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A PREDICTOR-CORRECTOR ALGORITHM FOR LINEARLY
CONSTRAINED CONVEX OPTIMIZATION

ZSOLT DARVAY

ABSTRACT. In a recent paper we have introduced a new class of search
directions for solving linear optimization (LO) problems. These direc-
tions are based on an algebraic equivalent transformation of the nonlinear
equation from the system which defines the central path. However, from
the implementation point of view predictor-corrector algorithms proved to
be the most efficient among the class of interior point methods (IPMs).
Therefore, we have defined also other variants of this class of algorithms,
for example a weighted path-following algorithm, and a predictor-corrector
algorithm for LO problems. Recently, the technique of finding search di-
rections has been applied with success for linearly constrained convex op-
timization (LCCO), by Zhang, Bai and Wang. In this paper we define
a new predictor-corrector algorithm for solving LCCO problems. We ob-
tain new search directions by applying the method of algebraic equivalent
transformation in this case too. Polynomial complexity of this algorithm
is proved.

1. INTRODUCTION

The field of IPMs has been very active since Karmarkar published his fa-
mous paper [7] in 1984. However, in general one of the significant aspects
of determining a new algorithm resides in the method of following the cen-
tral path. Therefore, search directions play an important role in finding new
algorithms. Peng, Roos and Terlaky [10] have defined the notion of self reg-
ular functions and, using this concept, they have introduced a new class of
search directions for LO. They have extended their results also to comple-
mentarity problems (CP), semidefinite optimization (SDO) and second order
cone optimization (SOCO), and they have proved polynomial complexity of
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different large-update algorithms, which use self-regular functions to obtain
new directions.

An alternative method has been introduced in [3, 5] by applying alge-
braically equivalent transformations to the nonlinear centering equation of the
system, which defines the central path. The method has been applied with
success to convex quadratic optimization (CQO) by Achache [2] and LCCO by
Zhang et al. [17]. Recently, the new technique for LO has been extended also
to monotone mixed linear complementarity problems (LCPs) by Wang, Cai
and Yue [15], and to SDO and SOCO by Wang and Bai [13, 14]. The method of
algebraically equivalent transformation has been generalized also to weighted-
path-following algorithms. The first results for LO have been given in [4].
Later on, Achache [1] generalized this algorithm to standard LCPs, and Wang
et al. [16] to monotone horizontal LCPs. The above mentioned algebraic
transformations, followed by a Newton step, resulted in small-update feasible
algorithms, and for all of them the best known iteration bounds were obtained.
However, Pan, Li and He [9] introduced a large-update infeasible algorithm us-
ing a logarithmic transformation. This logarithmic equivalent transformation
was mentioned formerly by Tuncel and Todd [12].

Another approach of developing an efficient algorithm is considering pre-
dictor and corrector steps. We mention that the first algorithm, that have
divided the Newton direction into the affine-scaling and centering direction,
is due to Mehrotra [8]. In [6] we have defined a predictor-corrector algorithm
obtained by applying an equivalent algebraic transformation, using the square
root function, as in [3]. In this paper we extend this algorithm to LCCO.

The notations used in this paper are the following: R™ is the set of n-
dimentional vectors and 2> is the set of m x n matrices. Moreover, R is
the set of nonnegative real numbers, if z € R™ then diag(z) is the diagonal
matrix formed by the elements of z, and e is the all-one vector.

This paper is organized in the following way. In the next section we intro-
duce the basic issues regarding the central path, and we discuss the primal-dual
algorithm for LCCO. In the third section we define the predictor-corrector al-
gorithm for LCCO and we prove its polynomial complexity. Finally, we present
some conclusions in Section 4.

2. PRIMAL-DUAL PATH-FOLLOWING ALGORITHM
Let us consider the following problem
(P) min {f(x) : Az = b,x > 0},
and its Wolfe dual
(D) maz {b"y + f(z) — (V@) w: ATy + 5 - Vf(z) =0,5 >0},
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where A € R™*" rank(A) = m, b € R and f : R” — R is a convex and
twice continuously differentiable function. Suppose that the interior point

condition (IPC) holds. Thus, there exist (2%, %, s”) such that
(PC) Az = b, ¥ >0,
ATy 10 — V(%) =0, s9> 0.

The IPC can be assumed without loss of generality, and we may assume z° =
sY = e. The optimality condition for the pair (P)-(D) can be written as
Az = b, x>0,
(1) ATy +5—Vf(x) =0, 5>0,
zs = 0.
If the IPC holds, then for a fixed p > 0 the system
Az = b, z >0,
(2) ATy +5—Vf(x)=0, s>0,
xrs = pe,

has a unique solution, called the p-center. Let us consider the function ¢ such
that

(3) e Cl p:RNT - RT, and ¢! exists.
Then, the system (2) is equivalent to

Ax = b, x>0,
ATy 4+ s —Vf(z)=0, s> 0,

@ <3:9> = p(e),

Assume that we have Ar = b, x >0, ATy+s—Vf(x) =0, s> 0 for a triple
(z,y,s). Applying Newton’s method for system (4) we get

AAx =0,
ATAy + As — V2 f(z)Az =0,

f4)0/ <xs> Ax + Egpl <$S> As=p(e) —p <xs> .
p \ p p \ p 7
A A
Denote ds = var ds = u.

z s
We have
(6) po(dy + ds) = sAx + xzAs,

(4)

()
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AxA
(7) dpdy = =222,
i
The linear system (5) is equivalent to
Ad, =0,
(8) Ald, +ds — Hd, =0,
dy + ds = py,

where V' = diag(v), X = diag(x), S = diag(s) and we also use the following
notations:

2

— _ — 1

Py = #(c) ‘PQ(U, H=pVS 'V f(z)VS™ and A=-AV7'X.
vl (v?) 1

Observe that ¢(t) = t yields p, = v~ — v, and we obtain the standard primal-

dual algorithm. Let o(t) = v/t. Then we have

9) Py = 2(e —v).

From (5) we obtain

1

AAx = 0,
(10) ATAy + As —V2f(z)Az = 0,

\/7Ax+\/7AS = 2(\/pe — Vxs).

The system (10) can be written in the following form:
AAx = 0,
(11) ATAy + As — V2f(zx)Az = 0,
sAz +zAs = 2(\/pxs — xs).

We define a proximity measure to the central path

[xs
e—4/—1-
I

Denote ¢, = d; — ds. The function f is convex, thus the matrices V2 f(x) and
H are symmetric and positive semidefinite. Thus d.ds > 0 and

[po
(12) ols, ) = 122l — e o) =

llgoll < llpoll-
We have
o(xs, ) > ”q;H,
Pv+4q Dv —Qq
dy = U2 = ds = U2v7
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2

2
(13) dpdy = 22 v b

Algorithm 2.1 Let € > 0 be the accuracy parameter, 0 < 6 < 1 the update
parameter (default 0 = ﬁ ), and 0 < 7 < 1 the proximity parameter (default

T = %) Suppose that for the triple (20,9, s°) the IPC holds, and let u° =

o\T .0
(z%)"s 050““0) <

. Furthermore, suppose o(x
begin
zi=a% y=y% s =% p=p"
while 27s > ¢ do begin

p=(1—0)u;
Compute (Ax, Ay, As) from (11)
T :=1x+ Ax;
y:=y+ Ay;
s:= s+ As;
end

end.

The complexity analysis of this algorithm has been given in [17]. The results
are similar to the LO analogue [5]. We revisit the following lemmas given in
[17].

Lemma 2.1 Let x4 =z + Az and s; = s+ As. Moreover, let o = o(xs, 1)
and suppose that o < 1. Then

x+ >0 and sy >0,

hence the full Newton step is strictly feasible.
Proof: Denote x4 (o) = x + oAz and s4(a) = s+ aAs for each 0 < a < 1.
We have

1 ) N
(14) —ri(a)si(a) =1 —a)p”+ale-(1-a)7 —a=— ).
" 4 4
2 2
H(l—a)p”—i—aq” <o? <.
TR |

Thus, for each 0 < a <1 we have z4(a)s; (o) >0. m
Lemma 2.2 Let o =o(xs,pu) < 1. Then

o(xysy,p) <1—+1-—02
Thus the Newton process is quadratically convergent.
Proof: Let vy =, /**. Using (14) we obtain

(15) vi=e— 2
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. o 1 2 ||qv”2 2
16 min(y) = /1 - Sl > /1= 125 S 70
2
o
< =1—1+/1-—02.
et+v4|| T 1+vV1—02

Hence o (x4 s, 1) < 02, and this proves the lemma. m

Lemma 2.3 Let 0 = o(xs,u) and suppose that the vectors x4 and si are
obtained after a full Newton step, thus x4+ = x + Az and s = s+ As. We
have

2

U(.’E+S+, /1') =

() s = — 12210
Hence (x)Tsy < un.
Proof: 'We have
l:1c Sy =e— 0
+5+ 1
Consequently
T 2 2
e dq q
() s = " (@asy) = e~ 00y = o — 1200y _ i 02)

This proves the lemma. =
Lemma 2.4 Leto =o(xs,pu) <1 and py = (1—0)p, where 0 < 6 < 1. Then

Oy/n + o?
TySy,
P Ny T g
Moreover, if o < 5, 0 = ﬁ and n > 4 then we have o(z4s4, puy) < 3.
Proof: Using (15) and (16) we may write

o(x4s )=|le — s H Je —vi
ol [y \/1— V1= fe + vy
q 0v/n + o?

_f_i

<
1—94—\/1— (1—02) T 1-60+ /(1 -6)(1-0?)
This implies the first part of the lemma. To prove the second part observe
that for n > 4 and 6 = 7 we have 1 — 0 > %. Finally, for o < % a simple

calculus yields o(x4s4, put) < % ]

Lemma 2.5 Suppose that 2° = s° = e. Then Algorithm 2.1 performs at

most
1 1 n
ot
interior point iterations.
Proof:  For the proof we refer to [17], and for the LO variant [5]. =
Thus, we obtain the following theorem.
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Theorem 2.6 Suppose that z° = s° =
7 Algorithm 2.1 requires no more than

s

interior point iterations. The resulting vectors satisfy 's <e. m

e. Using the default values for 6 and

3. PREDICTOR-CORRECTOR ALGORITHM
The third equation in the system (8) can be written in the form:
ds +ds = 2e — 2v.

Observe that the expression on the right hand side can be viewed as a sum of
two terms. Consider the following equations.

(17) d% 4 d* = —2v,

(18) ds + dS = 2e,

and conclude that the standard Newton direction has been breaking down into
two steps, the affine-scaling, or predictor one: d% and d?¢, and the centering,
or corrector step: dS and dS. The equations (17) and (18) yield the following
systems:

Ad® =0,
(19) ATd% +d? — Hd} =0,
dy +dg = —2v,
and
Ade =0,
(20) ATdS +dS — Hd =0,
d; + d5 = 2e,

where A = ﬁAdiag(%) and H = pVS=1V2f(x)VS~L. The systems (19) and
(20) have unique solutions. Denote by d%, d?, dS and dS these solutions. We
have

(21) (dg)"dg >0, (dp)"dg >0,
and the solution of (8) can be obtained from (19) and (20) as follows
dy = d2 + dS,

dy = d® + d-.
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The step direction vectors in the original space are

A'e=Sdi,  A's=Cdl Ay =dj,

Afx = fd;, Afs = fdg, Aty =dy.
v v
Thus
(22) TA%s + sA%% = po(d2 + d%) = —2uv* = —2us,
(23) zA°s + sA°x = pu(d;, + di) = 2uv = 2\/zsp,
(24) A%zA%s = pdid;.
From (22) we obtain that (A%z, A%y, A%s) is the solution of the system:
AA%x =0,
(25) ATA% 4+ A% — V2 f(2) A% = 0,

sA%r + A% = —2xs.

Now we are ready to describe the predictor-corrector algorithm.
Algorithm 3.1

Let 0 < 7 < 1 be the proximity parameter (default value T = %), e >0

the accuracy parameter, and 0 < 0 < % the update parameter (default 0 =

\T .o
ﬁ) Assume that for the triple (z°,4°, s) IPC holds, and let u° = (I#
Furthermore, assume that o(2%s°, u°) < 7.
begin
=20 5:= 5% p:=pu’
while 27s > ¢ do begin
Compute (Ax, Ay, As) from (11).

T =1z + Ax;
s:= s+ As;
Compute (A%x, A%y, A®s) using the system (25).
x:=x+ 0A%;
s:=s+ 0A%s;
= (1—20)p;
end

end.

Our first aim is to prove that this algorithm is well defined. We discuss also
the complexity of the algorithm. To achieve these goals, in the first lemma we
find lower and upper bounds for the components of the vector v.

Lemma 3.1 Letx>0,s>0, u>0,v= % and o = o(zs,p) = [le — v||.
Assume that o < 1. Then, for all i such that 1 < i <n, we have

l—-oc<vy;<1+o0.
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Moreover, the following inequalities hold
(26) min (v?) > (1—-0)?,  |Jo|* < n(l+0)%

Proof: See [6]. m

The following lemma provides upper bounds for the Euclidian norm and the
infinity norm of the product of two vectors with non-negative inner product.
Lemma 3.2 (Extension of the first uv-lemma in [11]) Let 7 € R" and
¢ € R™ are two vectors such that ©7¢ > 0. Then we have

/5

1 2
I7Clloo < Sllm+ €I, lml < 2w+ ¢

Proof:
We have [|7 + ¢|* = |lm — ¢||> + 477¢, resulting |7 + ¢|| > [|7 — ¢|.
Furthermore

(21) "C= 0+ Q)7 — 2(m— Q)2
Thus

=P << m 0
and

1 1 1
=7+ ClPe < = llm = ClPPe < 7¢ < Llm+ ¢ e
This proves the first inequality. To prove the second one, observe that from
(27) and ||7¢||? = e (7¢)? we obtain:
1
< e ((m+ O+ (m=0)Y).

1
Il = g (740 = (=) < ¢

Moreover, for each £ € R the eT¢* < ||€]|* inequality holds, therefore

2

1 1
Im¢)? < sl + Gl + Sl = 1,

and using again the relation |7 — (|| < || + (|| we get the second inequality.
This proves the lemma. =
We introduce the followig notations. Let

(28) o) = (1+V2) 02 =2 (V2= 1) 0 + 2,

2 6°n 2
(29) K(c,0,n)=(1-0) —1_29(14-0) ,
and

o) — V2K (0,0,n)

1++/K(0,0,n)

(30) ®(0,0,n) =
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Consider the following function

(31) wt)y=1—1-1,

defined for every 0 <t < 1. For fixed 7 introduce the function

(1+U)2<02—20+\/§T—T;>.

We give a sufficient condition for yielding strictly feasible vectors after an
affine-scaling step.

Lemma 3.3 Let x>0, s >0, u > 0 in such a way, that o0 = o(zs,p) < 1.
Furthermore, let 0 < 0 < 3. Denote z* = 2 + 0A% and s™ = s+ A%s.
Then

(32) ¥, (o) =

zt >0 and sT >0,
if the inequality K(o,0,n) > 0 holds.
Proof: Let us introduce the notations

rT(B) =2+ BOA*r and sT(B) = s+ BIA"s
for each real number 0 < 5 < 1. We have the following equality:
zT(8)sT(B) = zs + BO(xA% + sA%z) + (202 A%z A%s.
Using the relations (22) and (24) we get:
(33) 2 (B)5(8) = (1 — 280)as + p6P0%dede

thus we obtain

e (B)sT(B) _ o B

34 ="+ —————d5d}.
39 (2600 (i~ 250)
Therefore
a™(B)s*(B) 2 56>
—————= | > mi - dzd?
n<(1—259)u> 2 min (v%) = 755 43l
Moreover, for each fixed 0 < 6 < %, the function ¥(83) = 1 2/39 defined for
0 < B <1 is strictly increasing, thus
+*(8)s*(8) o O
35 in( ————~=] > mi — dzd?
(35) mm((l—QﬁQ)u)_mm(U) T H oo

From Lemma 3.2, using the equality (17) and Lemma 3.1 we obtain
(36) ldzdsllo < *||d“+d“\| [v]]* < n(1+ )%

Now, using the relation (35) and Lemma 3.1 again, we get

(T (B)sT(B)
(37) min ((1—259)M> > K(o,0,n)
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But K(o,0,n) > 0, and we deduce that for each 0 < 8 < 1 the inequality
zT(B)sT(B) > 0 holds. Therefore the x*(3) and s™(8) functions are not
changing sign on the [0,1] interval. We know that z7(0) = = > 0, and
sT(0) = s > 0, thus we conclude that (1) = 2z > 0, and sT(1) = st > 0.
This proves the lemma. =

In the next lemma we investigate the modification of the proximity measure
after an affine-scaling step, and the update of the parameter pu.

Lemma 3.4 Letx >0, s >0, u > 0 such that 0 = o(xs,u) < 1. Moreover,
let 0 < 0 < % and assume that K(o,0,n) > 0. Assume that we obtain the
vectors T and sT from an affine-scaling step, thus x™ = x + 0A% and
sT = s+ 0A%. Denote um = (1 —20)u and ot = o(zTst,u"). Then the
inequality

(38) ot < ®(a,0,n)

holds.
Proof:  From Lemma 3.3 we deduce that the affine-scaling step is strictly

feasible. Denote
+g+
vt = s )
7

By substituting 5 = 1 in the relations (34) and (37) we get

2

+\2 _ 2 a ja
(39) (b)) =w +1_20dxd5,
(40) min (v") > \/K(0,0,n).
Moreover
e — (v+)2
" =lle=vTll ==

so the following inequality holds
e =2+ o2 = 1)?

1 + min (vt)

(41) ot <

Using Lemma 3.2, the equality (17) and Lemma 3.1 we obtain

2
(42) Jazaz < Y2 2 + 212 = Vo < Van(1 + o)

Now, from (39) we get

(13) o2 - 092 < 2

2
<19 2n(l+o0)°.
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Observe that ||e — v?|| < o+ [|v(e — v)]|, and Lemma 3.1 yields [v[|, < 1+0,
therefore

(44) le = v%|| < o+ [|v]l le — v]| < 0 + 20
Finally, using the relations (40), (41), (43) and (44) we deduce

2
0%+ 20+ 1%6\/571(1 + 0)?

1+ +K(c,0,n)

and this results in (38). Thus, the lemma is proved. m

The next lemma is devoted to the proximity measure of the vectors obtained
by a full Newton step. We use also the results of Lemma 2.2.

Lemma 3.5 Letxz >0, s >0, u >0, and 0 < 7 < 1 in such a way that
o = o(xs,p) < 7. Suppose that the vectors x and s are produced by a full
Newton process, thus v+ = x + Az and st = s+ As. Then

(46) o(xst, p) <w(r).

Moreover, if T < 2, then o(zs*, u) <6 —4v2 and o(zFst, p) <
Proof: From Lemma 2.2 we obtain

(45) ot <

7
o(ztst, p) <w(o).

Furthermore, the function w(t) is increasing for 0 < ¢ < 1, so the inequality
(46) holds. If we assume 7 < 2, then a simple calculus yields

3 7
olxtsT p) <w(r) <w (4) =1- \4[ <6 —4V2.
For the last relation it is sufficient to prove that the inequality w(7) <

holds. We have 7 < 3 < %, thus 372 < 2v/27, therefore (\/57 -1 2

Sk

1
272 — 227 +1 < 1 — 72. We obtain

T 1

VI VR
and from this inequality we get w(7) < % This proves the lemma. m
In the following lemma we provide a sufficient condition, which guarantees
that after an affine-scaling step the proximity measure will not exceed the
proximity parameter.
Lemma 3.6 Let 7 be fized such that 0 < 7 < % and let p > 0. Assume
now that x > 0 and s > 0 are the vectors generated by the full Newton step of
Algorithm 3.1. Let 2 and s be the vectors obtained after the affine-scaling
step, thus x¥ = x + 0A% and st = s+ 0A%. Denote pt = (1 — 20)p
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and ot = o(xtst,u"). Finally, assume that the update parameter satisfies
the 0 < 6 < % condition. Then the inequality

(47) ot <71
holds if
6%n
<
(48) < (o),

Moreover, U, (o) > 0 and for each fixed T the function V. is decreasing on the
closed interval [0, w(T)].
Proof: Let us introduce the notation

2

(49) Y- (o) 202—20—1-\@7—%.
Thus
U, (o) = M.
T (1+ 0)2
Observe that for 0 < 7 < % we have 1 — % >1- 3T\/§ > (. Therefore

2\ 2
(50) V(o) = (1—0)? — <1 - \/§> <(1-0)?

Suppose that the inequality (48) holds. Then, from (50) results K(o,6,n) > 0,
and we obtain that Lemma 3.4 can be applied. Because x > 0 and s > 0 are
the vectors generated by a full Newton step of Algorithm 3.1, we deduce that
there exists the vectors £ > 0 and 5 > 0 in such a way that, from these vectors
we obtain x and s by a full Newton step. Moreover, o(Z3, 1) < 7, and applying
Lemma 3.5 for the vectors  and § we get the following inequalities

(51) o< \%,
(52) o< 6—4v2.

Lemma 3.4 implies that the inequality o™ < 7 holds if ®(c,60,n) < 7. This
can be written in the following form

V2K (0,0,n) +7/K(0,0,n) + 7 — X&) > 0.

Denote k = y/K(0,0,n) and o(t) = v2t> + 7t + 7 — A(0). Then (47) holds
if o(k) > 0. The next issue is to determine lower and upper bounds of \(o)
and using these results to study the sign of the function p. From (52) we get
0<o<6— 4\/5, therefore

(1+ﬂ)02§2(\f2—1)a,
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thus A(¢) < v/2. Moreover, we have
2
Ao) = (14V2) (0= (3-2v2)) +7-4v2 > T-4v2,

resulting in

(53) T-4v2<\0) < V2.
Let
(54) Apr =72 —4V2 7 +4V2 A(0).
The roots of the p(t) = 0 equation are
4 — —T7 — /Ay s T+ \/Asr

L NVTeT = TV TeT
212 ? 212

Since 0 < 7 < 3, from (53) we get 7 < (o) thus

Agr > 2> 0.

We obtain the inequalities t; < 0 and to > 0, and this means that if Kk > to,
then (k) > 0 holds, and (47) is satisfied. Using (53) from (54) we get

VB < \/72—4\/§T+8:\/m:2\/§—7,

therefore
2v2 —2r T
28 ——F=—=1-——7.
2v2 V2
We deduce that the inequality (47) holds if K > 1— %, and this can be written
in the form )
-
K(o,0n)>[1—— | .
00> (1= 75)

Using (29) the inequality (48) follows. This proves the first assertion of the
lemma. Now, from Lemma 3.5 the inequality o < w(7) holds, therefore we are
going to study the functions ¢, and ¥, on the [0, w(7)] interval. Observe,
that from (50) we have

() e-57)

T T
2———-0>2(1-—|>0
720 )
we obtain the inequality (o) > 0, which results in ¥ (o) > 0. Taking the
derivative of the function 1, we get

(¢r) (0) =20 —2 < 0.

Since
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Thus, the function 1, is positive and is decreasing on the interval [0, w(7)].
The same is true for the function (H%)Q and this implies the last result of the
lemma. =

In Lemma 3.7 we investigate how will be modified the duality gap after an
affine-scaling step.

Lemma 3.7 Letz > 0, s > 0 and p > 0 such that 0 = o(zs,pu) < 1
and 0 < 6 < % Assume that ™ and st are the vectors obtained after the
affine-scaling step of Algorithm 3.1. Then the following inequality holds

(CL’+)T st <(1-20+20%)2Ts < (1—6)aTs.

Proof: Substitute § =1 in the relation (33). Thus
(x*)T st =el (ztsT)=(1- 20)e” (xs) + ph?e’ (d2d?).

Since (17) we have
(dg)” + (d2)?

dgdd = 2v° —
and this leads to
de 2 de 2 2
eT(dgdg):2€TE_ ” zH +H SH S—:rTs.
Iz 2 jz

We obtain uf2e” (d2d?) < 20%x"s and this implies the first inequality of the
lemma. Now observe that for 0 < 8 < % the inequality

1—-20+202<1-9

holds, thus we get the second inequality. This proves the lemma. m

Lemma 3.8 is devoted to finding an upper bound for the duality gap after
a whole iteration (full Newton step followed by an affine-scaling step).
Lemma 3.8 Letx > 0, s > 0 and pp > 0 such that 0 = o(xs,u) < 1 and
0<b< % Assume that the vectors x+ and s are obtained after an iteration
of Algorithm 3.1. Moreover, let ut = (1 — 20)u. Then the relation

nut

7T+ _
(%) st <(1 0)nu<1_26

1s satisfied.
Proof: Let T and § be the vectors obtained by a full Newton step. Using
Lemma 2.3 we get 15 < nu. Furthermore, from Lemma 3.7 and 1 — 0 < 1

we obtain
+
(m+)Ts+ =(1-0)zT5< (1 —0)np < ln—IuQH'
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This completes the proof. =

In the following lemma we analyse the question of the bound on the number
of iterations performed by the algorithm. We assume that we would like to
approximate the optimal solution with a given precision.

Lemma 3.9 Let 2* and s* be the vectors generated by Algorithm 3.1 after k
iterations, where k > 1. Then for each k satisfying the condition

<x°>Tsow

€

1
S14 =1
k2 +{29 08

the inequality (z¥)Ts* < ¢ holds.
Proof: Let p* be the value of u after k iterations. From Lemma 3.8 results
k

(@) < s = (1= 26)" T = (1204 ()",
Thus the inequality (z¥)Ts* < € holds if
(1—20)""1(z")Ts <e.
Taking logarithms we obtain
(k —1)log(1 — 26) + log((z°)Ts°) < loge

and using the relation —log(1 — 260) > 26 we conclude that this inequality is
satisfied if

(xO)TSO

20(k — 1) > log((z°)T's%) — log e = log

This implies the lemma. =
In the following theorem we give a sufficient condition, which guarantees that
the algorithm will be well defined. Furthermore, we provide an upper bound
for the number of iterations.

Theorem 3.10 Let 0 < 7 < % and 0 < 6 < % If

6%n
<

then Algorithm 3.1 is well defined and performs at most

($0)T80“

(55)

20

iterations. The generated vectors satisfy the x1's < € inequality.

(56) 1+ {1 log

Proof: As in the proof of Lemma 3.6 let Z and § be the vectors at the begining
of a new iterate. Furthermore, let x and s be the vectors after the full Newton
step. Finaly, denote by 2™ and s™ the vectors obtained by the affine-scaling
step. We have to prove that the interior point condition holds every time a
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new iterate begins and the proximity measure is not greater than 7. This
assertion will be true if we have the following one. Suppose that £ >0, 5> 0
and o(Z3, 1) < 7 then we have to prove that 2™ > 0 and s™ > 0 and for the
proximity measure we have the inequality o(zs™, u*) < 7, where u™ denotes
the value of the parameter u at the end of the iteration.

From Lemma 2.1 results z > 0 and s > 0. Using these relations, from
Lemma 3.3 we obtain that the inequalities ™ > 0 and s > 0 are satisfied if
K(0,0,n) > 0. Moreover, using Lemma 3.6 the inequality o(zts™, ut) < 7
holds if we have the relation (48) and from (50) we deduce that in this case
the inequality K (o,6,n) > 0 is also satisfied.

This means that it is sufficient to prove that the inequality (48) holds.
From Lemma 3.5 we deduce

o=o(xs,p) <w(T).

Since the function ¥, is decreasing, we conclude that the inequality (48) is
satisfied if the relation (55) holds. Lemma 3.9 implies the upper bound for
the number of iterations. This completes the proof. m

In the next theorem we prove that Algorithm 3.1 is well defined for the default
values. From the upper bound on the number of iterations we conclude that
this predictor-corrector type algorithm finds an e-solution in polynomial time.

Theorem 3.11 Let 7 = % and 6 = ﬁ, where n > 2. Then Algorithm 3.1

1s well defined and requires no more than

[Sﬁlog (“””O)Tﬂ

€

iterations. For the vectors obtained we have the z''s < € inequality. ®

4. CONCLUSION

We have introduced a new predictor-corrector algorithm for solving LCCO
problems. The method of finding a new search direction is based on an equiva-
lent algebraic transformation of the centering equation from the system, which
defines the central path. Polynomial complexity is proved, and the best known
iteration bound for small-update methods is obtained.
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