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ON THE DEBTS’ CLEARING PROBLEM

CSABA PĂTCAŞ

Abstract. The debts’ clearing problem is about clearing all the debts in

a group of n entities (eg. persons, companies) using a minimal number

of money transaction operations. First we will model the problem using

graph theoretical concepts and we will reduce the problem to a minimum

cost maximum flow problem in a bipartite graph. Because our cost function

is not the usual one, a classical minimum cost maximum flow algorithm

cannot be applied in this case. We propose a solution using the dynamic

programming method with Θ(2n) space and exponential time complexity.

We will also examine other solving possibilities.

1. Introduction

In this article we will discuss an original problem proposed in 2008 by

the author at the qualification contest of the Romanian national team of

informatics for the Central European Olympiad of Informatics and Balkan

Olympiad of Informatics. The problem of debts’ clearing is one, that arises

in real life situations as well. In a group of persons that know each other it

is not uncommon to borrow some amount of money to an acquaintance for a

period of time. This process is also happening among different banks, or even

countries. As money transactions are time and money sensitive operations,

it is desirable to clear the debts in a minimal number of money transaction

operations.

Our article studies some methods to solve this task, conjectured to be

NP-complete.
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2. The task

In the following we will give the problem statement.

Let us consider a number of n entities (eg. persons, companies), and a list

of m borrowings among these entities. A borrowing can be described by three

parameters: the index of the borrower entity, the index of the lender entity

and the amount of money that was lent. The task is to find a minimal list of

money transactions that clears the debts formed among these n entities as a

result of the m borrowings made.

Let us clarify this by the following example:

Let n = 6, m = 5

List of borrowings:
Borrower Lender Amount of money

1 2 10

2 3 10

4 5 5

5 6 5

6 4 5
Solution:
Sender Reciever Amount of money

1 3 10
Explanation: The circular borrowings among entities 4, 5 and 6 cancel out

each other, and the two borrowings made among 1, 2 and 3 can be cleared

using just one money transaction.

3. Reformulation using graph theory

We can reformulate the problem using graph theoretical concepts. For this

purpose we need to define some new terms first.

Definition 1. Let G(V,A,W ) be a directed, weighted multigraph without

loops, ∣V ∣ = n, ∣A∣ = m, W : A → ℤ, where V is the set of vertices, A is the

set of arcs and W is the weight function. G represents the borrowings made,

so we will call it the borrowing graph.

Definition 2. Let us define for each vertex v ∈ V the absolute amount of

debt over the graph G: DG(v) =
∑

v′ ∈ V

(v, v′) ∈ A

W (v, v′)−
∑

v′′ ∈ V

(v′′, v) ∈ A

W (v′′, v)

Definition 3. G(V,A,W ) ∼ G′(V,A′,W ′) if and only if:
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DG(vi) = DG′(vi),∀i = 1, n, where V = {v1, v2, . . . , vn}

Theorem 4. The ”∼” relation defined above is an equivalence relation.

Proof.

(1) Reflexivity can be proved trivially: DG(vi) = DG(vi), ∀i = 1, n

(2) Symmetry is also trivial to prove: DG(vi) = DG′(vi) ⇒ DG′(vi) =

DG(vi),∀i = 1, n

(3) Transitivity: DG(vi) = DG′(vi), DG′(vi) = DG′′(vi) ⇒ DG(vi) =

DG′′(vi),∀i = 1, n

Definition 5. There is an infinite number of G′ graphs, that are in ”∼”

relation with the G borrowing graph. As these G′ graphs represent the tran-

sactions that are needed to clear the borrowings, we will call them transaction

graphs.

In the following we will state the problem using the terms defined above:

We are looking for a minimal transaction graph Gmin(V,Amin,Wmin), for

which ∀G′(V,A′,W ′) : G ∼ G′, ∣Amin∣ ≤ ∣A′∣ holds.

Figure 1 shows the borrowing graph, that can be associated with the ex-

ample given in Section 2, while Figure 2 shows the respective minimum trans-

action graph.

Figure 1. The borrowing graph associated with the given ex-

ample. An arc from node i to node j with weight w means,

that entity i must pay w amount of money to entity j.
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Figure 2. The respective minimum transaction graph. An

arc from node i to node j with weight w means, that entity i

pays w amount of money to entity j.

4. Possible solutions

In this Section we will propose some methods to solve the problem.

4.1. Graph transformations. It is clear that the original borrowing graph is

also a transaction graph, because of the reflexivity of the ”∼” relation (G ∼ G).

This yields the following idea: Is it possible to find a sequence of graphs, such

that G = G1, G2, . . . , Gk = Gmin, G1 ∼ G2, G2 ∼ G3,. . . ,Gk−1 ∼ Gk and

Gj is obtained from Gj−1 using some ”elementary transformation operation”

for every j = 2, k? Because the ”∼” relation is also transitive, it would

immediately result, that G = G1 ∼ Gk = Gmin.

Let us enumerate some transformation operations we could use:

∙ All arcs having weight zero can be discarded.

∙ It is clear, that if we have multiple arcs between two vertices, these

can be united in a single one, having a weight equal to the sum of the

original weights.

∙ It is also easy to see, that if for any two vertices a and b we have

(a, b) ∈ A and also (b, a) ∈ A, the arc having the smaller weight out of

those two can be deleted, and its weight can be substracted from the

another arc.

These findings suggest the existence of an elementary transformation ope-

ration, that can be given in the most general way as follows:

(1) Let vi1 , vi2 , . . . , vip be a sequence of vertices.



ON THE DEBTS’ CLEARING PROBLEM 113

(2) Let x be any integer number (x ∈ ℤ).

(3) Substract x from all the weights of two consecutive vertices in the

sequence (W (vij−1 , vij ) := W (vij−1 , vij ) − x, j = 2, p). If a weight

becomes negative, an edge in the opposite direction should be added.

As a result some edges could disappear and new edges could appear.

(4) Add an arc between vi1 and vip having weight x.

Theorem 6. After applying the transformation described above, the resulting

graph will be in ”∼” relation with the original one.

Proof.

Let G(V,A,W ) be the graph before the transformation and let G′(V,A′,W ′)

be the graph after the transformation. Thus we must prove, that G ∼ G′.

Let us note with d the vector of absolute amount of debts of the graph

before the transformation and with d′ the vector of absolute amount of debts

of the graph after the transformation (di = DG(vi), d
′
i = DG′(vi),∀i = 1, n).

Thus we must prove, that d = d′.

The first two steps of the transformation does not alter the graph. During

the third step, the absolute amount of debts do change:

W (vi1 , vi2) = W (vi1 , vi2)− x→ d′i1 = di1 − x, d′i2 = di2 + x

W (vi2 , vi3) = W (vi2 , vi3)−x→ d′i2 = d′i2−x = di2+x−x = di2 , d
′
i3

= di3+x
...

W (vip−1 , vip) = W (vip−1 , vip) − x → d′ip−1
= d′ip − x = dip−1 + x − x =

dip−1 , d
′
ip

= dip + x

So, when step 3 is completed, the only d values that are changed are di1
and dip , that is d′i1 = di1 − x and d′ip = dip + x. As a result of the fourth step

these elements also get back to their original value:

W (vi1 , vip) = W (vi1 , vip) + x → d′i1 = d′i1 + x = di1 − x + x = di1 , d
′
ip

=

d′ip − x = dip + x− x = dip
An attempt of using two concrete versions of this transformation was the

following:

(1) Reduce the number of arcs in all the cycles of the graph, by using the

minimal weight of the cycle’s arcs as the x value.

(2) The resulting graph has no cycles, thus can be sorted topologically.

Try to find a strategy to reduce the number of arcs in the paths of this

graph, using the topological order. For instance simplify the longest

paths first, in a similar way as the cycles, by using the weights’ mini-

mum as the x value.
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Unfortunately this strategy doesn’t work for all graphs. The order in which

we eliminate the cycles and paths does matter, and it is not clear what this

order should be. In Figure 3 a borrowing graph is illustrated. If we first apply

the transformation to path 2-4-5-7 no more transformations can be made, and

we get a graph with 5 arcs, that can be seen in Figure 4. The optimal solution

is to apply the transformation to path 1-4-5-6, then to path 3-4-5-8, thus

obtaining the graph from Figure 5, which has only 4 arcs.

Figure 3. Example for a graph in which the order of trans-

formations does matter

Figure 4. Non-optimal solution gained using graph transformations

The general problem with this approach is, that it is not clear in which

order to choose which sequences, and what x values to use. The author could

not find an algorithm based on this approach, that works for any borrowing

graph.
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Figure 5. Optimal solution gained using graph transformations

4.2. Reducing the debts’ clearing to a flow problem. A better approach

is to try to solve the problem using network flows. Let us construct a bipartite

graph Gb(Vb, Ab) from the initial borrowing graph, as follows:

(1) Vb = Vleft ∪ Vrigℎt

(2) Vleft = {v∣v ∈ V,DG(v) > 0}
(3) Vrigℎt = {v∣v ∈ V,DG(v) < 0}
(4) Ab = {(a, b)∣a ∈ Vleft, b ∈ Vrigℎt}

Using this graph let us construct a flow network Gf (Vf , Af , c), where

c : Af → ℤ is the capacity function.

(1) We add a source and a sink: Vf = Vb ∪ {s, t}
(2) We add arcs from the source to all the nodes from Vleft and from all

nodes from Vrigℎt to the sink: Af = Ab ∪{(s, v)∣v ∈ Vleft}∪ {(v, t)∣v ∈
Vrigℎt}

(3) We set the capacities of the arcs as follows:

c(i, j) =

⎧⎨⎩
DG(j), if i = s, j ∈ Vleft

−DG(i), if i ∈ Vrigℎt, j = t

∞, if i ∈ Vleft, j ∈ Vrigℎt

Theorem 7. Finding the minimal transaction graph of the borrowing graph

G is equivalent to finding a maximal flow in Gf with a minimal number of

arcs, for which the flow is strictly positive.

Proof.
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Let F be a maximal flow with a minimal number of arcs, for which the flow

is strictly positive. From this flow network we can construct the transaction

graph G′(V,A′,W ′) in the following way:

(1) V = Vf/{s, t} ∪ {k ∈ V ∣DG(k) = 0}
(2) A′ = {(i, j)∣F (i, j) > 0, i ∕= s, j ∕= t}
(3) W ′(i, j) = F (i, j)

Lemma 8. The maximal flow F will saturate all arcs outgoing from s and all

arcs incoming in t.

Proof. Each arc (i, j) ∈ A will increase DG(i) by W (i, j) and decrease

DG(j) by the same amount⇒
∑

DG(k)>0

DG(k) =
∑

DG(l)<0

−DG(l) =: S. In other

words the sum of capacities of all arcs outgoing from s equals to the sum of

capacities of all arcs incoming in t. We will prove that the maximal flow in

the network has cost S. Let us suppose that the cost of the maximal flow is

S′ ∕= S. As the sum of capacities of all arcs outgoing from s is S ⇒ S′ < S (the

maximal flow cannot be greater than S). This means, that we have (at least)

two unsaturated arcs (s, i) and (j, t). But the structure of the flow network

(c(i, j) =∞) leads to the existence of the augmenting path s− i− j− t, which

contradicts the assumption, that S′ was the cost of the maximal flow. We

have proved, that the cost of the maximal flow F is S, which immediately

yields the proof of the lemma (we cannot have this maximal flow, unless we

saturate the respective arcs).

Lemma 9. Let G be the borrowing graph and G′ be the graph constructed in

the beginning of the proof of Theorem 7. Then G′ ∼ G.

Proof.

We must prove, that DG′(vi) = DG(vi)∀i = 1, n. We have two cases:

(1) If DG′(vi) > 0, there is an arc (s, v′i) in the flow network. It results

from Lemma 8, that this arc is saturated. From the flow conservation

rule ([3]) it results that the sum of the costs of all arcs outgoing from

vertex v′i will be c(s, v′i) = DG(vi). From the construction of G′ it

follows, that there are no arcs incoming in v′i, so DG′(vi) = DG(vi)

(2) If DG′(vi) < 0, there is an arc (v′i, t) in the flow network, which is

saturated. The rest of the proof, that DG′(vi) = DG(vi) is done in the

same manner as in the first case. □
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From the fact, that we chose the maximal flow F in a way that minimizes

∣A′∣, and from Lemma 9 it results, that we reduced the original problem to a

maximal flow problem.

5. Solving the flow problem

5.1. Minimal cost maximal flow. The first idea would be to associate costs

z(e), e ∈ Af to the arcs of the flow network. Let the arcs between Vleft and

Vrigℎt have cost 1, and the other arcs have cost 0, and let us use a classical

minimum cost maximum flow algorithm to solve the problem:

z(i, j) =

{
1, if i ∈ Vleft, j ∈ Vrigℎt

0, otherwise
Figure 6 shows the flow network, that can be associated to the borrowing

graph shown in Figure 1. The first number on each arc represents the capacity

of the arc, and the second number represents the cost of the arc.

Figure 6. The flow network associated with the example

This approach doesn’t work, because the cost of an arc is multiplied by

the flow, we don’t have fixed costs on the arcs. In a classical minimum cost

maximum flow algorithm the cost function looks like: Cost(e) = f(e) ⋅ z(e),

but in our case this is:

Cost(e) =

{
z(e), if f(e) > 0

0, otherwise
It can be rewritten to a more simple form, as: Cost(e) = ind(f(e)) ⋅ z(e),

where ind is the indicator function, defined as follows:

ind(x) =

{
1, if x > 0

0, if x = 0
In the literature this problem is called Minimum Edge-Cost Flow and

is known to be NP-complete([4], problem [ND32]). Even if the problem is

constrained so that the capacity of each arc is 2, and the cost of each arc

can be 0 or 1, it remains NP-complete. This fact leads us to the following

conjecture:

Conjecture 10. The debts’ clearing problem is NP-complete.
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The fact that we have a special case, with all the costs equaling to 0 or

1, and having a complete bipartite graph, gives us a hope that a polynomial

solution does exist.

5.2. Convex flow. Efficient minimum cost maximum flow algorithms do exist,

when the cost function is convex ([1]). Unfortunately this is not our case. In-

deed, a function to be convex must satisfy:

f(t ⋅x+(1−t) ⋅y) ≤ t ⋅f(x)+(1−t) ⋅f(y) for any x and y from the function

domain, and ∀t ∈ [0, 1]. For t = 1
2 , x = 0, y = 1 we get f(1

2) ≤ f(0)
2 + f(1)

2 ,

which is obviously not true in our case, so our cost function is not convex.

5.3. Nonlinear programming. We can formulate the problem as a non-

linear programming (NLP) problem:

Minimize p =
∑

e∈Af

ind(f(e)) subject to∑
k∈Vrigℎt

f(i, k) = c(s, i)∑
k∈Vleft

f(k, j) = c(j, t)

Unfortunately no polinomial algorithm is known for solving any NLP in-

stance. However good approximation algorithms do exist ([6]).

5.4. Dynamic programming. We will give a solution using the dynamic

programming method. It uses similar techniques to the algorithm discovered

independently by Bellman ([2]), respectively Held and Karp ([5]) for solving

the Traveling Salesman Problem.

Let us note n1 = ∣Vleft∣ and n2 = ∣Vrigℎt∣. Let us define the subproblems

of the dynamic programming problem with two parameters i and j, where i is

a binary representation of n1 bits, and j is a binary representation of n2 bits

(i = 0, 2n1 − 1, j = 0, 2n2 − 1). A subproblem will have the following meaning:

dpi,j = the minimal number of arcs having strictly positive flow, such that

the arcs between s and the nodes determined by the bits of i, and the arcs

between the nodes determined by the bits of j and t are all saturated.

The recursive formula to determine the values of the subproblems is the

following1:

dpi,j = min(dpi XOR i′,j XOR j′ + bitcount(i′) + bitcount(j′)− 1), where

(1) i AND i′ = i′

1We note by AND the bitwise and operation and by XOR the bitwise exclusive or operation
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(2) j AND j′ = j′

(3)
∑

i′ AND 2k ∕=0

c(s, k) =
∑

j′ AND 2k ∕=0

c(k, t)

(4) bitcount(x) returns the number of bits of x equal to 1.

It can be easily seen, that in the worst case we will need n1 + n2 − 1 arcs,

and in the best case max(n1, n2) arcs. We choose all the possible subsets i′ of

i and j′ of j. The nodes determined by i′ and j′ can form an ”independent

subnetwork” only if the respective sums of capacities are equal. In this case

we consider the worst case scenario, so we add bitcount(i′) + bitcount(j′)− 1

to the solution not containing these nodes. If we didn’t find an independent

subnetwork, it means, that the chosen arcs must form a connected graph, thus

the minimal number of arcs is n1 +n2− 1, so we can’t get any better than the

worst case scenario.

Let us analyze the performance of the proposed algorithm. The number

of subproblems is 2n1 ⋅ 2n2 = 2n1+n2 , which in the worst case is 2n. Thus the

space complexity of our algorithm is Θ(2n). To solve a subproblem (i, j) we

need all the pairs (i′, j′), such that i′ is a subset of i and j′ is a subset of j.

We can codify any pair (i, i′) with a sequence of length n1 of ternary digits.

A digit will be 0, if the respective node is not in i, 1 if it is in i but not in

i′ and 2 if it is in i′ (and thus also in i). The same codification can be done

for any (j, j′) pair. Thus the number of steps performed by our algorithm is

proportional to 3n1 ⋅ 3n2 = 3n

6. Conclusions and future work

In this article we stated the debt’s clearing problem, and analyzed some

solving possibilities. An algorithm, that finds the optimal solution using the

dynamic programming method was given, and its exponential running time

and space complexity was proven.

We didn’t analyze deeply the solving possibilities using nonlinear program-

ming strategies. Also, the presented non optimal solutions, such as convex

flow, could work in a high percentage of the cases, this possibility must be

studied in the future. Approximation algorithms were not considered.

The biggest concern regarding this problem is its NP-completeness. The

problem is a special instance of the known NP-complete problem of Minimum

Edge-Cost Flow, and seems to be NP-complete too.
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