x0,Li)
d2(x0,Lk)

.

(ii) The set of prototypes L = {L, . . . , Ln} has the minimum value of the function
J(P̃ , ·) if and only if

(2) Li =

∑p
j=0

(
Ai(xj)

)2
xj

∑p
j=0 (Ai(xj))2

.

With this result, the optimal membership degrees for x0 to the classes Ai will
be determined using an iterative method in which J̃ is successively minimized with
respect to P̃ and L. The process will start with the initialization of prototypes Li

to the values that correspond to the fuzzy membership degrees of the original fuzzy
partition P .

The resulted algorithm, Restrictive Fuzzy n-Means Clustering Algorithm,
follows:

S1 Let us have X and P as given variables.
S2 Determine the initial positions of the prototypes Li according to value of P .
S3 Determine the membership degrees Ai(x0), i = 1, . . . , n, using relation (1).
S4 Determine the new positions of prototypes Li, i = 1, . . . , n, using relation (2).
S5 If the new positions of the prototypes Li are close enough to the former positions,

then stop, else return to step S3.

3. Experiment

We have used the information we had about 19 student software projects to
estimate the cost of a new project (numbered 20). This information refers to the
complexity, reliability, considered difficulty (all three metrics have values between 1
and 5, denoting very low, low, normal, high and very high), number of inputs, number
of outputs, number of files and number of screens). Also, the computed function points
and the cost of these projects are known.

The final partition produced using this 20× 8 data matrix contains three classes.
All the three classes are well separated. The core elements of the classes have quite
high fuzzy membership degrees, while only a few of elements per class, not members
of the class, have fuzzy membership degrees reasonably large.

We are estimating the cost of project 20 using the projects member of the very
same class project 20 is a member of. Very similar results are obtained using the
other suggested approach, i.e. Restricted Fuzzy Clustering, where we first find the
cluster substructure of projects 1-19 and then embed the 20-th project as an extra
data item in the former fuzzy partition.

EFFORT ESTIMATION BY ANALOGY USING A FUZZY CLUSTERING APPROACH 205

4. Conclusions and Future Research

We have used fuzzy classification as a way to find the projects similar to our
project P . There are usually more than one very similar projects, and these are the
projects found in the same class with P . Then, to predict the cost/effort needed to
built P , we have used the information about all these projects similar to P .

It is considered that estimating by analogy is a superior technique to estimation
via algorithmic model in at least some circumstances [She96]. However, it requires to
maintain a database with information about the finished systems. Oftenly, the infor-
mation about finished projects is incomplete, and we cannot find and add the missing
information about these old projects. It would be useful to obtain the classification
in the absence of some information, and we intend to experiment such a method in
the near future.

Also, factorial analysis [Wat67] may be used to predict the effort to build a new
project from the information about finished projects. As a further work, we intend
to compare the predictions obtained with these three different methods!

5. Acknowledgement

This material is based upon work supported by the Romanian National University
Research Council under award PN-II no. ID 550/2007.

References

[Alb83] Albrecht A. J., Gaffney Jr J. E. (1983). Software function, source lines of code, and de-
velopment effort prediction: A software science validation. IEEE Transactions on Software
Engineering 9 (6), 639-648.

[Boe81] Boehm B. W. (1981). Software engineering economics, Prentice-Hall: Englewood Cliffs,
N.J.

[Boe85] Boehm B. W., Clark B., et al. (1995). Cost models for future software life cycle processes:
COCOMO 2.0. Annals of Software Engineering 1, 57-94.

[She96] Shepperd M., Schofield C., Kitchenham B., Effort Estimation Using Analogy, Proceedings
of the 18th International Conference on Software Engineering, Berlin, 170-178.

[Pop95] Pop H. F., Supervised fuzzy classifiers. Studia Universitatis Babes-Bolyai, Series Mathe-
matica 40, 3 (1995), 89-100.

[Wat67] Watanabe S., Haven H., Karhunen-Loeve expansion and Factor analysis. Theoretical re-
marks and applications, in Transactions of the Fourth Prague Conference on Information
Theory, Statistical Decision Functions, Random Processes, Prague 1967.

(1) Department of Computer Science, Babeş-Bolyai University, 1 M. Kogălniceanu St.,
400084 Cluj-Napoca, Romania

E-mail address: mfrentiu,hfpop@cs.ubbcluj.ro

KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2009
Cluj-Napoca (Romania), July 2–4, 2009, pp. 206–210

SOFTWARE COST ESTIMATION MODEL BASED ON NEURAL
NETWORKS

CĂLIN ENĂCHESCU(1) AND DUMITRU RĂDOIU(2)

Abstract. Software engineering is providing estimation models in order to eval-
uate the costs for important phases of software development such as requirements
analysis, high and low level design, development, testing, deployment and main-
tenance. The paper proposes a software cost estimation model based on neural
networks and compares it with traditional cost estimation models. The paper
argues that there are at least two considerable advantages for the neural network
model: neural networks can learn from previous experience and secondly, neural
networks can discover a complete set of relations between dependent variables
(software cost, software size, required effort, etc.) and independent variables
(complexity of the project, number of inputs and outputs, files, various cost
drives etc.).

1. Software cost estimation

A very critical aspect for suppliers and clients in a software project is the accu-
racy of the software project cost estimation [3]. This accuracy represents the basic
argument in contract negotiation, project plan and project controls. Accuracy has a
great influence on the following items [13]:

• Prioritization and classification of the software development projects;
• Accurate estimation of the required human resources;
• Evaluation of the financial impact determined by the chance requests;
• Efficient control of the project based on realistic and efficient resource alloca-

tion;
• Keeping the project cost in the reasonable limits as agreed with the client.

The estimation of a project cost (measured in currency) is based (in broad lines)
on the following estimations [5]:

• Project size (e.g. measured in functional points);
• Project effort (e.g. measured in person/months);
• Project duration (e.g. measured in working days);
• Project schedule (measured in calendar days);
• Other cost drivers (e.g. labor cost, organizational overhead, procurement

costs);

2000 Mathematics Subject Classification. 68N30, 68T05, 62M45.
Key words and phrases. software development cost estimation, software metrics, neural networks.

c©2009 Babeş-Bolyai University, Cluj-Napoca

206

SOFTWARE COST ESTIMATION MODEL BASED ON NEURAL NETWORKS 207

• Constraints and priorities.

One approach starts by decomposing the expected deliverable of the project into
manageable chunks (product breakdown structure), using it to build a work break-
down structure (WBS) and making a direct estimation of the required effort using
expert opinion (experienced professionals who can make estimations based on previ-
ous experience). Size of the project and required effort can be converted afterwards
in project duration and project cost using empirical formulas. Estimations made for
each phase of the project are summed up generating overall size, effort, schedule and
cost [17]. For better estimations, the results could be weighted by factors (e.g. com-
plexity of the project, familiarity of the team with the required technology or business
knowledge, risks), generating the final project estimations. In the last 3 decades dif-
ferent models for software cost estimation have been proposed, ranging from empirical
models [12] to elaborated analytical models [3], [5], [16]. Empirical models use data
from previous software development projects in order to make predictions for similar
projects. The analytical model uses a formal approach, based on global presumptions,
like how well can a team member solve a task and how many issues are possible to
appear. Both approaches lead to the conclusion that accurate cost estimation in a
software development project remains a very difficult task [11].

2. Estimation process for software development

An estimation process follows a number of steps [3]:

(1) Setting cost estimation objectives;
(2) Developing a Project Plan for each request and each resource;
(3) Analyzing the software development requests;
(4) Working out as much detail about the software development project;
(5) Using an alternative cost estimation technique for cross validation;
(6) Comparison between estimations and through repeated iterations;
(7) Permanent controlling of the project during the development phase.

In order to achieve a precise estimation, no matter what cost estimation model
has been chosen, there must be a permanent fine tuning of several parameters during
the whole project development life cycle. The fine tuning can have influence on the
resource allocation strategy for the estimated software development project without
changing the overall cost estimation.

3. Software metrics

The software metrics have a great influence in the estimation of the cost of a
software development project. There are several software metrics used to estimate
the size of a software development project: Lines Of Code (LOC) and Functional
Points (FP) metrics being the most popular.

• Lines of Code metrics (LOC): this software metrics is based on the calcu-
lation of the number of source code instructions, excepting comments. LOC metrics
is unfortunately dependent on the technology and programming language used for

208 CĂLIN ENĂCHESCU(1) AND DUMITRU RĂDOIU(2)

the development and can be used for the cost estimation only in the final phases of
development when the entire software project has been finalized [2].

• Functional Points metrics (FP): this software metrics takes into account
the program functionalities (e.g. number of interrogations, reports), program com-
plexity (e.g. number of logical files) and a large number of ”adjustment” factors (e.g.
does the system require real time processing?) [2].

• Object points metrics (OPM): this hybrid software metrics (borrows con-
cepts from Functional Points metrics and object-oriented paradigm although the con-
cept ”object” is not used as it is used in object oriented paradigm literature) assesses
the complexity of required ”objects” like: user screens, reports, 3GL components etc.
Each object is estimated, a weight between 1 and 10 being attached to each object,
simple objects like user screens are estimated with weight 1 and complex objects (3GL
component) are weighted with 10. One of the most largely used cost estimation model
is COCOMO II [4] which is prized for its results in making estimations in the initial
stages of the software development project.

4. Cost estimation for software development projects based on
neural networks

There are two general methods to estimate the cost for software development
projects: algorithmic methods and heuristic methods. The heuristic methods are
generally based on statistical decisions, on regression models or on complex analytical
differential equations [1].

4.1. Preliminaries. As we have already discussed, cost estimation for software de-
velopment projects has remained for decades one of the major problems to be solved
in software engineering [15].

Algorithm-based computers are programmed, i.e. there must be a set of rules
which, a priori, characterize the calculation that is implemented by the computer.
Neural computation, based on neural networks, solve problems by learning, they
absorb experience, and modify their internal structure in order to accomplish a given
task [9].

In order to solve a problem using a neural network we have to decide regarding
the architecture of the neural network, learning algorithm and upon several issues
that are influencing the learning process, like: data encoding, learning rate, weight
initialization, activation functions etc. [7]. We are using in our model for cost es-
timation for software development projects based on neural networks a Multi Layer
Perceptron [6] architecture and a specialized Back Propagation type of learning al-
gorithm [7]. The training set used (COCOMO’81) contains historical data from 63
software development projects. The training samples have each 17 attributed related
to the software development projects.

4.2. Learning data encoding. Learning data encoding is necessary before star-ting
the learning process in order to make all attributes comparable in their influence upon
the learning process. The learning process will stop when a certain error is reached,

SOFTWARE COST ESTIMATION MODEL BASED ON NEURAL NETWORKS 209

based on a type of Mean Square Error [8], or when a certain number of learning
epochs has been performed.

After stopping the learning process we have to measure the quality of the trained
neural network. For this step we will use a validation set from the training set that
was not presented in the learning phase to the neural network. If, the validation phase
is producing an acceptable result, then the neural network can be used in production
for cost estimations of real life software development projects.

Because the COCOMO [18] training data set contains some attributes like per-
son/months that have a high variation we have applied a logarithmic transformation
in order to normalize such attributes.

4.3. Experiments and simulations. We have implemented a neural network of
Multi Layer Perceptron type with 2 hidden layers and we have applied an enhanced
Back Propagation learning algorithm. Based on this implementation, after the learn-
ing and validation phase, we were able to perform realistic cost estimation for software
development projects. During these experiments and simulation we have varied the
parameters that are influencing the learning process in order to obtain the most ef-
ficient neural network model. The parameters that have been taken into account
where: dimensionality of the training set, learning rate, number of neurons in the
hidden layers, number of epochs [10].

The simulations where performed using the COCOMO [18] dataset as training
set. We have randomly chosen 40 projects to be included in the learning phase and
the rest of 23 projects have been used for validation.

5. Conclusions

We have applied a new model based on neural networks for the cost estimation
of the software development projects. The obtained results are promising and can
be an important tool for project management of software development [14]. Based
on the fundamental ability of the neural networks to learn from a historical training
data set, we can use the experience contained in previously successful or unsuccessful
estimations to make new reliable software cost estimations for software development
projects.

References

[1] Al-Sakran H., Software cost estimation model based on integration of multi-agent and case-
based reasoning. Journal of Computer Science, pag. 276-278, (2006).

[2] Albrecht A., Gaffney J. Jr., Software function, source lines of code, and development effort
prediction: A software science validation. IEEE Trans. Software Eng., vol. 9, pp. 639-648,
(1983).

[3] Boehm B., Software engineering economics, Englewood Cliffs, NJ:Prentice-Hall, ISBN 0-13-
822122-7, (1981).

[4] Boehm B., et al., Software cost estimation with COCOMO II, Englewood Cliffs, NJ:Prentice-
Hall, ISBN 0-13-026692-2, (2000).

[5] Cantone G., Cimitile A., De Carlini U., A comparison of models for software cost estima-
tion and management of software projects. Computer Systems: Performance and Simulation,
Elsevier Science Publishers B.V., (1986).

210 CĂLIN ENĂCHESCU(1) AND DUMITRU RĂDOIU(2)

[6] Enăchescu C., Rădoiu D., Adjei O., Learning strategies using prior information. IJICIS-
International Journal of Intelligent Computing and Information Science, Vol. 5, Nr. 1, pp.
381-393 (2005).

[7] Enăchescu C., Properties of Neural Networks Learning. 5th International Symposium on Auto-
matic Control and Computer Science, SACCS’95, Vol.2, 273-278, Technical University (1995).

[8] Enăchescu C., Neural Computing. Ph.D. Thesis, Babes-Bolyai University, Cluj-Napoca (1997).
[9] Haykin S., Neural Networks. A Comprehensive Foundation. IEEE Press, MacMillian, (1994).

[10] Hertz J., Krogh A., Palmer R.G., Introduction to the Theory of Neural Computation, Addison-
Wesley Publishing Co. (1992).

[11] Idri, A., Khoshgoftaar M, Abran A., Can neural networks be easily interpreted in software
cost estimation?, Proceedings of the 2002 IEEE International Conference on Fuzzy Systems.
FUZZ-IEEE’02, (2002).

[12] Kelly, M., A methodology for software cost estimation using machine learning techniques,
Master Thesis, Report A851372, United States Navy, (1993).

[13] Kemerer C., An Empirical Validation of Software Cost Estimation Models. Comm. ACM, vol.
30, pp. 416-429, May, (1987).

[14] Partridge D., Artificial Intelligence and Software Engineering, Glenlake Publishing Co., ISBN:
0-8144-0441-3, (1998).

[15] Selby R., Porter A., Learning from examples: Generation and evaluation of decision trees for
software resource analysis. IEEE Trans. Software Eng., vol. 14, pp. 1743-1757, (1988).

[16] Putnam L. H., A general empirical solution to the macro software sizing and estimating prob-
lem. IEEE Transaction on. Software Eng., pp. 345-361, (1998).

[17] Windle D. R., Abreo L. R., Software Requirements Using the Unified Process: A Practical
Approach.+ Prentice Hall, ISBN: 0130969729, (2002).

[18] ***, COCOMO, http://en.wikipedia.org/wiki/Cocomo.

(1) “Petru Maior” University of Târgu Mureş, Computer Science Department
E-mail address: ecalin@upm.ro

(2) “Petru Maior” University of Târgu Mureş, Computer Science Department
E-mail address: Dumitru.Radoiu@Sysgenic.com

KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2009
Cluj-Napoca (Romania), July 2–4, 2009, pp. 211–214

ONTOLOGY DEVELOPMENT: A SOFTWARE ENGINEERING
APPROACH

DUMITRU RĂDOIU(1) AND CĂLIN ENĂCHESCU(2)

Abstract. Indentifying several analogies between ontology development and ob-
ject oriented analysis and design, the paper reviews the existing literature to
assess the practical utility of a software engineering in ontology development as
well as its limits.

1. Semantic Web, Ontology and why should we develop them

Semantic Web [4] is the new-generation Web (Web 3.0) that tries to represent
information in such a way that it can be used by machines not only by humans (as
it is the case with hypertext mark-up languages based Web 1.0); it’s about making
information stored in Web Resources accessible for automatic processing, integration,
and reuse across applications [1]. This leads to large-scale interoperation of Web
services, to creation of a Web of machine-understandable and interoperable services
which intelligent agents can discover, execute, and compose automatically [2].

First step to accomplish this vision is declaring how the information of a domain
(e.g. education) is semantically organized: generic entities, their possible properties,
what type of relationships could we expect to exist among entities, how different
entities could be grouped (taxonomy), what terms (vocabulary) we agree to use when
presenting new information from this domain. This is called developing an ontology
for the domain (an ontology and not the ontology because there is more than one way
to develop it).

Second step - when we make a resource available on the Internet - is to declare that
a this Web Resource adheres to the previously mentioned semantic structure, to the
aforementioned ontology. Although there’s no general agreement with respect to the
term knowledge, we shall use it with the meaning ”organized semantic information”
(different from human knowledge) and the action of making it available in this form
is referred as providing semantic-based access.

Web 1.0, based on mark-up languages, was concerned only with how to display
information in a consistent manner for human consumption. Knowledge was achieved
by humans accessing information distributed in billions of Web Resources. Search
engines would return answers to queries without having any idea about the meaning of

2000 Mathematics Subject Classification. 68N30, 68T05, 62M45.
Key words and phrases. ontology development, semantic web, software engineering.

c©2009 Babeş-Bolyai University, Cluj-Napoca

211

212 DUMITRU RĂDOIU(1) AND CĂLIN ENĂCHESCU(2)

the returned hits. Most of the hits were useless and extracting structured information
was the job of the humans. Developing an ontology for a domain and writing content
which adheres to it allows automatic extraction of new knowledge from different
web resources either to make it available for further automatic processing or to save
humans effort in finding high value structured information. Building an ontology of
a domain is not a goal in itself; it is just a means to an end.

The first benefit is that we share a common understanding of the way the infor-
mation in a domain is structured [3]. The second (with huge implications) is that
we can now separate the process of structuring the information of a domain from
the process of automatically retrieving new structured information from different web
resources.

2. Defining Ontology

”An ontology is an explicit representation of a shared understanding of the im-
portant concepts in some domain of interest” [5]. Human knowledge is subjective.
Ontology is conceived to explicitly describe a cognitive structure upon which individ-
uals ”objectivity agree about subjectivity” [6].

An ontology can be expressed at different levels of abstractions:

• in a natural language, as sets of declarative statements
• in a visual modeling language (e.g. UML) as a set of glyphs syntactically and

semantically organized
• in a formal language (e.g. OWL) as a set of formal statements

Natural language statements are difficult to process by a computer (program). Visual
representations - although very expressive - don’t provide enough flexibility. Hence
most ontology editors allow visual representations which they convert automatically
in a formal language.

So, the aim of any ontology is to capture the intrinsic conceptual structure of
the domain by providing a ”catalog” of the type of ”things” assumed to exist in
the domain, their properties and how can we ”reason” about them. It follows that
ontology is concerned with:

• The type of ”things” in the domain. ”Things” are called entities (objects,
actors), they may or may not have properties (which may take or take not
values)

• The explicit hierarchical organization/categorization of entities in a domain
(named taxonomy)

• Possible relations among entities (semantic interconnections). They are de-
scribed in short sentences (named triples)

• What terms (and rules to combine them) we can use when documenting
knowledge about the domain (vocabulary)

• What inference laws and logic laws can we used when we automatically process
a resource which adheres to our ontology

ONTOLOGY DEVELOPMENT: A SOFTWARE ENGINEERING APPROACH 213

Meeting all of the above requirements qualifies ontology as a content theory and
its specification calls for elaborate formal languages, namely ontology representation
languages.

Because there’s no ”best way” to develop an ontology there may be several on-
tology (is there a plural ontologies?) about the same domain. Combining them is an
active research field.

The high-level list of key application areas for ontology includes: collaboration,
interoperation, education, and modeling.

3. Developing Ontology using a Software Engineering Approach

Ontology development is a hard work even with the most advanced ontology
development languages, environment and methodology. Here are a few questions
requiring answers on which there’s a large consensus among the domain experts:

• How do we analyze, design, develop, test, maintain and support ontology to
meet knowledge engineer requirements?

• What ontology development methodology is the most suitable to task?
• How do we combine different ontologies describing the same domain?
• Since all parts of the semantic web evolve in time (ontology, ontological knowl-

edge stored in web resources), how do we resolve the problem of knowledge
maintenance?

The answer is all but easy. One of the goals is to ”partially automate the processes
of ontology development and maintenance by developing tools and frameworks to help
extract, annotate, and integrate new information with the old one in the ontology”
[6]. The paper defends the idea that we can start searching for answers by analogy,
looking at the best practices in software engineering. There are several reasons for
such an approach:

• an ontology represents a model of a domain like software applications which
represent models of the world

• ontology development life cycle and object oriented analysis and design share
many characteristics; both start from specific requirements, are completed
through an iterative and incremental process

• ontology development like software development uses a ranges of methodolo-
gies which specify how to perform a sequence of activities, supported by tools
and techniques, to deliver a specific product

• ontologies include classes and subclasses hierarchies similar to object oriented
software engineering and similarly uses UML (Unified Modeling Language)
for knowledge representation

References

[1] Boley, H., Tabet, S., and Wagner, G., Design rationale of RuleML: a markup language for
Semantic Web rules, in: Proc. SWWS’Ol, The first Semantic Web Working Symposium, Cruz,
I.E., Decker, S., Euzenat, J., McGuinness, D.L., eds., Stanford University, California, pp.
381-401 (2001);

214 DUMITRU RĂDOIU(1) AND CĂLIN ENĂCHESCU(2)

[2] Mcllraith, S.A., Son, T.C., and Zeng, H., Semantic Web services, IEEE Intelligent Systems
16(2), pp. 46-53, (2001);

[3] Deborah L. McGuinness, Conceptual Modeling for Distributed Ontology Environments, Con-
ceptual Structures: Logical, Linguistic, and Computational Issues, pp. 100-112, (2000);

[4] W3C Semantic Web http://www.w3.org/2001/sw/ (retrieved March 27, 2009);
[5] Kalfoglou, Y., Exploring ontologies, in: Handbook of Software Engineering and Knowledge En-

gineering Vol.1 - Fundamentals, Chang, S.K., ed.. World Scientific Publishing Co., Singapore,
pp. 863-887, (2001);

[6] Devedzic, V., Semantic Web and Education, Series: Integrated Series in Information Systems
, Vol.12 , pp 33, (2006)

(1) “Petru Maior” University of Târgu Mureş, Computer Science Department
E-mail address: Dumitru.Radoiu@Sysgenic.com

(2) “Petru Maior” University of Târgu Mureş, Computer Science Department
E-mail address: ecalin@upm.ro

KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2009
Cluj-Napoca (Romania), July 2–4, 2009, pp. 215–218

DURATION ESTIMATION OF A WORK PACKAGE

ATTILA VAJDA(1)

Abstract. Estimating the effort and duration of software work packages will be
never an exact science. Too many variables are affecting the result. This article
explores the relation between the effort and duration in software engineering
projects and presents an empirical model to predict work package duration based
on estimated effort and team size.

1. Introduction

In the early days of computing, the project total cost was influenced more by the
computer-based system costs then the software costs. Nowadays, software is the most
expensive element in most computer based systems; any cost estimation deviation in
the software development process will influence considerably the project profit and
loss. Several studies [1], [2], [3] demonstrated that grand majority of software devel-
opment projects are finished over budget and 30% of large projects are never finished.
No wonder that project cost estimation became crucial, challenging aspects of the
software development process and theme of many researches focusing on minimizing
the gap between the forecasted and real software project costs. Related to project
cost estimations, several researches were done already starting with 1965 (Nelson),
then in the 70s the SLIM model was created by Putnam and Myers, in the 80’s the
PRICE-S model by Park, the SEER by Jensen, the COCOMO by Boehm, in the 90’s
the Checkpoint by Jones [4]. The estimation models, techniques resulted form the
researches are numerous, some are sophisticated mathematical and statistical models,
and others are expert system based [5]. Most of them are calibrated for medium and
long term projects, only a very few can be adjusted for small projects performed by
small teams. Many people work on small projects, which are generally defined as
a staff size of a couple of people and a schedule of less than six months. Because
the estimates for these small projects/work packages (WP) are highly dependent on
the capabilities of the individual(s) performing the work, the best approach is to be
estimated directly by those assigned to do the work. In the reality this is not always
possible, and usually the project effort estimation is performed by a single person
who can be the technical leader or a senior developer. Then the project duration is

2000 Mathematics Subject Classification. 68N30.
Key words and phrases. project duration, effort estimation, software engineering.

c©2009 Babeş-Bolyai University, Cluj-Napoca

215

216 ATTILA VAJDA(1)

calculated as the estimated effort divided by the number of resources assigned to the
project and eventually multiplied with a risk factor.

Since the WP can be considered as small projects, and any medium and long
term project can be divided into multiple WPs, this paper focuses on WP duration
estimations and proposes a simple empirical model for forecasting the work package
duration based on historical estimation errors of the team members.

2. Work package effort estimation

The aim of this process is to predict the most realistic use of effort to finish a
WP. In case of WP estimations, the experience based techniques are more useful,
since in most cases there is no quantified, empirical data to use for the estimation
process [4]. This technique is based on the knowledge and experience of practitioners
seasoned within a domain of interest. It provides the estimates based upon a synthesis
of the known outcomes of all the past projects he or she previously participated. Two
techniques have been developed which capture expert judgment: Delphi and Work
Breakdown Structure [4], [5]. In case of small projects/teams the second technique
is more widely used, and it is based on the decomposition technique of ”divide and
conquer” approach. After decomposing the WP into components, each component
individually needs to be estimated to produce the overall estimate. The preferred
estimation method for small software projects is the Three Point Estimation (TPE)
technique, which is based on statistical methods, and in particular, the Normal distri-
bution. With the TPE the planner produces three figures for every component, and
the total work package effort will be the sum of the estimated component efforts, as
follows:

(1) EWP =
∑

c

Ec =
∑(

(a + 4 ·m + b)
6

)

c

where EWP is the total effort of the WP, EC is the effort estimated for a component
(task), a is the best-case estimate, m the most likely estimate and b the worst-case
estimate of the task.

3. Estimating work package duration

WP duration is the calendar period that it takes from the beginning of the work
till the moment it is completed. Many works like [7], [8] proposed to predict the
duration of the software development project based on project effort. In case of most
effort and duration estimation models the number of resources (P) involved in the
project are defined in the last step of the estimation process, while in case of WP,
P is known already right after the effort estimation (E), the WP duration (D) is
calculated as follows:

(2) D = f(E, P) =
EWP

P

Since the aspiration of every project manager/stakeholder is to have its project com-
pleted as soon as possible, the tendency is to minimize D by increasing P. Because
usually the persons involved in the projects have different productivity indexes (Pid),

DURATION ESTIMATION OF A WORK PACKAGE 217

the relation (2) needs a correction, which will adjust D with a coefficient resulted
from the Pid of each project team member. The Pid can be calculated as a report
between the estimated (Ecest) and the actual effort (Ecreal) a team member spent on
the c component:

(3) Pidi =
ECreal

ECest

Depending on how the original estimations were performed, based on the organization
historical data using TPE technique, or based on a single person experience, the Pid
will reflect the person’s relative productivity compared to the organization’s average
or compared to that person productivity. If we introduce relation (3) in relation (2),
the result will be an adjusted D (Dadj):

(4) Dadj =
EWP∑
i Pidi

=
EWP

P
·
(∑

i

Pidi

P

)−1

=
EWP

P · prod

where prod is the team’s productivity coefficient. The value of prod can be influenced
by the correctness of the E estimations and the learning curve of the personal. For
more accurate prod calculations, the Pidi needs to be calculated based on historical
data, or predicted, taking into the trend of its professional evolution. In some sit-
uations, like new team members, new project type where no historical data can be
used, the estimation will be erroneous. For this situation Dadj should be adjusted
periodically during the project, by predicting the prod of the team based on their
evaluation till that moment in the project.

Figure 1. Comparing D estimations

Figure 1 shows the different results of the estimations: D1 was estimated with
relation (2), D2 with the adjusted relation (4) and since the real progress is slower
then expected, after the prod readjustments the D4 is obtained, which is more realistic
then the previous ones.

4. Conclusion

Estimation of WP duration is a difficult and key problem in software engineering.
There are several estimation models, but most of them are adjusted for medium and

218 ATTILA VAJDA(1)

long term projects. Researches like [6] based on historical data of 396 projects of IS-
BSG data set, showed that there exist a relation between E and D, which is nonlinear
in case of medium and large projects, but can be considered as linear in case of small
projects. For small projects, simple duration estimation model is needed, which can
be adjusted easily to the team, project type, and gives a correct result based on the
estimated effort and team size. By using the model presented in this paper, we reduce
the project uncertainty by allowing the manager to obtain more accurate project du-
ration estimations. Based on the Pid value the personal professional evaluation can
be observed.

The model can be further improved by taking into account external factors which
can influence the team productivity factors like team experience, team motivation,
technical knowledge, etc. and to develop a model for more accurate productivity
predictions.

References

[1] A. W. Chow, B. D. Goodman, J. W. Rooney, C. D. Wyble, Engaging a corporate community
to manage technology and embrace innovation, IBM Systems Journal, Vol. 46, No. 4, 2007

[2] Steve McConnell, Rapid Development, Microsoft Press, Washington, 1996
[3] Gibs.W.W. Software’s Chronic Crisis, Scientific American, September, 1994
[4] Boehm B., Abts C. Software Development Cost Estimation Approaches - A Survey, University

of Southern California, Los Angeles, March 2000
[5] Temnenco V., Software Estimation, Enterprise-Wide, IBM The Rational Edge, Vol. June 2007
[6] Olign S., Bourque P., Abran A., Fournie B., Exploring the Relation Between Effort and.

Duration in Software Engineering Projects, World Computer Congress 2000, Beijing, China
[7] Heemstra F.J, Softwae cost estimation, Information and Software technology 34 (10): 627-

639,1992
[8] Kitchenham B.A.,Empirical studies of assumptions that underlie software cost estimation mod-

els, Information and Software technology 34 (4): 211-218,1992

(1) Sysgenic Group, Alunis 48, Targu Mures, Romania
E-mail address: attila.vajda@sysgenic.com

KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2009
Cluj-Napoca (Romania), July 2–4, 2009, pp. 219–222

A FORMAL CONCEPT ANALYSIS APPROACH TO ONTOLOGY
SEARCH

IOAN ALFRED LETIA(1) AND MIHAI COSTIN(2)

Abstract. Finding the most suited ontology for a given domain or problem is
not an easy task but through our work here we are trying to ease this endeavor
by providing a semiautomated search mechanism. Semiautomated, because we
need our search target to be defined by an expert. Once that target defined, by
combining the processing power of MAS with FCA, we analyse the search space
in order to find the most compatible ontology with the initial target.

1. Motivation and Goal

The main step for solving a certain problem has always been finding or creating
the best tool for the job at hand, no matter what the domain was.

In information science, our domain of interest, the tool in question is an ontology
capable of mapping the problem domain with success. Finding the right ontology for
a certain task has been even from the begining one of the theoretical strong-points
of the semantic web but things are not as easy as it seems [8]. The right ontology is
never easy to find and creating one is even harder.

This, without any doubt, involves some sort of intelligent ontology search, a
guided search that has an array of ontologies as search space. For this paper, we are
using a predefined set of existing ontologies as search space. The process and the
results themself can later on be applied to a larger scale, all being reduced afterwards
to a scalability problem.

We mentioned guided search because our process starts from a well defined do-
main. This domain must be described by some expert in the field using a set of
concepts, concepts that will represent the search target. Our system uses this set
of concepts in order to find the best suited ontology by expanding and matching it
against the concepts found in the search space.

2. Proposed Solution

Having the initial domain defined by an expert in the field, as to direct our search,
the search agents can then start trying to find the concepts that match the initial set.

2000 Mathematics Subject Classification. 68T30, 94A15.
Key words and phrases. Ontology, Formal Concept Analisys, Multiagent Systems, Search

methods.

c©2009 Babeş-Bolyai University, Cluj-Napoca

219

220 IOAN ALFRED LETIA(1) AND MIHAI COSTIN(2)

This search is conducted by using the properties of the concepts in the initial domain
as targets, and the properties of the concepts in the array of available ontologies as
search space. The most common, and probably the most efficient, method employed
is the direct string search and this means that the search agent will try to find the
given attributes (as strings or text) in the processed ontologies.

The multiagent system has to extract new concepts from the search space, match-
ing the initial set and so, expanding it. We are using two different sets, so that we
won’t loose the initial set. The expanded one is employed when processing an ontol-
ogy to guide the search. After the current ontology is processed, the expanded set
may be kept for later usage, but the search through the next ontology has to start
from the initial set again. This assures us that the search in one ontology will not be
affected by results from another ontology. However, we can imagine a scenario where
the search should be influenced by previous findings from other ontologies - and that
is, when building a new ontology from an existing array of ontologies with a guiding
set of concepts. But this scenario will probably be taken care of in future works.

The actors of the process are agents, part of a multiagent system, agents that are
specialized for specific tasks - for example we have an agent that will take care of the
”set of concepts into lattice” transformation and an agent that will extract the search
elements from the initial domain. However, we will refer to these specific agents with
the generic name agent.

The initial context is defined by the initial domain - given by an expert in the
field and considered to contain enough information in order to describe the target of
the search - and the array of available ontologies - in our scenario, this resumes to a
couple of ontologies much like the ones we showed the snippets from.

Using this setup, we iterate through the available ontologies and we apply our
search process, process that consists of a few major steps, to be described.

From the initial domain, the agent extracts the search elements that will be used
to guide the search process itself. These search elements consist of properties and
attributes from the concepts in the domain, so basically strings. These strings will
be the target of the search process later on and will guide the agents into finding the
lattice starting points in the search space.

Also from the initial domain, the agent extracts the initial lattice, by consider-
ing the ontology concepts to be the ”formal objects” and their attributes to be the
”formal attributes” of the lattice. This initial, or core lattice, in collaboration with
the extracted lattices from the search space will later on provide the generated lattice
and the generated lattice is our way of determinate the best ontology to use for the
given domain.

As already mentioned, we are using string search in order to find a new concept
or set of concepts that have to be added to our lattice. This part of our process might
require some help from a word thesaurus and we base our affirmation on the fact that
ontologies are mainly composed out of concepts that have a representation as a word
in a certain language. This thesaurus, and it can be something similar to WordNet 1,

1http://wordnet.princeton.edu/

A FORMAL CONCEPT ANALYSIS APPROACH TO ONTOLOGY SEARCH 221

can help us find the search elements in the search space by using synonyms, meronyms
and other word relations that can alone be the subject of an entire paper.

The concepts found in the previous step are, each one of them, the start point of
an ”extracted lattice”. This lattice is to be constructed in a similar manner with the
initial lattice but taking into account a concept radius. This can be seen as sort of
a threshold for a concept set extracted from the search space. Starting from a found
concept, the agent constructs a lattice by including all the concepts related to the
found concept while staying withing the boundaries given by the concept radius. The
concept radius can be any function defining types of relations between concepts and
a simple example of such a function is the ontology relations set itself.

After the lattice has been extracted from the search space around the starting
point, the agent starts integrating it in the main lattice. This can be done by means
similar to FCA-Mapping[2] but since we started the search with the concepts from
the main lattice, we already have the information regarding to what concept to link
the extracted lattice to. Each starting point can be linked to a subset of concepts
from the initial domain when they are found in the search space, and this process of
integration will be done for each one of them.

After obtaining the generated lattice, by combining the initial lattice with the
extracted ones, we can measure the degree of similarity between the initial domain
and the current ontology by analyzing the generated lattice. There are multiple
metrics we can use here, including the number of lattice concepts, the structure of
the lattice, how well connected are the concepts and how many clusters we have and
so on.

3. Related Work

Formal Concept Analysis has been mixed in the computer science field for a while
now and not without good reasons according to its strong supporters for its benefits
[11], but not until fairly recently researchers in the ontology field became interested
in its potential [13, 2]. At the moment there are applications both theoretical [10, 9]
and practical2 that are using the power of FCA and this shows, without doubt, that
FCA has some leverage in the knowledge related fields. However, we have the string
belief that FCA has much more potential in this area as an ontology tool for tasks
like similarity[3], mapping, validation and enhancement.

References

[1] Timothy J. Everts, Sung Sik Park, and Byeong Ho Kang. Using formal concept analysis with
an incremental knowledge acquisition system for web document management.

[2] Liya Fan and Tianyuan Xiao. FCA-Mapping: A method for ontology mapping. In Proceedings
of the European Semantic Web Conference, 2007.

[3] Anna Formica. Concept similarity in formal concept analysis: An information content approach.
In Knowledge Based Systems, 2007.

[4] Suk-Hyung Hwang. A triadic approach of hierarchical classes analysis on folksonomy mining.
In IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8,
August 2007.

2http://sourceforge.net/projects/conexp

222 IOAN ALFRED LETIA(1) AND MIHAI COSTIN(2)

[5] Robert Jaschke, Andreas Hotho, Christoph Schmitz, Bernhard Ganter, and Gerd Stumme.
Discovering shared conceptualizations in folksonomies. In ScienceDirect, November 2007.

[6] Konstantinos Kotis, George A. Vouros, and Konstantinos Stergiou. Towards automatic merging
of domain ontologies: The hcone-merge approach. In Web Semantics: Science, Services and
Agents on the World Wide Web 4, 2006.

[7] Boris Motik, Bernardo Cuenca Grau, and Ulrike Sattler. Structured objects in owl: Repre-
sentation and reasoning. In 17th International World Wide Web Conference, Beijing, China.,
2008.

[8] Daniel Oberle, Anupriya Ankolekar, Pascal Hitzler, Philipp Cimiano, Michael Sintek, Malte
Kiesel, Babak Mougouie, Stephan Baumann, Shankar Vembu, Massimo Romanelli, Paul Buite-
laar, Ralf Engel, Daniel Sonntag, Norbert Reithinger, Berenike Loos, Hans-Peter Zorn, Vanessa
Micelli, Robert Porzel, Christian Schmidt, Moritz Weiten, Felix Burkhardt, and Jianshen Zhou.
Dolce ergo sumo: On foundational and domain models in the smartweb integrated ontology
(swinto). In Web Semantics: Science, Services and Agents on the World Wide Web 5, 2007.

[9] Marek Obitko, Vaclav Snel, and Jan Smid. Ontology design with formal concept analysis. In
Proceedings of the CLA 2004 International Workshop on Concept Lattices and their Applica-
tions, Czech Republic.

[10] Uta Priss. Linguistic applications of formal concept analysis. In Formal Concept Analysis, pages
149–160, 2005.

[11] Uta Priss. Formal concept analysis in information science. In Annual Review of Information
Science and Technology, pages 521–543, 2006.

[12] Gerd Stumme and Alexander Maedche. FCA-MERGE: Bottom-up merging of ontologies. In
Proceedings of IJCAI, pages 225–234, 2001.

[13] Yi Zhao, Xia Wang, and Wolfgang Halang. Ontology mapping based on rough formal concept
analysis. In Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services, 2006.

(1) Technical University of Cluj-Napoca, Department of Computer Science, Baritiu
28, RO-400391 Cluj-Napoca, Romania

E-mail address: letia@cs-gw.utcluj.ro

(2) Technical University of Cluj-Napoca, Department of Computer Science, Baritiu
28, RO-400391 Cluj-Napoca, Romania

E-mail address: mihai.costin@gmail.com

KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2009
Cluj-Napoca (Romania), July 2–4, 2009, pp. 223–226

HIGH COUPLING DETECTION USING FUZZY CLUSTERING
ANALYSIS

CAMELIA ŞERBAN(1)

Abstract. Coupling is an important criterion when evaluating a software design
because it captures a very desirable characteristic: a change to one part of a sys-
tem should have a minimal impact on other parts. An excessive coupling plays a
negative role on many external quality attributes like reusability, maintainability
and testability.

This paper aims at presenting a new approach concerning the identification
of those classes with high coupling, from an object oriented system.

1. Introduction

In order to keep the software system easy to maintain, the assessment of its de-
sign according to well established principle and heuristics, has to be made through
the entire development lifecycle. The principle of low coupling is reflected by all the
authors [2, 3, 5] that propose design rules and heuristics for object-oriented program-
ming. They all converge in saying that coupling should be kept low. A change to
one part of a system it is important to have a minimal impact on other parts. Those
design entities that could propagate a lot of changes in the system, if something has
been changed inside them, have to be identified and reviewed.

In this article, we our goal is to identify the design entities that are strongly
coupled with the rest of the system. The approach is based on fuzzy clustering
analysis. Some metrics are used in order to quantify those aspects consired important
with regard to coupling.

The remainder of this paper is organized as follows. Section 2 describes the
theoretical background for our approach. Section 3 presents and discusses the ex-
perimental results obtained by applying the proposed approach on an open source
application, called log4net [8]. Section 4 reviews related works in the area of detec-
tion design flaws. Finally, Section 5 summarizes the contributions of this work and
outlines directions for further research.

2000 Mathematics Subject Classification. 68N30, 03E72.
Key words and phrases. coupling, metrics, fuzzy analisys.

c©2009 Babeş-Bolyai University, Cluj-Napoca

223

224 CAMELIA ŞERBAN(1)

2. Theoretical background

Object oriented design quality evaluation implies identification of those design
entities that are relevant for the analysis and of the software metrics that best em-
phasize the aspects (design priciple/heuristics) that we want to quantify, and the
interpretation of the measurements results obtained. These elements were described
in detail in our previous work [9]. In what follows we will not get into their details,
but we will try to list them, addapted to our current problem.

2.1. A meta-model for object-oriented systems. In [4] a meta-model for object-
oriented systems is defined as a 3-tuple, S = (E, P, R) where, E represents the set
of design entities of the software system (classes, methods, attributes, parameters
or local variables), P represents the set of properties of the aforementioned design
entities (e.g. abstraction, visibility, reusability, reuse, binding) and R represents the
set of relations between the entities of set E (e.g methods access).

2.2. Some relevant coupling metrics. A significant number of coupling metrics
have been defined in the literature [10, 11, 12]. Because, we aim to identify those
classes in which a change would significantly affect many other places in the source-
code, we select coupling metrics that better emphasize this aspect.
Changing Methods (CM) is defined as the number of distinct methods in the system
that would be potentially affected by changes operated in the measured class.
Weighted Changing Methods (WCM) [4]. WCM is computed as the sum of the
“weights”(number of distinct members from the server-class that are referenced in
a method) of all the methods affected by changes operated in the measured class.
Changing Classes (CC). The CC metric is defined as the number of client-classes
where the changes must be operated as the result of a change in the server-class.

2.3. Fuzzy clustering analisys. Consider C = {c1, c2, ..., cl}, C ⊂ E, the set of
all classes from the meta-model defined in Section 2.1. Each class, ci from C set is
described by a 3-dimensional vector, ci = (cm,wcm, cc), where the components of ci

vector are the computed values for the metrics defined before.
Next, our goal is to group similar classes, in order to obtained a list of “suspects”

(classes tightly coupled).
Because is hard to establish thresholds for the applied measurements, we used a

fuzzy clustering analysis. An object will belong to more than one class with different
membership degree. Also, in order to determine the number of clusters, which is a
data entry for a fuzzy clustering generic algorithm, we considered the Fuzzy Divi-
sive Hierarchic Clustering (FDHC) algorithm [7]. This algorithm produce not only
the optimal number of classes (based on the needed granularity), but also a binary
hierarchy that show the existing relationships between the classes.

3. Case study

In order to validate our approach we have used the following case study. The
system proposed for evaluation is log4net [3], an open source application. It consists
of 214 classes. The elements from the meta-model described in Section 2.1 have been

HIGH COUPLING DETECTION USING FUZZY CLUSTERING ANALYSIS 225

identified. For each class from C set, we compute the values of the metrics defined in
section 2.2. The algorithm FDHC, applied on this data, determine a fuzzy partition
of C set. Table 1 briefly described this partition.

After the first step of the algorithm (the first binary partition), cluster 1 already
contains the first list of five “suspects”. Table 2 presents some details regarding
this list. We are not interested for a further division for this cluster. The second
cluster has been split. The first subcluster, 2.1 contains a list of 16 classes which have
a big coupling, but not comparable with that of entities from Table 2. The second
subcluster, 2.2 has been split and we obtained a list of 53 classes with normal coupling,
subcluster 2.2.2, and a list of 140 classes with zero or low coupling, subcluster 2.2.1.

Due to space restrictions, we include in this paper only some important aspects
concerning the results obtained. All other numerical data are available from the
authors by request.

Class Partition 1. 2.1. 2.2.1 2.2.2
No. of items 5 16 140 53
Coupling level strong high low normal

Table 1. Fuzzy Partition

Object(Class) CM WCM CC Fuzzy
Partition

Appender.AppenderSkeleton 40 20 38 1
Util.FormattingInfo 34 33 34 1
Core.Level 65 14 22 1
Util.LogLog 141 55 111 1
Util.SystemInfo 47 30 43 1

Table 2. Tightly Coupled Classes

4. Related work

During the past years, various approaches have been developed to address the
problem of detecting and correcting design flaws in an object-oriented software system
using metrics.

Marinescu [4] defined a list of metric-based detection strategies for capturing
around ten flaws of object-oriented design at method, class and subsystem levels as
well as patterns. Tahvildari et al. [1] proposes a framework for detected object
oriented design flaws using a generic OO design knowledge-base.

However, how to choose proper threshold values for metrics is not addressed in
these research.

5. Conclusions and Future Work

We have presented in this paper a new approach, based on metrics and fuzzy
clustering analysis, that address the issue of coupling detection in an object-oriented
system. The main advantage of our approach is that of avoiding the problem of setting
up the thresholds for metrics that we used.

226 CAMELIA ŞERBAN(1)

In the future work we aim to apply this approach for more case studies and for
other design principle.

6. Acknowledgement

This material is based upon work supported by the Romanian National University
Research Council under award PN-II no. ID 550/2007.

References

[1] Mazeiar, S., Shimin, Li. and Ladan, T. : A Metric-Based Heuristic Framework to Detect
Object-Oriented Design Flaws. Proceedings of the 14th IEEE International Conference on
Program Comprehension (ICPC06), (2006).

[2] Fowler, M. Beck, K. Brant, J. Opdyke, W. and Roberts, D.: Refactoring: Improving the Design
of Existing Code. Addison-Wesley, (1999).

[3] Johnson, R. and Foote, B.: Designing reuseable classes. Journal of Object-Oriented Program-
ming, 1(2):22–35, June (1988).

[4] R. Marinescu, Measurement and quality in object-oriented design. Ph.D. thesis in the Faculty
of Automatics and Computer Science of the Politehnica University of Timisoara, (2003).

[5] Riel, A.J.: Object-Oriented Design Heuristics. Addison-Wesley, (1996).
[6] Coad, P. and Yourdon, E. : Object-Oriented Design. Prentice Hall, London, 2 edition, (1991).
[7] Dumitrescu, D.: Hierarchical pattern classification, Fuzzy Sets and Systems 28, 145–162,

(1988).
[8] Project log4net.: http://logging.apache.org/log4net.
[9] Serban, C. and Pop, H.F.: Software Quality Assessment Using a Fuzzy Clustering Approach.

Studia Univ. Babes-Bolyai, Series Informatica, 2 (2008), 27–38.
[10] Chidamber, S. and Kemerer, C.: A metric suite for object- oriented design. IEEE Transactions

on Software Engineering, 20(6):476–493, June (1994).
[11] W. Li and S. Henry. Maintenance Metrics for the Object Oriented Paradigm. IEEE Proc. First

International Software Metrics Symp., pages 5260, may 1993.
[12] Lorenz, M. and Kidd, J.: Object-Oriented Software Metrics. Prentice-Hall Object-Oriented

Series, Englewood Cliffs, NY, (1994).

(1) Babeş-Bolyai University, Department of Computer Science, 1 Kogalniceanu St.,
400084, Cluj-Napoca, Romania

E-mail address: camelia@cs.ubbcluj.ro

KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2009
Cluj-Napoca (Romania), July 2–4, 2009, pp. 227–230

EFFICIENT RECURSIVE PARALLEL PROGRAMS FOR
POLYNOMIAL INTERPOLATION

VIRGINIA NICULESCU(1)

Abstract. PowerList and PowerArray theories are well suited to express recur-
sive, data-parallel algorithms. Their abstractness is very high and assures simple
and correct design of parallel programs. This high level of abstraction could be
reconciled with performance by introducing data-distributions into these theo-
ries. We present in this paper the derivation of a correct recursive program for
Lagrange interpolation. The associated costs are analysed and based on this an
improvement of the program is presented.

1. Introduction

In this paper we extend the work presented in [5] by using data distributions
for parallel programs defined using PowerArray structures. Also, by using these
distributions we define also a possibility to define set-distributions.

2. Distributions

The ideal method to implement parallel programs described with PowerLists is
to consider that any application of the operators tie or zip as deconstructors, leads
to two new processes running in parallel, or, at least, to assume that for each element
of the list there is a corresponding process. A more practical approach is to consider
a bounded number of processes np. In this case we have to transform the input list,
such that no more than np processes are created. This transformation of the input
list corresponds to a data distribution.

2.1. PowerList Distributions. Distributions were introduced in [5], where the ad-
vantages are presented of using them, too. Functions defined on PowerLists can be
easily transformed to accept distributions. By formally introducing the distributions
on PowerLists, we can evaluate costs, depending on the number of available processors
- as a parameter.

2000 Mathematics Subject Classification. 68Q85, 65Y20.
Key words and phrases. parallel computation, abstraction, design, distribution, data-structures.

c©2009 Babeş-Bolyai University, Cluj-Napoca

227

228 VIRGINIA NICULESCU(1)

2.2. PowerArray Distributions. Distributions could be also introduced for Pow-
erArray data structures. The operators tie or zip may be used, on each dimension.
Depending on the possible combinations in the bidimensional case, we arrive to 4
types of data-distributions: linear-linear, linear-cyclic, cyclic-linear, cyclic-cyclic.

2.2.1. Function Transformation.

Theorem 1. For a PowerArrayX.n0.n1 function f , and a corresponding distribution
distr.p0.p1, the function fp, defined by:

(1)
fp.(u ¦i v) = Φi (f.x0, f.x1, . . . , f.xm, u, v) , i = 0, 1
fp.[l] = [fs.l]
fs.u = f.u

has the following property:

(2) f = flat ◦ fp. ◦ distr.p0.p1

where, the function flat has to be defined based on the same operators as the function
f .

The proof contains a demonstration for each dimension, which is similar to the
proof of Theorem of PowerList functions transformations, given in [5].

2.3. Set-Distributions. By using set-distribution, a data element is distributed to
more than one process [4].
• One possibility to introduce set-distributions on these special types of data struc-

tures is to increase the dimension of the data structure by replication, and
then apply a distribution on the obtained list.

• Another possibility to introduce set-distribution is to apply first a distribution,
and then use a replication for the distributed data structure.

For PowerLists, a simple 2p times replication on the second dimension, (p ≥ 0),
is defined by:

(3)
rep1.p.X = rep1.(p− 1).X |1 rep1.(p− 1).X
rep1.0.X = X

Replication could be also combined with different permutation functions. For
example, replication with right rotation.

2.4. Distribution Costs. Data-distribution implies some specific costs which de-
pends on the maximum number of distinct elements (θd) which are assigned to a
processing element. We denote this cost by Td, and its complexity order depends on
θd.

In PowerList case, this cost is equal to the length of the sublists created after the
execution of the distribution function distr.p. If the input list has 2n elements and
we apply the distribution function with the first argument equal to p, p ≤ n, then the
distribution cost has the complexity order equal to O(2n−p).

In the set-distribution case, where data replication is used, this kind of costs
depends on more parameters. If we use a simple replication on a new dimension, and
then apply a Cartesian distribution, Td is not influenced by the distribution on the

EFFICIENT RECURSIVE PARALLEL PROGRAMS FOR POLYNOMIAL INTERPOLATION 229

new dimension. But, if a more complicated replication is used, Td depends on the
particular replication function.

3. Lagrange Interpolation

The evaluation of the Lagrange polynomial in a given point x is an example of
application where the set-distributions could be used with success. The input lists are:
X = [x0, . . . , xm−1] distinct points; F = [f.x0, . . . , f.xm−1] function values. Because
of the lack of space we will not present the entire derivation of the program.

lagrange.X.F.x = red(+).(L.X.x ∗ F)
L.X.x = U1.X.x/U2.X
U1.X.x =< red(∗).(< x− > .X) / > .(< x− > .X)

Function U2 computes the list of products formed by (xi − x0) . . . (xi − xi−1)(xi −
xi+1) . . . (xi − xm−1), for any i : 0 ≤ i < m. Since in these calculations an element
appears in computations more than once, the use of replication is appropriate.

First, we consider a replication that is combined with a rotation function repR1.n.X.
In this way, each column contains different elements, which means that each column
contains the elements of list X in a different order.

U2.X = UA.(repR1.n.X)
UA.A = red1(∗).(dif.(first.A).A)

The function UA is the most costing one, and we will refer to it in more detail.
Distribution We define and use a Cartesian distribution distrll.p0.p1, where p0, p1 <
n and p0 +p1 = p. This means that 2p0 ∗2p1 = 2p processors are available for working
in parallel. In order to accept the distribution, the function UA is transformed:

U2.X = UAp.(distrll.p0.p1.(repR1.n.X))
UAp.A = redp

1(∗).(difp.(first.A).A)

Time-complexity is O((p1 ∗ 2n−p0)α + 22n−p)
Distribution costs In order to reduce the cost of data distribution, the number of
distinct elements on each processor has to be as small as possible;
θd(distrll.p0.p1.A) = min{2n, 2n−p0+2m−p1−1} But, this cost is very high, so we have
to change the replication method. We can start from a distribution (one-dimensional
distr.p0.X) of the list X, then to replicate this distributed list based on repR1.p0.·,
and then to use replication based on repR1.(n− p0).· for each resulted sublist. After
we apply the function flat we obtain a matrix B that has the property that each
column is a different permutation of the list X, and we may apply the same function
UA to compute the products u.xi.

If we apply a Cartesian distribution distrll.p1.p0, each resulted submatrix will
have only 2n−p0 distinct elements, if p1 ≥ p0, and 2n−p0 × 2p0−p1 distinct elements if
p1 < p0. The analysis of the time-complexity and the distribution cost leads to the
conclusion that the best decomposition of p is p = p0 + p1 = 2p0, p0 = p1, provided
that p is even.

230 VIRGINIA NICULESCU(1)

4. Conclusions

One-dimensional, multidimensional, and set-distributions could be defined for
PowerList and PowerArray data structures, and functions defined on these special
data structures are transformed to accept distributed input data, and then costs
analysis could be done.

We have several advantages of formally introducing the distributions; the first is
that it allows us to evaluate costs, depending on the number of available processors -
as a parameter. In the PowerArray case, this is especially important, since we may
choose the most advantageous factorization of the number of processors on each di-
mension. The analysis of the possible distributions for a certain function may lead to
an improvement in the design decisions, too. Another advantage is that we may con-
trol the parallel decomposition until a certain level of tree decomposition is achieved;
otherwise parallel decomposition could be done, for example, in a ‘deep-first’ man-
ner, which could be disadvantageous. Also, after the introduction of the distributions
functions, mapping on real architectures with limited number of processing elements
(e.g. hypercubes) could be analyzed.

ACKNOWLEDGEMENT

This work was supported by the research project ID 2268/2009, sponsored by the
Romanian National University Research Council (CNCSIS).

References

[1] Gorlatch, S.,: Abstraction and Performance in the Design of Parallel Programs, CMPP’98
First International Workshop on Constructive Methods for Parallel Programming, 1998.

[2] Kornerup, J.: Data Structures for Parallel Recursion. PhD Thesis, Univ. of Texas, 1997.
[3] Misra, J.: PowerList: A structure for parallel recursion. ACM Transactions on Program-
ming Languages and Systems, Vol. 16 No.6 (1994) 1737-1767.

[4] Niculescu, V.: On Data Distributions in the Construction of Parallel Programs, The
Journal of Supercomputing, Kluwer Academic Publishers, 29(1): 5-25, 2004.

[5] Niculescu, V.: “Data Distributions in PowerList Theory”, Lecture Notes of Computer
Science Vol. 3722: Theoretical Aspects of Computing, Proceedings of ICTAC 2007, Springer-
Verlag, 2007: 396-409.

(1) Department of Computer-Science, Babes-Bolyai University, 1 M. Kogalniceanu,
Cluj-Napoca, Romania

E-mail address: vniculescu@cs.ubbcluj.ro

KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2009
Cluj-Napoca (Romania), July 2–4, 2009, pp. 231–234

SKEPTICAL REASONING IN CONSTRAINED DEFAULT LOGIC
USING SEQUENT CALCULUS

MIHAIELA LUPEA(1)

Abstract. Constrained default logic is a version of Reiter’s classical default logic
satisfying desirable formal properties as supraclassicality, semi-monotonicity, com-
mitment to assumptions. In this paper we propose an axiomatic system called
skeptical constrained default sequent calculus, based on sequent and anti-sequent
calculi from classical logics. This system is used to formalize and study from
theoretical point of view the skeptical nonmonotonic reasoning process modelled
by constrained default logic.

1. Introduction

Constrained default logic [7], as a version of Reiter’s default logic [6], models the
nonmonotonic reasoning using special inference rules called defaults, to overcome the
lack of information.

The defaults extend a given set of facts obtaining one or more sets called exten-
sions which contain the nonmonotonic consequences(beliefs). The extensions repre-
sent possible belief sets of an agent reasoning about the initial theory. A credulous
reasoning perspective means that an agents’ beliefs belong to at least one extension.
Skeptical consequences are more robust beliefs because they belong to all extensions of
a theory. In the papers [2, 8] the properties of the nonmonotonic credulous/skeptical
inference relations in default logics are studied.

Theoretical studies in the direction of the axiomatization of the credulous/ skep-
tical nonmonotonic inference process modelled by different versions of default logic
are presented in the papers [1, 3, 5].

In this paper we propose an axiomatic system called skeptical constrained default
sequent calculus. This system is used to formalize and study the skeptical nonmono-
tonic inference modelled by constrained default logic.

2. Constrained default logic

Definition 2.1. A default theory ∆ = (D,W) contains a set W of consistent
formulas (facts) of first order logic and a set D of default rules. A default has the

2000 Mathematics Subject Classification. 03B79, 68T15, 68T27, 68T20.
Key words and phrases. constrained default logic, skeptical default inference, sequent and anti-

sequent calculi.

c©2009 Babeş-Bolyai University, Cluj-Napoca

231

232 MIHAIELA LUPEA(1)

form d = α:β
γ , where: α is called prerequisite, β is called justification and γ is called

consequent. A default d = α:β
γ can be applied and thus derive γ if α is believed and

”it is consistent to assumed β”(meaning that ¬β is not believed).

From all versions of default logics, constrained default logic has the most desirable
formal properties: supraclassicality, semi-monotonicity, commitment to assumptions,
due to the global consistency condition for the applied defaults.

Definition 2.2.[4] Let D be a set of defaults. The set of residues and the set
of justifications of D with respect to a set C of formulas are defined as follows:
ResC

D =
{

α
γ |α:β

γ ∈ D, C ∪ {β, γ} 6⇒ false
}

,

JustifC
D =

{
β|α:β

γ ∈ D, C ∪ {β, γ} 6⇒ false
}

.
The residues corresponding to the applied defaults are monotonic rules and are

used to reduce the nonmonotonic reasoning process modelled by constrained default
logic into a monotonic one according to the following theorem based on a theorem
from [4].

Theorem 2.1. Let ∆ = (D,W) be a default theory. (E,C) is a constrained
extension of ∆ if E = Thres(W,ResC

D), C = Th(Thres(W,ResC
D) ∪ JustifC

D), where
Th(·) is the classical consequence operator and Thres(·, R) is the consequence opera-
tor of the predicate formal system enhanced with the set R of residues.

E is the actual extension embedded in the reasoning context C. We remark that
the nonmonotonic reasoning process modelled by constrained default logic is guided
by a maximal consistent reasoning context.

3. Sequent and anti-sequent calculi for residues

The two complementary systems: sequent and anti-sequent calculi [1] for classical
logics are enhanced with specific rules for residues [1, 5] preserving the soundness and
completness of the new axiomatic systems. We use the same metasymbols ⇒ and 6⇒
to express the inference relations in classical sequent/anti-sequent calculi and in the
corresponding systems, enhanced with residues.

Sequent rules for residues: Anti-sequent rules for residues:

(Re1) Γ⇒Ψ
Γ, α

γ⇒Ψ (Re2)Γ⇒α Γ,γ⇒Ψ
Γ, α

γ⇒Ψ (Re3)Γ 6⇒α Γ6⇒Ψ
Γ, α

γ 6⇒Ψ (Re4) Γ,γ 6⇒Ψ
Γ, α

γ 6⇒Ψ

4. Axiomatization of skeptical reasoning in constrained logic

Definition 4.1. Let ∆ = (D, W) be a default theory. A skeptical constrained
default sequent has the syntax : Constr; (W,D); Res 7−→ U . The set U of formulas is
called succedent. The antecedent contains Constr(a set of constraints expressed using
the modalities: M and L), the default theory (W,D) and Res (the set of residues
corresponding to the applied defaults).

SKEPTICAL REASONING IN CONSTRAINED DEFAULT LOGIC 233

Definition 4.2. (semantics of a skeptical constrained default sequent)
The skeptical constrained default sequent : Constr; (W,D); Res 7−→ U is true if ∨U
belongs to all constrained default extensions of the theory (W,D), that satisfy the
constraints Constr and Res contains the residues of the applied defaults.

Definition 4.3. For a default theory ∆ the skeptical constrained default ax-
iomatic system is: Skcons

∆ = (Σcons
Sk∆

, F cons
Sk∆

, Acons
Sk∆

, Rcons
Sk∆

).
Σcons

Sk∆
- the alphabet, F cons

Sk∆
= all classical sequents/anti-sequents enhanced with residues

and all skeptical constrained default sequents.
Acons

Sk∆
- the axioms (all classical basic sequents and basic anti-sequents).

Rcons
Sk∆

= {S1, S2, S3} ∪ {Re1, Re2, Re3, Re4}∪ {classical sequent/anti-sequent rules}

Based on Theorem 2.1 we propose the sequent rules for constrained default logic:
(S1)ConstrM∪W 6⇒false W∪Res ⇒U

Constr;(W,D);Res 7−→U , where ConstrM = {α|Mα ∈ Constr}

(S2)
Constr∪{M(β∧γ)};(W,D);Res∪{α

γ } 7−→U Constr∪{L¬(β∧γ)};(W,D);Res 7−→U

Constr;(W,D∪{α:β
γ });Res 7−→U

(S3)
W∪{β∧γ|α:β

γ ∈D}6⇒δ

Constr∪{Lδ};(W,D);Res 7−→U

S1 verifies if the reasoning context (obtained using the set of applied defaults) is
consistent (left premise) and if ∨U is derivable from the set of facts and the corre-
sponding residues (right premise). Using S2 we search exhaustively if ∨U is a skeptical
consequence of the theory ∆ considering that α:β

γ is applied (left premise) and that the
default α:β

γ is not applied (right premise). The rule S3 checks if there are constrained
extensions that satisfy the constraint Lδ.

Theorem 4.1. The skeptical constrained default sequent calculus is sound and
complete: a skeptical constrained sequent is true if and only if it can be reduced to
classical basic sequents and basic anti-sequents using Rcons

Sk∆
.

Consequence: A formula X is a skeptical constrained default consequence of
the default theory (D,W) if and only if the skeptical constrained default sequent
∅; (W,D); ∅ 7−→ X is true.

Example 4.1. The default theory ∆ = (D,W), D =
{

Q:P
S , S:T

T , R:¬P
H , H:T

T

}
,

W = {Q, R} has two constrained default extensions: (E1, C1) = (Th({Q,R, S, T}),
Th({Q,R, S, T, P})) and (E2, C2) = (Th({Q,R,H, T}), Th({Q, R, H, T,¬P})).

We check if T is a skeptical constrained default consequence of the theory ∆:
Π1:{M(P∧S)};({Q,R},{d2,d3,d4});{Q

S } 7−→T Π2:{L¬(P∧S)};({Q,R},{d2,d3,d4});∅ 7−→T

∅;({Q,R},{d1= Q:P
S ,d2= S:T

T ,d3= R:¬P
H ,d4= H:T

T });∅ 7−→T
(S2)

By applying the rule (S2), the default sequent Π1 is reduced to Π11 and Π12:
Π11:{M(P∧S),M T};({Q,R},{d3,d4});{Q

S , S
T } 7−→T Π12:{M(P∧S),L¬T};({Q,R},{d3,d4});{Q

S } 7−→T

Π1:{M(P∧S)};({Q,R},{d2= S:T
T ,d3,d4});{Q

S } 7−→T

The default sequent Π11 is a true default sequent as follows:

{Q,R,P∧S,T}6⇒false

...
{Q,R,

Q
S

, S
T }⇒T

(Re2)

Π11:{M(P∧S),M T};({Q,R},{d3,d4});{Q
S , S

T } 7−→T
(S1)

234 MIHAIELA LUPEA(1)

For reducing Π12 we apply the rule (S3). No extension of the initial theory satisfies
the constraint L¬T , so the default sequent Π12 is reduced to a basic anti-sequent and
therefore is a true sequent according to the following:

Q,R,T,H,¬P 6⇒¬T

Π12:{M(P∧S),L¬T};({Q,R},{d3= R:¬P
H ,d4= H:T

T });{Q
S } 7−→T

(S3)

Π2 can also be reduced to basic sequent/anti-sequents, therefore the initial se-
quent: ∅; ({Q,R} , {d1, d2, d3, d4}); ∅ 7−→ T is true and thus T is a skeptical con-
strained default consequence of ∆.

5. Conclusions

In this paper we have introduced an axiomatic system which formalizes the skep-
tical nonmonotonic inference in constrained default logic. This system is based on
sequent and anti-sequent calculi for classical logics and uses specific rules for the
defaults. Using the monotonic rules called residues and constraints for the applied
defaults, the default reasoning process becomes a monotonic one.

References

[1] Bonatti, P.A., Olivetti, N., “Sequent Calculi for Propositional Nonmonotonic Logics”, ACM
Trans. Comput. Log., 2002, pp. 226–278.

[2] Lupea, M., “Nonmonotonic inference operations for default logics”, ECIT - Symposium on
Knowledge-based Systems and Expert Systems, Iasi, Romania, 2002, pp. 1–12.

[3] Lupea, M., “Axiomatization of credulous reasoning in default logics using sequent calculus”,
10-th International Symposium SYNASC 2008, IEEE Computer Society, pp. 49–55.

[4] Mikitiuk, A., Truszczynsky, M.,“Constrained and rational default logics”, Proceedings of
IJCAI-95, Morgan Kaufman, 1995, pp. 1509–1515.

[5] Milnikel, R.S., “Sequent calculi for skeptical reasoning in predicate default logic and other
nonmonotonic logics”, pp. 1-40, Kluwer, 2004.

[6] Reiter, R., “A Logic for Default reasoning”, Artificial Intelligence 13, 1980, pp. 81–132.
[7] Schaub, T.H., “Considerations on default logics”, Ph.D. Thesis, Technischen Hochschule

Darmstadt, Germany, 1992.
[8] Stalnaker, R.C., “What is a nonmonotonic consequence relation”, Fundamenta Informaticae,

21, 1995, pp. 7–21.

(1) Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-
Napoca, Romania

E-mail address: lupea@cs.ubbcluj.ro

KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2009
Cluj-Napoca (Romania), July 2–4, 2009, pp. 235–238

ALGEBRAIC MODEL FOR THE SYNCHRONOUS SR-FLIP-FLOP
BEHAVIOUR

ANCA VASILESCU(1)

Abstract. Considering the digital logic level of the computer architecture de-
scription, the agent-based approach is applied here to cover both the digital
logic circuits specification and verification. We consider the specific structure
for both the asynchronous and synchronous SR flip-flops. We define the appro-
priate specification and implementation agents for algebraic modelling the given
circuits behaviour and we formally and automatically prove the corresponding
bisimilarities between the target agents.

1. Introduction

This paper results represent the authors research area consisting in applying
formal methods for modelling the hardware components behaviour and in obtaining
an algebraic-based model for the entire computer system behaviour.

Having an algebraic-based model for a multi-agent system has the main advantage
of increasing the level of confidence and reliability on the model following the formal
methods based verification. For the specific case of a computer system, we have also
the advantage of the opportunity of removing all the possible design errors before
proceeding to the expensive component manufacturing and assembly.

In modern computer science, the process algebras are extensively used together
with the appropriate verification tools such that the combination assures both the
modelling of the computer components behaviour and the formal and/or automated
verification of the proposed models. The most used such combinations are: SCCS/CWB,
CSP/FDR2 and LOTOS/CADP [1, 8]. The SCCS as process algebra and CWB-NC
[9] as verification workbench are used here in order to study the concurrent commu-
nicating processes involved in the computer hardware components behaviour and to
model and verify the target hardware components behaviour.

2. Preliminaries

2.1. Flip-flops. Computer memory organization. A flip-flop is a sequential
circuit, a binary cell capable of storing one bit of information. It has two outputs, one

2000 Mathematics Subject Classification. 68Q85, 68N30, 68Q60, 93C62.
Key words and phrases. bisimulation equivalence, concurrency workbench, digital circuits, flip-

flop, SCCS process algebra, specification, verification.

c©2009 Babeş-Bolyai University, Cluj-Napoca

235

236 ANCA VASILESCU(1)

for the normal value and one for the complement value of the bit stored in it. A flip-
flop maintains a binary state until it is directed by a clock pulse to change that state.
At the different levels of detailing, the theoretical flip-flop might be asynchronous,
but the synchronous models are widely used in practice.

2.2. Process algebra SCCS. The process algebra SCCS, namely Synchronous Cal-
culus of Communicating Systems is derived from CCS [3, 4] especially for achieving
the synchronous interaction in the framework of modelling the concurrent commu-
nicating processes. The operational semantics for SCCS is given via inference rules
that define the transition available to SCSS processes. Combining the product and
the restriction, SCCS calculus defines the synchronous interaction as a multi-way
synchronization among processes.

A formal approach such as the process algebra SCCS supports a way to relate
two different specifications in order to show that those specifications actually describe
equivalent concurrent systems, for some specific meaning of equivalence. For each of
the circuits we are interested in, we define a specification Spec which is based on
the definition of the circuit and a specification Impl which is based on the behaviour
and/or the properties of that given circuit. As demonstration technique, we start
with these two specifications Spec and Impl and then we apply a set of SCCS-based
algebraic laws in order to formally prove that the low-level specification, Impl, is
correct with respect to the higher-level one, Spec. This correctness proof is based on
the bisimulation congruence, the appropriate equivalence in the theory of concurrent
communicating processes.

3. Algebraic model for the synchronous SR flip-flop behaviour

In this section we define both specification and implementation agents for asyn-
chronous SR flip-flops and synchronous SR flip-flops. The core of our results consists
in proving, both formally and automatically, the involved agents bisimilarities.

3.1. The case of asynchronous SR flip-flop. The specification Spec for the SR
flip-flop behaviour might be [3]

(1) SpecSR(m,n) =
∑

i,j∈{0,1}
(σiρjγmδn : SpecSR(k, l))

where the values k and l are defined by k = i NOR n and l = j NOR m.
In order to achieve the composition and to assure the fork of the output signal, we

have to define two morphisms to make two appropriately relabelled copies of the NOR
gate. We also define the set E of external actions, E = {σi, ρi, γi, δi|i ∈ {0, 1}}, in
order to form the SCCS product between the two communicating NOR gate-agents.

The SCCS implementation for the SR flip-flop behaviour might be

(2) ImpSR(m,n) = (NOR(m)[Φ] x NOR(n)[Ψ]) ¹ E

The relation SpecSR(m, n) ∼ ImpSR(m,n) is established.

ALGEBRAIC MODEL FOR THE SYNCHRONOUS SR-FLIP-FLOP BEHAVIOUR 237

3.2. The case of synchronous SR flip-flop. From the structural point of view,
in order to obtain the synchronous SR flip-flop we consider the asynchronous circuit
and we add an extra level of AND gates for involving the clock signal.

We consider two levels for specifying the synchronous SR flip-flop behaviour, a
specification and an implementation, and we conclude with the equivalence result for
these models.

We propose the higher-level specification for the synchronous SR flip-flop be-
haviour based on the agents:

(3) SpecSRs(m,n, c) = (SpecInput(c)× SpecSR(m,n)) ¹ E SRmn(c)

where the set of external actions is E SRmn(c) = {CLKc, σ, ρ, γ, δ} for a specific
value of c ∈ {0, 1}. Note that the parameters m and n have complemented values, by
definition of the flip-flop.

We also propose the lower-level specification for the synchronous SR flip-flop
behaviour based on the agents:

(4) ImpSRs(m,n, c) = (ImpInput(c)× ImpSR(m,n)) ¹ E SRmn(c)

It is for the interest of this paper results to prove the next equivalence.

Proposition 1. The previous agents SpecSRs(m,n, c) and ImpSRs(m,n, c) for (m,n) ∈
{(0, 1), (1, 0)} and c ∈ {0, 1} are bisimulation equivalent.

The previous agents SpecSRs(m,n, c) and ImpSRs(m,n, c) are defined for all of
the binary combinations on the input lines S and R of the flip-flop. In order to extend
the algebraic model of the flip-flops behaviour to the algebraic model of the more com-
plex sequential logic circuits based on flip-flops, it is useful to have the projection of
such an agent on only one input binary combination (S,R). For achieving this target,
we have to project each of the generic agents SpecSRs(m,n, c) and ImpSRs(m,n, c) on
each of the binary combinations (S, R) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. The final agents
are SpecCBBSRs(m, n, S, R, c) and ImpCBBSRs(m,n, S, R, c) for each current state
(m,n), input binary combination (S,R) and clock signal c. These agents are also
bisimulation equivalent.

3.3. Automatic verification. In order to have an automatic verification for the
bisimilarities between the corresponding specification and implementation agents al-
ready defined in the previous subsections, we have developed the SCCS files with
respect to the CWB-NC platform syntax. For each of the Spec-Impl pair of agents,
we have verified the appropriate bisimilarity. The corresponding CWB-NC answer is
TRUE for all of these tests. We have also obtained successfull CWB-NC automatic
verification for the corresponding implementation agents and for the bisimilarities
tests.

4. Conclusions

Based on ideas from [3, 5], in this paper we have considered the internal structure
of specific memory cells, namely SR flip-flops. As original contribution we have
defined specific agents for modelling the concrete flip-flops behaviour for both the

238 ANCA VASILESCU(1)

asynchronous and synchronous circuit organization and we have proved (formally
and automatically) the appropriate agents bisimilarities.

The results of this paper are algebraic models for some important hardware com-
ponents ready to be integrated in more complex, scalable structures. The components
we focused on here are some of the most important hardware components for mod-
ern computer organization and design. After the modelling achievements from [6, 7],
these modelling attempts represent a further step in the direction of having a global
algebraic model of the entire computer system behaviour.

Implicitly, this result of bisimilarity is a guarantee of using these models in other
complex circuits. An immediate extension of these results will consist in using these fi-
nal agents into a more complex digital logic circuit like a standard read/write memory
hardware component with input/output controller unit integrated.

References

[1] He J., Formal Specification and Analysis of Digital Hardware Circuits in LOTOS, TR CSM-158,
August 2000.

[2] Mano M.M., Digital Logic and Computer Design, Prentice-Hall Of India Pvt Ltd, 2007.
[3] Milner R., Calculi for synchrony and asynchrony, Theoretical Computer Science, 25:267-310,

1983.
[4] Milner R., Communication and concurrency, Prentice Hall, 1989.
[5] Vasilescu A., Formal models for non-sequential processes, PhD Thesis in Computer Science,

Babes-Bolyai University, Cluj-Napoca, 2004.
[6] Vasilescu A., Georgescu O., Algebraic Model for the Counter Register Behaviour, IJCCC -

Supplem. Issue as Proc. of ICCCC2006, Oradea, Romania, Vol.I:459-464, 2006.
[7] Vasilescu A., Algebraic model for the intercommunicating hardware components behaviour, Proc.

of the 12th Intl. Conf. on COMPUTERS, Heraklion, Greece, July 23-25, pp.241-246, 2008.
[8] WANG X. et al., Opportunities and Challenges in Process-algebraic Verification of Asynchro-

nous Circuit Designs, ENTCS, Vol. 146(2):189-206, 26 Jan 2006, Proceedings of FMGALS
2005.

[9] *** The CWB-NC homepage on http://www.cs.sunysb.edu/∼cwb.

(1) Transilvania University of Braşov, Faculty of Mathematics and Computer Science,
Department of Theoretical Computer Science, Str. Iuliu Maniu nr. 50, 500091, Braşov,
Romania

E-mail address: vasilex@unitbv.ro

KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2009
Cluj-Napoca (Romania), July 2–4, 2009, pp. 239–243

REVERSE ENGINEERING AND SIMULATION OF ACTIVE
OBJECTS BEHAVIOR

DAN MIRCEA SUCIU(1)

Abstract. Testing, debugging and understanding concurrent object-oriented
programs are difficult tasks. Behavior models, especially statecharts, are ap-
propriate tools for helping the development and maintenance of active objects.
The paper presents a process of generating statecharts at runtime and a tool that
assists and supports the main steps of this process.

1. Introduction

Today CASE tools include reverse engineering modules which are able to gen-
erate static diagrams from structures defined in application’s source code. Dynamic
diagrams cannot be generated just from the source code. That is because object-
oriented languages does not have built-in elements that appear in dynamic diagrams
and because the objects behavior could be much clearly observed during runtime.
These are the main reasons why we have searched solutions on dynamically generat-
ing statecharts. We are proposing a process of extracting statecharts that model the
behavior of active objects, based on the formalism described in [4].

2. Process of reversely generating statecharts

Figure 1 illustrates our proposed process of automatically generating statecharts
at runtime. We will describe each step of the process in detail.

Step 0. Code generation and/or programming. This is an optional step, because
we will take in consideration generating statecharts from any source code (no matter
if it was manually implemented or automatically generated). Nevertheless, in absence
of complex formal adnotations of dynamic models, the source code cannot be entirely
generated automatically.

2000 Mathematics Subject Classification. 68N30.
Key words and phrases. statecharts, dynamic modeling, reverse engineering.

c©2009 Babeş-Bolyai University, Cluj-Napoca

239

240 DAN MIRCEA SUCIU(1)

Step 1. Source code instrumentation. Source code instrumentation is the process
of adding new program logic into the source code of a given program. This new logic
is functionally neutral and it is used for some analytic purposes. In our process, code
instrumentation is used to log information about the object identity and its attributes
values before exiting a constructor or a modifier method.

Figure 1. Steps of generating statecharts using ActiveCASE components

Step 2. Program execution.

During the program execution, information about current state of active objects
are saved on disk, in specific log files, or are directly sent as a stream to the statechart
generator component.

Step 3. Generate Finite State Machines (FSMs). During this step, FSMs are
generated based on information received from active objects. The method of gener-
ating states is straightforward: for each new distinct tuple of attribute values, a new
state is generated. If it doesn’t exists yet, a new transition is automatically created
between the states corresponding to previous and current value tuples.

Step 4. Matching and merging FSMs. At the end of step 3 we obtain a set of FSMs
generated for the same class. Usually, for active objects having a complex behavior,
the result consists of partial FSMs. In such situations it is necessary to create a
consolidated FSM, containing all the matching states and transitions, together with
all discovered ”exceptions” in the generated FSMs.

Step 5. Semi-automated FSM refining. During this step the FSMs could be
refined and transformed in statecharts [3] respecting the states aggregation and gen-
eralization. The obtained result is a more compact and/or readable statechart.

REVERSE ENGINEERING AND SIMULATION OF ACTIVE OBJECTS BEHAVIOR 241

Step 6. Comparison, re-analysis, re-design... This step is important for verifica-
tion and testing of software conformance to specification, analysis and design models.

3. A case study

ActiveCASE is a tool developed for designing, implementing and simulating active
objects behavior in concurrent object oriented applications [5]. We have extended it
to offer support for first 4 steps of the process of generating statecharts.

In order to illustrate how FSMs are generated in ActiveCASE we will use the same
motivating example used in [5]: traffic simulation in a matrix of tracks. The goal is
to generate the corresponding FSMs for Car class using ActiveCASE components.
According to step 0, a statechart is defined for Car class, as described in [5].

The code instrumentation (step 1) has been done manually. First of all, the Ac-
tiveObject class was enriched with two specific methods: GetCurrentStateToString()
and GenerateCurrentState(). First method returns a string with information regard-
ing the current state, whith the following configuration: [Class: < ClassName >
; Object :< ObjectIdentity >; Method :< MethodName >; attr1; ... attrn], where
attr1; ...attrn is a list of actual attribute values. Each subclass of ActiveObject class
should rewrite this function in order to add its own specific attribute values. The
second method,GenerateCurrentString(), saves the current state in a log file on disk
or, if the simulation is activated, sends the state strings to the simulator component.

Figure 2. FSMs generated for ”Red Car” and ”Blue Car” objects

Figure 2 shows two FSMs generated for two Car objects (called ”Blue Car” and
”Red Car”). For generating these FSMs, only three Car methods were instrumented:
the constructor, Halt and Go methods.

The analysis of the result reveals the fact that the FSMs are not complete, each
one having a state that was not generated for the other (state ”Stopped; Down;” in
”Red Car” FSM, and state ”Stopped; Left;” generated for ”Blue Car” FSM).

242 DAN MIRCEA SUCIU(1)

This observation leads us to the idea that merging several FSMs we can obtain a
more complete view of the behavior of a particular class of objects.

4. Related work

There are papers that refer to automated generation of statecharts based on sce-
narios description and their sequence diagram [1], [8], [9], [10]. In [7] the sequence
diagrams are extracted from event trace information, generated as a result of running
the target software under a debugger. Sometimes, the sequence diagrams are gen-
erated from source code, using code instrumentation [6]. Code instrumentation for
generating statecharts is also used in [2]. Here the instrumentation is more complex
and requires a good understanding of the analyzed source code.

5. Future work and conclusions

Future work consists in continuing the extension of ActiveCASE tool to support
steps 4 and 5 of the statechart generator module. Besides it, the automatization of
the previous steps of the process, mainly the source code instrumentation task, could
improve the usability of the simulation component.

References

[1] H. Chu, Q. Li, S. Hu, P. Chen, ”An Approach for Reversely Generating Hierarchical UML
Statechart Diagrams”, Lecture Notes in Computer Science : Fuzzy Systems and Knowledge
Discovery, pp. 434-437, 2006

[2] A. Gupta, ”Automated Object’s Statechart Generation and Testing from Class-Method Con-
tracts”, In 3rd IntlWorkshop on Model Development, Validation, and Verification (MoDeV2a-
06) co-located with 9th ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, pp 30-45, Genova, Italy, 2006.

[3] D. Harel, ”Statecharts: A Visual Formalism for Complex Systems”, Science of Computer Pro-
gramming, vol.8, no. 3, pp. 231-274, June 1987

[4] D. M. Suciu, ”Using Scalable Statecharts for Active Objects Internal Concurrency Modeling”,
Studia Universitatis ”Babes-Bolyai” Cluj-Napoca, Series Informatica, Vol. XLV, Nr. 2, 2000,
pp. 67-76

[5] D. M. Suciu, ”ActiveCASE - Tool for Design and Simulation of Concurrent Object-Oriented
Applications”, Studia Universitatis ”Babes-Bolyai”, Series Informatica, Vol. XLVI, Nr. 2, pp.
73-80, 2001

[6] T. Syst, K. Koskimies, ”Extracting State Diagrams from Legacy Systems”, Lecture Notes In
Computer Science; Vol. 1357, Proceedings of the Workshops on Object-Oriented Technology,
pp 262-273, 1997

[7] T. Systa, ”Dynamic reverse engineering of Java software”, Proceedings of the Workshop on
Object-Oriented Technology, Lecture Notes In Computer Science Vol. 1743, pp 174 - 175, 1999

[8] S. Vasilache, J. Tanaka ”Synthesis of State Machines from Multiple Interrelated Scenarios Using
Dependency Diagrams”, 2004

REVERSE ENGINEERING AND SIMULATION OF ACTIVE OBJECTS BEHAVIOR 243

[9] J. Whittle, J. Schumann, ”Generating Statechart Designs from Scenarios”, International Con-
ference on Software Engineering, Proceedings of the 22nd international conference on Software
engineering, Ireland, pp 314 - 323, 2000

[10] T. Ziadi, L. Helouet, J.M. Jezequel, ”Revisiting Statechart Synthesis with an Algebraic Ap-
proach”,International Conference on Software Engineering, Proceedings of the 26th Interna-
tional Conference on Software Engineering, pp 242 - 251, 2004

(1) Department of Computer Science, “Babeş-Bolyai” University, 1 M. Kogălniceanu
St., RO-3400 Cluj-Napoca, Romania

E-mail address: tzutzu@cs.ubbcluj.ro

KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2009
Cluj-Napoca (Romania), July 2–4, 2009, pp. 244–248

A PARALLELIZATION SCHEME OF SOME ALGORITHMS

ERNEST SCHEIBER (1)

Abstract. This note presents a parallelizing scheme of an algorithm with an

unknown number of tasks or dynamicaly varing number of tasks but using a fixed

number of workers or workstations, based on the dispatcher-worker paradigm. A

consequence of this approach is that the same scheme is used to implement, as

an example, the backtracking algorithm and the quicksort method.

1. Introduction

The purpose of this note is to present a parallelizing scheme for an algorithm
involving an a priori unknown number of tasks or dynamically varying number of
tasks but using a fixed number of workers or workstations.

Backtracking, quicksort are examples of such algorithms. There were many at-
tempts to develop parallel versions for the backtracking algorithm [4] and for the
quicksort method [3, 5].

Our scheme is based on the dispatcher-worker paradigm and it focuses on the
data management and the coordination of the worker processes. A consequence of
this approach is that the same scheme is used to implement, as an example, the
backtracking algorithm and the quicksort method. The specific parts of the solving
methods are embedded in the dispatcher and in the workers activities.

2. The parallelizing scheme

As we mention, the scheme is based on the dispatcher - workers model. The
dispatcher manages a repository for the data that will be sent to the workers when
they will be available to proceed their specific job. A stack may be used as the
repository.

The dispatcher and the workers communicate using messages. There are two kind
of messages received by a worker:

2000 Mathematics Subject Classification. 68W15.

Key words and phrases. parallel algorithms, dispatcher-worker, parallel backtracking.

c©2009 Babeş-Bolyai University, Cluj-Napoca

244

A PARALLELIZATION SCHEME OF SOME ALGORITHMS 245

• ordinary message containing the data for the worker to solve a specific task;
• ending type message - command to the worker to finish its activity.

The worker actions are given in Algorithm 1.

Algorithm 1 The workers procedure.

1: procedure Worker
2: ending-flag← false
3: repeat
4: Receive a message
5: if ending-type message then
6: ending-flag ← true
7: else
8: Execute the specific actions of the worker
9: Send the response to the dispatcher

10: end if
11: until ending-flag = true
12: end procedure

After receiving a response, if further processes of the response are required, the
dispatcher will push the corresponding data for future tasks in the repository. While
there are available workers, the dispatcher extracts records from the repository, creates
corresponding ordinary messages and sends them to the workers. To each worker
there is associated a flag indicating the state of the worker (occupied or free). The
dispatcher counts the number of sent and received messages to the workers. The
dispatcher actions are represented in the Algorithm 2.

The available number of workers is denoted by size. The receive command is
supposed to be blocking. The parallelization occurs in moment when the dispacher
send messages to the unoccupied workers - lines 19-24.

Message Passing Interface (MPI) [1, 2, 6] may be used to implement the scheme,
but other frameworks can be used, too according [7].

3. Examples

Using the above presented parallelizing scheme, we give details of the implemen-
tation of the n-queen problem, the sixteen grid problem via backtracking and the
quicksort method.

The n queen problem. A message is an instance of a class containing the
rank of the source, a tag and two sequences. The first sequence contains the data
sent by the dispatcher to the worker(the j-th element of the sequence represents the
column occupied by a queen in the j-th raw), while the second sequence is the result
computed by the worker.

246 ERNEST SCHEIBER (1)

Algorithm 2 The dispatcher procedure.

1: procedure Dispatcher
2: Data structures: Stack repository;
3: boolean[]freeWorker1≤i≤size

4: send messages number ← 0
5: received messages number ← 0
6: for i = 1 : size do
7: freeWorkeri ← true
8: end for
9: Specific initializations of the application

10: Send an ordinary-message to the Worker1

11: freeWorker1 ← false
12: send messages number ← send messages number + 1
13: while repository is not empty or
14: send messages number 6= received messages number do
15: if send messages number 6= received messages number then
16: Receive a response message
17: received messages number ← received messages number + 1
18: freeWorkersender−rank ← true
19: Process the received message
20: end if
21: while exists free Workers and the repository is not empty do
22: Extracts an object from the repository
23: Sends an ordinary-message to a free Worker
24: freeWorkerreceiver−rank ← false
25: send messages number ← send messages number + 1
26: end while
27: end while
28: for i = 1 : size do
29: Sends Ending-type-message to the Workeri

30: end for
31: end procedure

If the worker receives the sequence [x0, x1, . . . , xk−1] (k − 1 < n) with xp ∈
{0, 1, . . . , n− 1} and

(1) xp 6= xq and |xp − xq| 6= |p− q| ∀p, q ∈ {0, 1, . . . , k − 1},

then it executes the following operations:

1: for any i ∈ {0, 1, . . . , n− 1} do
2: It verifies the validity conditions (1) of the sequence [x0, x1, . . . , xk−1, i].

A PARALLELIZATION SCHEME OF SOME ALGORITHMS 247

3: If the validity conditions are satisfied then i is appended to the sequence of
results.

4: Builds a message with the results and sends it to the dispatcher.
5: end for

Receiving a responce message, the dispatcher verifies whether some solutions are
obtained (i.e. the length of a generated sequence is n). If the generated sequences are
not solutions then the dispatcher push them into the repository.

As initialization, the dispatcher sends a message with the sequence [0] to the first
worker, while the sequences [i], i ∈ {1, . . . , n− 1} are push into the repository.

The quicksort method. The message class contains the rank of the source, a
tag, an index, a splitting index and a sequence.

Let us suppose that at a stage of the quicksort method, the sequence to be sorted
is [x0, x1, . . . , xn−1]. The index of a subsequence [xp, xp+1, . . . , xq] is p. Let us suppose
that the dispatcher sends this subsequence to a worker. The worker split the received
sequence as it is done in the standard quicksort method. If [y0, y1, . . . , yq−p] is the
modified sequence and r is the splitting index, then

yi < yr, ∀i < r and yj ≥ yr ∀j ≥ r.

This sequence will be returned by the worker.

Receiving a response message, the dispatcher update the sequence to be sorted
and if the length of a splited subsequence is greather than 2, then the parameters of
subsequence (the starting index and the length) are pushed into the repository.

References

[1] Z. BAOYIN, 2005, ”Jcluster A Java Parallel Environment.” Docs distributed with the software,

version 1.0.5.

[2] R. BISSELING, 2004, Parallel Scientific Computation. A structured approach using BSP and

MPI, Oxford Univ. Press.

[3] CHENGYAN ZH., 1996, Parallel Quicksort algorithm with PVM optimization. Project report

CS62025. Univ. NewBrunswick, Fac. Computer Science, Fredericton.

[4] HAMADI Y., BESSIÈRE CH., QUINQUETON J., 1998, Backtracking in Distributed Networks.

http://research.microsoft.com/∼youssefh/Papers/ecai98.pdf.

[5] TSIGAS PH., ZHANG Y., 2003, A Simple Fast Parallel Implementation

of Quicksort and its Performance Evaluation on SUN Enterprise 10000.

http://www.es.chalmers.se/∼tsigas/papers/Pquick.pdf.

[6] SNIR M., OTTO D., HUSS-LEDERMAN S., WALKER D., DONGARRA J., 1996, MPI: The

Complete Reference. MIT Press, Cambridge, MA.

[7] SCHEIBER E., 2007, A TSpaces Based Framework for Parallel - Distributed Applications.

Knowledge Engineering Principles and Techniques 1 (2007), Cluj University Press, 341-345.

248 ERNEST SCHEIBER (1)

(1) Faculty of Mathematics and Computer Science, “Transilvania” University of Braşov,

50 Iuliu Maniu St., Braşov, Romania

E-mail address: scheiber@unitbv.ro

KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2009
Cluj-Napoca (Romania), July 2–4, 2009, pp. 249–253

THE MULTI-OBJECTIVE REFACTORING SELECTION PROBLEM

CAMELIA CHISĂLIŢĂ–CREŢU(1) AND ANDREEA VESCAN(1)

Abstract. The paper defines the Optimal Refactoring Selection Problem (ORSP)
and generalizes it as a Multi-Objective ORSP (MOORSP) by treating the cost
constraint as an objective and combining it with the effect objective. It consid-
ers the refactoring selection as a multi-objective optimization in the Search-Based
Software Engineering (SBSE) field. The results of the proposed weighted objec-
tive genetic algorithm on a experimental didactic case study are presented and
compared with other recommended solutions for similar problems.

1. Introduction

Software systems continually change as they evolve to reflect new requirements,
but their internal structure tends to decay. Refactoring is a commonly accepted
technique to improve the structure of object oriented software [3]. The Optimal
Refactoring Selection Problem (ORSP) is the identification problem of the optimal
refactorings that may be applied on software entities, such that several objectives are
kept or improved.

ORSP is an example of a Feature Subset Selection (FSS) search problem in SBSE
field. The paper introduces a first formal version definition of the MOORSP and
performs a proposed weighted objective genetic algorithm on a experimental didactic
case study. Obtained results for our case study are presented and compared with
other recommended solutions for similar problems [5].

The rest of the paper is organized as follows: Section 2 presents the formal defini-
tion of the studied problem. The proposed approach and the genetic algorithm with
several details related to the genetic operators are described in the Section 3. Local
Area Network simulation source code was used in order to validate our approach. The
paper ends with conclusions and future work.

2. Optimal Refactoring Selection Problem

In order to state the ORSP some notion and characteristics have to be defined.
Let SE = {e1, . . . , em} be a set of software entities, i.e., a class, an attribute from a
class, a method from a class, a formal parameter from a method or a local variable
declared in the implementation of a method. The weight associated with each software
entity ei, 1 ≤ i ≤ m is kept by the set Weight = {w1, . . . , wm} , where wi ∈ [0, 1] and∑m

i=1 wi = 1 . A software system SS consists of a software entity set SE together
with different types of dependencies between the contained items.

2000 Mathematics Subject Classification. 68T20, 68N99.
Key words and phrases. searched-based software engineering, multi-objective optimization,

refactoring.

c©2009 Babeş-Bolyai University, Cluj-Napoca

249

250 CAMELIA CHISĂLIŢĂ–CREŢU(1) AND ANDREEA VESCAN(1)

A set of possible relevant chosen refactorings [3] that may be applied to different
types of software entities of SE is gathered up through SR = {r1, . . . , rt} . There
are various dependencies between such transformations when they are applied to the
same software entity, a mapping emphasizing them being defined by:

rd : SR× SR× SE → {Before,After,AlwaysBefore,AlwaysAfter,Never,Whenever},

rd(rh, rl, ei) =





B, if rh may be applied to ei only before rl, i.e., rh < rl

A, if rh may be applied to ei only after rl, i.e., rh > rl

AB, if rh and rl are both applied to ei then rh < rl

AA, if rh and rl are both applied to ei then rh > rl

N, if rh and rl cannot be both applied to ei

W, otherwise, i.e., rh and rl may be both applied to ei whenever

,

where 1 ≤ h, l ≤ t, 1 ≤ i ≤ m.
The effort involved by each transformation is converted to cost, described by the

following function: rc : SR× SE → Z,

rc(rl, ei) =

{
> 0, if rl may be applied to ei

= 0, otherwise
,

where 1 ≤ l ≤ t, 1 ≤ i ≤ m.
Changes made to each software entity ei, i = 1,m by applying the refactoring

rl, 1 ≤ l ≤ t are stated and a mapping is defined: effect : SR× SE → Z ,

effect(rl, ei) =





> 0, if rl is applied to ei and has the requested effect on it
< 0, if rl is applied to ei and has not the requested effect on it
= 0, otherwise

,

where 1 ≤ l ≤ t, 1 ≤ i ≤ m.
The overall effect of applying a refactoring rl, 1 ≤ l ≤ t to each software entity

ei, i = 1,m is defined as: res : SR → Z, res(rl) =
∑m

i=1 wi ∗ effect(ei, rl), where
1 ≤ l ≤ t .

Each refactoring rl, l = 1, t may be applied to a subset of software entities, defined
as a function:

re : SR → P (SE), re(rl) =
{

el1 , . . . , elq | if rl is applicable to elu , 1 ≤ u ≤ q, 1 ≤ q ≤ m
}

,

where re(rl) = SErl
, SErl

⊆ SE − φ, 1 ≤ l ≤ t.
The goal is to find a subset of refactorings RSet such that for each entity ei, i =

1, m there is at least a refactoring r ∈ RSet that may be applied to it, i.e., ei ∈ SEr.
Thus, ORSP is the identification problem of the optimal refactorings that may be
applied to software entities such that several objectives are kept or improved, like the
minimum total cost and the maximum overall effect on the affected software entities.

There are several ways to deal with a multi-objective optimization problem. In
this paper the weighted sum method [4] is used.

3. Proposed approach description

The approach presented in this paper uses principles of evolutionary computation
and multi-objective optimization. First, the problem is formulated as a multiple
objective optimization problem having two objectives: the total cost of applying the
refactorings (i.e., rc function) and the overall effect of applying the refactorings (i.e.,
res function). Because the cost function (f1) should be minimized and the res
function (f2) should be maximized, we have modified the value of the cost into

THE MULTI-OBJECTIVE REFACTORING SELECTION PROBLEM 251

MAX minus the real cost, where MAX is the biggest possible cost and the real cost
values being less than MAX . Thus, the new function obtained by aggregating the
two objectives can be written as: F (x) = α · f1(x) + (1− α) · f2(x), α ∈ [0, 1] .

The goal is to identify those solutions that compromise the refactorings costs
and the overall impact on transformed entities. The decision vector

→
r = (r1, . . . , rm),

ri ∈ SR, 1 ≤ i ≤ m determines the refactorings that may by applied in order to
transform the considered set of software entities SE . The item ri on the i-th position
of the solution vector represents the refactoring that may be applied to the i-th
software entity from SE , where ei ∈ SEri

, 1 ≤ i ≤ m .
The algorithm proposed was applied on a simplified version of the Local Area

Network (LAN) simulation source code that was presented in [1]. It contains 5 classes
with 5 attributes and 13 methods, constructors included. The current version of the
source code lacks of hiding information for attributes since they are directly accessed
by clients. The abstraction level and clarity may be increased by creating a new
superclass for PrintServer and FileServer classes, and populate it by moving up
methods in the class hierarchy.

Thus, for the studied problem the software entity set is defined as: SE =
{c1, ..., c5, a1, ..., a5, m1, ..., m13} . The chosen refactorings that may be ap-
plied are: renameMethod, extractSuperClass, pullUpMethod, moveMethod, encapsu-
lateField, addParameter, denoted by the set SR = {r1, . . . , r6} in the following. The
dependency relationship between refactorings is defined as {(r1, r3) = B, (r1, r6) =
AA, (r2, r3) = B, (r3, r1) = A, (r6, r1) = AB, (r3, r2) = A, (r1, r1) = N, (r2, r2) =
N, (r3, r3) = N, (r4, r4) = N, (r5, r5) = N, (r6, r6) = N}.

The values of the final effect were computed for each refactoring, but using the
weight for each existing and possible affected software entity, as it was defined in
Section 2. Therefore, the values of the res function for each refactoring are: 0.4, 0.49,
0.63, 0.56, 0.8, 0.2.

Here, the cost mapping rc is computed as the number of the needed transfor-
mations, so related entities may have different costs for the same refactoring. Each
software entity has a weight within the entire system, but

∑23
i=1 wi = 1 . For effect

mapping, values were considered to be numerical data, denoting estimated impact of
refactoring applying. Due to the space limitation, intermediate data for these map-
pings was not included. An acceptable solution denotes lower costs and higher effects
on transformed entities both objectives being satisfied.

The parameters used by the evolutionary approach are as follows: mutation prob-
ability 0.7 and crossover probability 0.7. Different number of generations and of
individuals are used: number of generations 10, 50, 100, and 200, and number of
individuals 20, 100, 200. Current paper studies the aggregated fitness function where
objectives have equal weights, i.e., α = 0.5.

3.1. Results obtained by the Evolutionary approach. In order to compare data
having different domain values the normalization is applied firstly. We have used two
methods to normalize the data: decimal scaling for the rc function and min-max
normalization for the value of the res function. The algorithm was run 100 times
and the best, worse and average fitness values were recorded. Figure 1(a) presents

252 CAMELIA CHISĂLIŢĂ–CREŢU(1) AND ANDREEA VESCAN(1)

the evolution of the fitness function (best, worse and average) recorded for each run
within 20 chromosomes populations and 10 generations.

The evolution of fitness function (recorded for the best individual in each run)
for 200 generations and 100 individuals is depicted in Figure 1(b).

(a) Experiment with 10 generations and
20 individuals with eleven mutated genes

(b) Experiment with 200 generations and
100 individuals

Figure 1. The evolution of fitness function (best, worse and aver-
age) and the best individual evolution

While compared with the previous experiments we noted that we are getting a
lower number of different solutions while cumulating the results obtained in all the
100 runs, but the quality (and the number) of these solutions is improving much
more. In a first experiment the greatest value of the fitness function is 0.3508 (with
69 individuals with the fitness > 0.33) while in a second experiment this is not more
than 0.3536 (55 individuals with the fitness > 0.33). But the best chromosome was
found in the experiment with 200 generations and 20 individuals having the value
0.3562.

The best individual obtained allows to improve the structure of the class hierarchy.
Therefore, a new class is added as base class for PrintServer and FileServer and
the print method is renamed, its signature is changed and it is moved to the new
Server class. The correct access to the class fields by encapsulating them within their
classes is enabled.

3.2. Results obtained by others. Fatiregun et al. [2] applied genetic algorithms
to identify transformation sequences for a simple source code, with 5 transformation
array, whilst we have applied 6 distinct refactorings to 23 entities. Seng et al. [6]
apply a weighted multi-objective search, in which metrics are combined into a single
objective function. An heterogeneous weighed approach is applied here, since the
weight of software entities in the overall system and refactorings cost are studied.
Mens et al. [5] propose the techniques to detect the implicit dependencies between
refactorings. Their analysis helped to identify which refactorings are most suitable
to LAN simulation case study. Our approach considers all relevant applying of the
studied refactorings to all entities.

4. Conclusions and Future work

The paper defines the MOORSP by treating the cost constraint as an objective
and combining it with the effect objective. The results of a proposed weighted ob-
jective genetic algorithm on a experimental didactic case study are presented and
compared with other recommended solutions for the similar problems.

THE MULTI-OBJECTIVE REFACTORING SELECTION PROBLEM 253

Current paper discusses the weighted multi-objective optimization, but the Pareto
approach is a further step in current research since it proves to be more suitable when
it is difficult to combine several objectives into a single aggregated fitness function.
More, the cost may be interpreted as a constraint, with the further consequences.

Acknowledgement. This material is based upon work supported by the Romanian
National University Research Council under award PN-II no. ID 550/2007.

References

[1] S. Demeyer, D. Janssens, T. Mens, Simulation of a LAN, Electronic Notes in Theoretical Com-
puter Science, 72 (2002), pp. 34-56.

[2] D. Fatiregun, M. Harman, R. Hierons, Evolving transformation sequences using genetic algo-
rithms, in 4th International Workshop on Source Code Analysis and Manipulation (SCAM 04),
Los Alamitos, California, USA, IEEE Computer Society Press, 2004, pp. 65-74.

[3] M. Fowler. Refactoring: Improving the Design of Existing Software. Addison Wesley, 1999.
[4] Y. Kim, O.L. deWeck, Adaptive weighted-sum method for bi-objective optimization: Pareto

front generation, in Structural and Multidisciplinary Optimization, MIT Strategic Engineering
Publications, 29(2), 2005, pp. 149-158.

[5] T. Mens, G. Taentzer, O. Runge, Analysing refactoring dependencies using graph transforma-
tion, Software and System Modeling, 6(3), 2007, pp. 269-285.

[6] O. Seng, J. Stammel, D. Burkhart, Search-based determination of refactorings for improving
the class structure of object-oriented systems, in Proceedings of the 8th Annual Conference on
Genetic and Evolutionary Computation, M. Keijzer, M. Cattolico, eds., vol. 2, ACM Press,
Seattle, Washington, USA, 2006, pp. 1909-1916.

(1) Computer Science Department, Faculty of Mathematics and Computer Science,
Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: cretu@cs.ubbcluj.ro, avescan@cs.ubbcluj.ro

KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2009
Cluj-Napoca (Romania), July 2–4, 2009, pp. 254–257

VIRTUAL REALITY REHABILITATION ENVIRONMENT FOR
OBSESSIVE–COMPULSIVE DISORDER

SORIN JIBOTEAN(1) AND RARES FLORIN BOIAN(2)

Abstract. Medical rehabilitation often employs virtual environments due to

their flexibility, safety and low costs. The applications of virtual reality in reha-

bilitation ranges from post-surgery or stroke therapy to ADHD or phobias. The
paper presents a virtual environment developed to train obsessive-compulsive dis-

order (OCD) patients to focus on the task at hand without trying to first arrange

everything to a perceived perfect pattern. The application is based on reports
of high school results and exam behavior of otherwise good students who suffer

from OCD.

1. Introduction and Approach

Medical rehabilitation often employs virtual environments due to their flexibil-
ity, safety and low costs. The applications of virtual reality in rehabilitation ranges
from post-surgery or stroke therapy [1] to attention deficit and hyperactivity disorder
(ADHD) [2, 3] or phobias treatments.

Patient suffering of obsessive-compulsive disorder display symptoms such as: fear
of contamination or dirt, having things orderly and symmetrical, or recurrent and
persistent thoughts and impulses [4, 5]. Based on reports from the Pediatric Psy-
chiatric Hospital in Cluj–Napoca, high school students suffering on OCD, often fail
exams due their focus on arranging things in a perfect pattern instead of focusing on
the test or exam subjects.

The application develop is aimed to training such students to focus on the exam
subjects while ignoring the lack of pattern of the environment. Following the exposure
therapy approach, the virtual reality application, requires the patient to take an exam
in a virtual classroom.

2. Related Work

The applications of virtual reality in the medical field is a very active and exten-
sively investigates subject. The closest work to that present in this paper has been
done by Rizzo et al. [2] with the Virtual Classroom project for studying ADHD in
children. Their virtual environment places the patient in a classroom and presents

2000 Mathematics Subject Classification. 68U05, 68U35, 68U01.

Key words and phrases. virtual reality, virtual rehabilitation, exposure therapy.

c©2009 Babeş-Bolyai University, Cluj-Napoca

254

VIRTUAL REALITY REHABILITATION ENVIRONMENT ... 255

him/her with a lesson during which several distractions are played out to test the
child’s reactions.

Our work differs from the Virtual Classroom in that the patient is required to
complete a real test in the virtual environment. Also, the distractions in our applica-
tion differ in nature from those of Rizzo’s virtual classroom

3. Virtual Environment

The virtual reality application developed for OCD treatment was implemented
using JOGL, a Java wrapper around the OpenGL library [6, 7]. The environment
consists of a virtual classroom in which the patient is positioned sitting at a desk
between two other students (see Figure 1a). The patient has a test in front of him and
is required to answer the questions in a certain time limit. The patient can interact
with the environment using a joystick. He/she can change the view direction or grab
objects on the table and reposition them as desired, or answer the test questions.

(a) (b)

Figure 1. Virtual environment. (a) Classroom; (b) Quiz

The patient’s virtual belongings (pencil, eraser, and cell phone) are placed ran-
domly around the test paper, so they would bother the patient and trigger the need
for a pattern. While the patient can grab and move or rotate the objects as desired,
they application intelligently replaces them after a certain time, thus breaking the
pattern created by the patient. The replacement is done with a slow progressive
motion. The level at which the application changes the positions of the objects is
controllable, thus allowing the therapist to choose the desired level of distraction for
each patient independently.

To add realism to the scene, the neighboring students and the professor at the
desk are controlled by the application to move their bodies (mainly the head) in a
pattern suggesting reading.

4. Measurements and Visualization

To provide the therapist and the patient to perform a quantitative evaluation of
the therapy session, the virtual environment stores in an Microsoft Access database

256 SORIN JIBOTEAN(1) AND RARES FLORIN BOIAN(2)

the score of the test, the duration it took the patient to complete the test, and
percentage of focus on the test out of the entire time spent in the virtual environment
(see Figure 2).

The percentage of focus is calculated using the position of the interaction point
(displayed as a cross-hair). The time when the patient focuses on the test is defined as
the time the interaction point is above the test, either interacting with the questions
or not interacting with anything else. The rest of the time spent arranging the objects
on the desk or looking around is considered out–of–focus time. The graph displays
the ratio between the focus time and the total test time as a percentage.

Figure 2. Visualization of recorded measurements

The test results can be view before or after the therapy session. The graphs
present a historical view of the therapy records, allowing easy visual evaluation of
performance and progress.

5. Future Work

The development of the virtual environment presented here has been completed
as the application reached a stable version. The next step is to validate it with
specialists in psychology and psychiatry. Finally this work will be validated and its
effectively and results evaluated in a pilot study followed by patient trials.

References

[1] R. Boian, Bouzit, and G. M; Burdea, “Dual stewart platform mobility simulator,” in IEEE 9th
International Conference on Rehabilitation Robotics, Chicago IL, 2005, pp. 550–555.

[2] A. Rizzo, D. Klimchuk, R. Mitura, T. Bowerly, J. Buckwalter, and T. Parsons, “A virtual reality
scenario for all seasons: The virtual classroom,” CNS Spectrums, vol. 11, no. 1, pp. 35–44, 2006.

[3] T. Parsons, T. Bowerly, J. Buckwalter, and A. Rizzo, “A controlled clinical comparison of at-

tention performance in children with adhd in a virtual reality classroom compared to standard
neuropsychological methods,” Child Neuropsychology.

[4] Diagnostic and statistical manual of mental disorders, fourth edition. Washington, DC: Amer-
ican Psychiatric Association, 1994.

VIRTUAL REALITY REHABILITATION ENVIRONMENT ... 257

[5] M. C. staff, “Obsessive-compulsive disorder (ocd): Symp-
toms.” [Online]. Available: http://www.mayoclinic.com/health/obsessive-compulsive-

disorder/ds00189/dsection=symptoms

[6] Opengl, D. Shreiner, M. Woo, J. Neider, and T. Davis, OpenGL(R) Programming Guide : The
Official Guide to Learning OpenGL(R), Version 2 (5th Edition). Addison-Wesley Professional,

August 2005.

[7] E. Lengyel, The OpenGL Extensions Guide. Charles River Media, 2003.

(1) Babes-Bolyai University, Department of Computer Science, Str. Mihail Kogal-
niceanu Nr 1, RO-400084 Cluj-Napoca

E-mail address: jibotean sorin@yahoo.com

(2) Babes-Bolyai University, Department of Computer Science, Str. Mihail Kogal-

niceanu Nr 1, RO-400084 Cluj-Napoca
E-mail address: rares@cs.ubbcluj.ro

