
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIV, Number 2, 2009

PROPOSAL OF A SET OF OCL WFRS FOR THE ECORE

META-METAMODEL

VLADIELA PETRAŞCU, DAN CHIOREAN, AND DRAGOŞ PETRAŞCU

Abstract. Specifying a complete set of OCL Well Formedness Rules
(WFRs) is essential for the well-definedness of any (meta)modeling lan-
guage’s abstract syntax. Within this paper, we report on the definition of
a set of OCL WFRs for the Ecore meta-metamodel. We use some relevant
WFRs for the Ecore generics accompanied by meaningful test cases, in or-
der to illustrate our proposal and its advantages over related approaches.

1. Introduction

The highest level of abstraction in any model-driven approach, be it Model
Driven Architecture (MDA) [5], Model Driven Engineering (MDE) [14], or
Language Driven Development (LDD) [8], is represented by the metamodel-
ing language - the language used for defining all modeling languages, itself
included. This is level M3 of the classical four-level modeling architecture
promoted by the Object Management Group (OMG). It is well known that a
complete definition of any language should include formal representations of
its abstract syntax, concrete syntax, and semantics; for modeling languages,
the abstract syntax is generally given in terms of a metamodel (which de-
scribes the concepts used by the language and their relationships), which
should be accompanied by appropriate Well Formedness Rules (WFRs, that
further constrain the legal instantiations of metamodel concepts). It follows
that the abstract syntax of a metamodeling language should be defined by
means of its meta-metamodel and associated WFRs. OMG’s Meta Object
Facility (MOF) [3], Eclipse Modeling Framework’s (EMF’s) Ecore [15], and
eXecutable Metamodelling Facility’s (XMF’s) XCore [8] are probably the best
known meta-metamodels today.

Received by the editors: November 1, 2009.
2010 Mathematics Subject Classification. 68N30.
1998 CR Categories and Descriptors. D.2.4 [SOFTWARE ENGINEERING]: Soft-

ware/Program Verification – Programming by contract, Class invariants, Validation; D.2.11
[SOFTWARE ENGINEERING]: Software Architectures – Languages (e.g., description,
interconnection, definition) .

Key words and phrases. Model Driven Engineering (MDE), meta-metamodel, Object
Constraint Language (OCL), Well Formedness Rules (WFRs), Ecore.

89

90 VLADIELA PETRAŞCU, DAN CHIOREAN, AND DRAGOŞ PETRAŞCU

Having a complete set of metamodel WFRs is of utmost importance for
the well-definedness of any modeling language. This is due to the fact that
the graphical formalism used to represent the metamodel itself (that of class
diagrams) is not powerful enough so as to capture all the constraints that
govern the individual meta-concepts, as well as their inter-relationships. Even
more, these WFRs should be formalized, in order to allow the existing tools
to validate the models against them; a model is considered to be valid/correct
if and only if it conforms to both its metamodel and associated WFRs. The
language used in order to formalize the WFRs should be the Object Constraint
Language (OCL) [7], for the following three reasons at least. First of all, OCL
is the standard formalism. Second, defining the WFRs as OCL invariants is
preferred to implementing them directly in the repository code, since the OCL
expressions are more compact and intelligible compared to their equivalents
in a programming language. Third, today we can benefit from a powerful
tool support, regarding both the evaluation of OCL constraints on snapshots
and their automatic translation into code. The Object Constraint Language
Environment (OCLE) [6] and EMF [1] with Model Development Tools (MDT)-
OCL [4] are notable examples in this respect.

The arguments above are even stronger when it comes to metamodeling
languages. Their abstract syntax is used in defining the metamodels of all
possible modeling languages. There has to be possible to check/ensure the
correctness of all these metamodels which are to be reused by instantiation in
thousands of modeling applications.

Still, a study that we have carried out on the three above mentioned meta-
metamodels, MOF, Ecore, and XCore, has revealed that the goal of having
a correct and complete set of OCL WFRs for each of them is far from being
reached. The closest to this aim is Ecore, whose repository code contains
a set of WFRs implemented directly in Java. In case of the OMG MOF
standard, a great number of OCL specifications used in describing the Core
UML Infrastructure (which is part of MOF) are wrong. As for XCore, it only
contains two such WFRs, specified using the OCL-like language XOCL.

Given this state of facts, our overall aim has been to define a complete
set of OCL WFRs for each of the three meta-metamodels, as well as to test
and validate them on relevant metamodel examples (finding appropriate test
models even before or simultaneously with defining the OCL constraints - test
driven (meta(-meta))modeling - is highly important). Within this context, the
current paper reports on the definition and validation of such a complete set
of OCL WFRs for Ecore.

The rest of the paper is organized as follows. Section 2 reviews the state of
facts regarding the Ecore WFRs, which provides the context and motivation
of our work. Section 3 testifies our contribution, using some relevant WFR for

PROPOSAL OF A SET OF OCL WFRS FOR THE ECORE META-METAMODEL 91

the Ecore generics. Related work is summarized in Section 4. We conclude
the paper in Section 5, giving some hints on future work.

2. Ecore WFRs. State of Facts

Compared to the other meta-metamodels that we have studied, namely
MOF and XCore, Ecore has a special status, that may be described by the
following:

∙ Ecore is, beyond any doubt, the best known EMOF (Essential MOF)
implementation. However, Ecore does not match EMOF exactly. On
the one side, the approach taken with Ecore is more pragmatic and
implementation-oriented. On the other side, starting with EMF 2.3,
Ecore includes constructs for modeling with generics [11]; this is consid-
ered to be a departure from EMOF, which does not currently provide
such support.
∙ Due to the framework it ships with (EMF), Ecore is definitely the most

tested meta-metamodel.
∙ The Ecore repository includes a set of WFRs that allow validating the

metamodels that instantiate it. These rules are implemented within
the EcoreValidator class. However, although the code does contain
comments, these do not reflect all implementation decisions. Espe-
cially in case of those rules used to check the correctness of parame-
terized types, the code complexity is increased and the lack of detailed
comments and examples is disturbing. The fact that, as stated in [11],
“The design of Ecore’s support for generics closely mirrors that of Java
itself” is expected to help in this respect. Still, the tests that we have
run have shown that there are differences among the two, regarding
both the declaration of generic types and their correct instantiation.
∙ The Ecore implementation witnesses the fact that the value of meta-

metamodel level WFRs has been acknowledged. However, even though
EMF integrates an OCL plugin (MDT-OCL), we have not found any
OCL equivalent of the implemented constraints.
∙ The paper [9] proposes some OCL WFRs that may be used in vali-

dating the Ecore generics; this is actually the only paper concerning
the OCL formalization of Ecore WFRs that we have found in the lit-
erature. However, even though they are a good starting point and
comparison base, the OCL specifications described there are far from
complete and not entirely correct.

Within this context, our goal has been to identify, classify and specify in
OCL a complete set of WFRs for Ecore, complete at least with respect to
the rules already implemented in EMF. We report on accomplishing this goal
in the following sections using some relevant constraints concerning generics.

92 VLADIELA PETRAŞCU, DAN CHIOREAN, AND DRAGOŞ PETRAŞCU

The OCL specifications are preceded by their informal equivalents and are
accompanied by relevant test cases used for their validation.

3. A Complete Set of OCL WFRs for Ecore

Taking the EMF implementation as a reference, we have defined a com-
plete set of OCL WFRs for Ecore, which we have tested and validated on
relevant examples using OCLE. The entire set can be found at [2]. Within
this section, we detail on one such WFR, regarding the Ecore generics. Choos-
ing this particular constraint for exemplification purposes is due to both its
complexity level (since it is a non-trivial WFR) and the fact that it allows a
close comparison with related work described in [9].

3.1. Generics in Ecore. Figure 1 shows that part of the Ecore meta-
metamodel that ensures the generic modeling support it provides. As pre-
viously mentioned, this has been introduced starting with EMF 2.3, the newly
added concepts being ETypeParameter and EGenericType. We briefly explain
and exemplify these concepts in the following.

ENamedElement

EClass

ETypedElement

EOperationETypeParameter 0..n
+eTypeParameters
0..n

{ordered}

EClassifier
+ instanceTypeName : String

0..n+eTypeParameters 0..n
{ordered}

EGenericType

0..n +eTypeArguments0..n
{ordered}

0..1 +eUpperBound0..1 0..1 +eLowerBound0..1

0..n

+eAllGenericSuperTypes

0..n

{ordered}

0..n

+eGenericSuperTypes

0..n

{ordered}

0..1

+eGenericType

0..1

0..n

+eGenericExceptions

0..n

{ordered}

0..n+eBounds 0..n
{ordered}

0..1 +eTypeParameter0..1

1+eRawType 1
0..1 +eClassifier0..1

File: D:\Vladi\Cercetare\Proiecte\PN2\Idei\CUEM_SIVLA\work\Ecore\Rose\Ecore.mdl 1:02:55 AM Tuesday, November 17, 2009 Class Diagram:
ecore / Generics Page 1

Figure 1. Ecore generics

Similar to Java, Ecore supports generic type and operation declarations,
as well as generic type instantiations (also known as parameterized types).

PROPOSAL OF A SET OF OCL WFRS FOR THE ECORE META-METAMODEL 93

An ETypeParameter instance stands for a type parameter used by ei-
ther a generic classifier or a generic operation declaration. That particular
ETypeParameter is contained by its corresponding EClassifier or EOperation
instance. This is denoted by the composition relationships EClassifier -
ETypeParameter and EOperation - ETypeParameter from Figure 1, which
are mutually exclusive (xor constraint). As an example, the Java generic
type declaration interface Collection<T> would be modeled in Ecore by
means of an EClass instance named Collection, having its interface at-
tribute set to true, and whose eTypeParameters sequence contains a single
ETypeParameter instance, named T.

Type parameters may have bounds, as indicated by the composition rela-
tionship between ETypeParameter and EGenericType. For a Java type dec-
laration such as

1 class OrderedList <T extends Comparable <T>> { ... }

the eBounds sequence owned by the type parameter T contains a single EGe-
nericType instance, namely Comparable<T>.

An EGenericType instance may denote one of the following: a type pa-
rameter reference, a (generic) type invocation, or a wildcard. This is re-
flected by its associations to ETypeParameter and EClassifier, respectively.
The two associations are mutually exclusive; there is a WFR specifying that
an EGenericType instance cannot be simultaneously associated to both an
eTypeParameter and an eClassifier. In case it has an eTypeParameter,
then it is a type parameter reference, if it has an eClassifier, then it is a
(generic) type invocation, and when both are missing, it is a wildcard. An
EGenericType instance denoting a generic type invocation may specify type
arguments (see the eTypeArguments role name); in case it does not specify
any type arguments, then it is used as a raw type, the reason being that of
ensuring compatibility with the previous, non-generic EMF releases. Wild-
cards may specify a lower or an upper bound (see the corresponding unary
compositions of EGenericType). To exemplify all these, let us consider the
following Java interface definition:

2 interface List <T> extends Collection <T>

3 {

4 boolean add(T elem);

5 boolean addAll(Collection <? extends T> col);

6 ...

7 }

The listing above contains a generic type declaration for List. In the equiv-
alent Ecore model (Figure 2), this would be modeled by means of an EClass
instance named List, which contains an ETypeParameter instance with the

94 VLADIELA PETRAŞCU, DAN CHIOREAN, AND DRAGOŞ PETRAŞCU

name T. The newly declared type specifies a generic supertype, Collection<T>.
The latter is modeled using an EGenericType instance that corresponds to
a generic type invocation with a type argument; the referred classifier is
Collection and the contained type argument T. At its turn, this type ar-
gument is an EGenericType instance that corresponds to a type parameter
reference, the referenced type parameter being the ETypeParameter instance
T. The fourth line of the listing contains another EGenericType instance that
corresponds to a type parameter reference, only this time it is used not as a
type argument, but as the type of the EParameter instance elem. The type
of col in line 5 denotes a generic type invocation; the referenced classifier is
again Collection and the type argument is ? extends T. The latter is an
EGenericType instance that corresponds to an upper bounded wildcard; it has
no eClassifier or eTypeParameter and it specifies an eUpperBound, namely
T.

Figure 2. Ecore model for List<T>.
EMF tree-editor screenshot

EGenericType instances can play
various roles in an Ecore model, each
kind of usage being constrained by
suitable WFRs. Such an instance
can be exactly one of the following:

1. A generic supertype of a
class, as shown by the composition
relationship EClass-EGenericType;
Collection<T> in line 2 of the listing
above is such an example;

2. The type of a typed el-
ement (attribute, reference, oper-
ation, parameter), as shown by
the composition relationship between
ETypedElement and EGenericType;
an example is T in line 4 above;

3. A bound of a type pa-
rameter, as shown by the compo-
sition relationship ETypeParameter-

EGenericType; Comparable<T> in line 1 above is such an example;
4. One of the type arguments of a generic type invocation, fact de-

noted by the unary composition relationship of EGenericType owning the
eTypeArguments role; T from Collection<T> in line 2 above is a good exam-
ple;

5. The upper or lower bound of a wildcard, as shown by the other two
unary compositions of EGenericType; T from Collection<? extends T> in
line 5 above is an example of an upper bound usage of a generic type;

PROPOSAL OF A SET OF OCL WFRS FOR THE ECORE META-METAMODEL 95

6. An exception type, fact denoted by the composition between EOperation
and EGenericType.

3.2. A WFR for Generics in Ecore. Equipped with this knowledge re-
garding the Ecore generics, we seek to provide an OCL specification for the
following informal WFR: “Assuming that a generic type denotes a type pa-
rameter reference, the referenced type parameter must be in scope and must
not be a forward reference. The type parameter is in scope if its container is
an ancestor of this generic type within the corresponding Ecore containment
tree”. We give a few examples in the following, in order to ensure a deeper
understanding of the rule and to set up some test cases for its validation.
Assuming a closer familiarity of the reader with Java than Ecore, we start
with the Java equivalent of each chosen example, followed by OCLE and EMF
snapshots for the corresponding Ecore model.

As a first example, let us consider the Java declaration class Cls1<P, R
extends P>. The generic type declaration for Cls1 uses P and R as type pa-
rameters, the latter being upper bounded by the former. This is a valid generic
declaration since the referenced type parameter P is in scope and is not a for-
ward reference (P being declared prior to R). The equivalent Ecore model con-
sists of an EClass instance named Cls1 which contains two ETypeParameter
instances named P and R (Figure 3 shows the corresponding EMF and OCLE
snapshots). The type parameter R has a bound, which is an EGenericType
instance that references the type parameter T. The OCLE snapshot shows
explicitly the EGenericType instance used as a bound (GT P) and its link to
the referenced type parameter. Within the EMF tree, the bound appears as
a direct descendent of the type parameter it bounds, being labeled with the
name of the referenced type parameter.

(a) EMF snapshot (b) OCLE snapshot

Figure 3. Ecore model for Example 1: Cls1<P, R extends P>

96 VLADIELA PETRAŞCU, DAN CHIOREAN, AND DRAGOŞ PETRAŞCU

For the second example, consider the Java declarations class Cls2<Q>
and class Cls3<S, T extends Q>. The second one is obviously not valid,
since the bound of T references type parameter Q, which is out of scope. The
corresponding OCLE snapshot is shown in Figure 4; its EMF equivalent is
missing since the framework constrains a referenced type parameter to be
chosen from the list of those in scope. Therefore, it is impossible to model
such a case using the EMF tree-like editor. However, this erroneous situation
could still occur if the model were loaded from an XMI file instead of being
created directly with the editor.

Figure 4. OCLE snaphot for Example 2: Cls2<Q>, Cls3<S,
T extends Q>

In both examples described above, the container of each type parameter
has been a classifier. Let us now consider the following Java generic operation
declaration <V> void Op(V param). The equivalent Ecore model has at its
root an EOperation instance, Op, whose eTypeParameters sequence contains
only the type parameter V. Op owns a single parameter, param, whose type
is an EGenericType instance that references the type parameter V. The EMF
and OCLE snapshots are illustrated in Figure 5. This is again a valid model
with respect to the WFR under consideration.

The fourth and last example we take is again a generic class declaration,
of the form class Cls4<T1, T2 extends T3, T3>. Such a declaration is
not valid, since the bound of T2 performs a forward referencing of the type
parameter T3. The equivalent snapshots are given in Figure 6.

The constraints in Listing 1 formalize the WFR stated at the beginning
of this subsection. The OCL specification has been splitted in two invariants
defined for the EGenericType context, namely InScopeTypeParameter and
NotForwardReference; as their names indicate, the former enforces the type
parameter referenced by a generic type to be in scope, while the latter checks
for forward referencing. As in programming, the splitting of large constraints
into smaller pieces is a good modeling practice. This way, the constraints
become easier to write and their comprehensibility is enhanced. Even more,
this also provides valuable support in localizing exactly and in real time the
cause of a constraint violation during model checking activities.

PROPOSAL OF A SET OF OCL WFRS FOR THE ECORE META-METAMODEL 97

(a) EMF snapshot (b) OCLE snapshot

Figure 5. Ecore model for Example 3: <V> void Op(V param)

(a) EMF snapshot (b) OCLE snapshot

Figure 6. Ecore model for Example 4: Cls4<T1, T2
extends T3, T3>

1 context EGenericType
2 −− The re f e renced type parameter must be in scope , i . e . ,
3 −− i t s conta iner must be an ances tor o f t h i s gener i c type . . .
4 inv InScopeTypeParameter :
5 s e l f . i sTypeParameterReference () implies
6 s e l f . an c e s t o r s ()−> i n c l u d e s (s e l f . eTypeParameter . eContainer ())

8 context EGenericType
9 −− . . . and must not be a forward re f e r ence .

10 inv NotForwardReference :
11 (s e l f . i sTypeParameterReference () and se l f . isUsedInATypeParameterBound ())
12 implies

98 VLADIELA PETRAŞCU, DAN CHIOREAN, AND DRAGOŞ PETRAŞCU

13 (let re fParameter : ETypeParameter = s e l f . eTypeParameter
14 let boundedParameter : ETypeParameter = s e l f . boundedTypeParameter ()
15 let paramSeq :Sequence (ETypeParameter)=
16 (i f re fParameter . eContainer () . oc l I sKindOf (E C l a s s i f i e r)
17 then re fParameter . eContainer () . oclAsType (E C l a s s i f i e r) . eTypeParameters
18 else re fParameter . eContainer () . oclAsType (EOperation) . eTypeParameters
19 endif)
20 let posRefParameter : Integer = paramSeq−>indexOf (re fParameter)
21 let posBoundedParameter : Integer =
22 (i f paramSeq−>i n c l u d e s (boundedParameter)
23 then paramSeq−>indexOf (boundedParameter)
24 else −1
25 endif)
26 in
27 ((posBoundedParameter <> −1) implies
28 ((posRefParameter < posBoundedParameter) or
29 ((posRefParameter = posBoundedParameter) and
30 (not boundedParameter . eBounds−>i n c l u d e s (s e l f))
31)
32)
33)
34)

Listing 1. EGenericType invariants prohibiting invalid type
parameter references

We do not insist on the OCL specification for InScopeTypeParameter
(lines 1 to 6 of Listing 1), since it carefully matches the comments it goes along
with. However, we detail the three query operations it makes use of, namely
isTypeParameterReference(), eContainer() and ancestors(). Their OCL
definitions are provided in Listing 2.

The core query here is ancestors(), which should compute all parents
of an arbitrary object from within the Ecore containment tree to which the
object belongs. The returned set should include the object’s direct container,
the direct container of the latter, and so on. In case the particular object
is the root of the tree, then the empty set is returned. In order to provide
its intended functionality, ancestors() makes use of eContainer(), which
returns the direct container of an arbitrary object.

The eContainer() operation is given a default definition for the root of
the Ecore modeling hierarchy, EObject, which is overriden in all its descen-
dants, according to the composition relationships they are involved in (see
Figure 7). The default implementation returns Undefined(EObject) (Listing
2, lines 12-13) and most of the overridings simply perform a one-step nav-
igation of a composition relationship (Listing 2, lines 52-65). However, the
composition relationships which involve ETypeParameter and EGenericType
are uni-directional in the Ecore model, therefore the OCL expressions for

PROPOSAL OF A SET OF OCL WFRS FOR THE ECORE META-METAMODEL 99

eContainer() in these two particular cases (Listing 2, lines 15-50) are more
complex and unefficient, due to the calls to allInstances().

1 context EGenericType
2 def : i sTypeParameterReference () : Boolean =
3 not se l f . eTypeParameter . i sUnde f ined ()

5 context EObject
6 def : a n c e s t o r s () : Set (EObject) =
7 let empty : Set (EObject) = Set{} in
8 i f s e l f . eContainer () . i sUnde f ined () then empty
9 else Set{ s e l f . eContainer ()}−>union (s e l f . eContainer () . a nc e s t o r s ())

10 endif

12 context EObject
13 def : eContainer () : EObject = oc lUndef ined (EObject)

15 context EGenericType
16 def : eContainer () : EObject =
17 let c l s=EClass . a l l I n s t a n c e s−>any (c ∣ c . eGenericSuperTypes−>i n c l u d e s (s e l f))
18 let param=ETypeParameter . a l l I n s t a n c e s ()−>any (p ∣ p . eBounds−>i n c l u d e s (s e l f))
19 let te=ETypedElement . a l l I n s t a n c e s ()−>any (t ∣ t . eGenericType=s e l f)
20 let gt1=EGenericType . a l l I n s t a n c e s ()−>any (g ∣
21 g . eTypeArguments−>i n c l u d e s (s e l f))
22 let gt2=EGenericType . a l l I n s t a n c e s ()−>any (g ∣ g . eLowerBound=s e l f)
23 let gt3=EGenericType . a l l I n s t a n c e s ()−>any (g ∣ g . eUpperBound=s e l f)
24 let op=EOperation . a l l I n s t a n c e s ()−>any (o ∣
25 o . eGener icExcept ions−>i n c l u d e s (s e l f))
26 in
27 (i f not c l s . i sUnde f ined () then c l s
28 else i f not param . i sUnde f ined () then param
29 else i f not te . i sUnde f ined () then te
30 else i f not gt1 . i sUnde f ined () then gt1
31 else i f not gt2 . i sUnde f ined () then gt2
32 else i f not gt3 . i sUnde f ined () then gt3
33 else i f not op . i sUnde f ined () then op
34 else oc lUndef ined (EObject)
35 endif
36 endif
37 endif
38 endif
39 endif
40 endif
41 endif)

43 context ETypeParameter
44 def : eContainer () : EObject =
45 let c l a s s i f i e r = E C l a s s i f i e r . a l l I n s t a n c e s ()−>any (c ∣
46 c . eTypeParameters−>i n c l u d e s (s e l f))
47 in
48 (i f not c l a s s i f i e r . i sUnde f ined () then c l a s s i f i e r
49 else EOperation . a l l I n s t a n c e s ()−>any (o ∣ o . eTypeParameters−>i n c l u d e s (s e l f))
50 endif)

100 VLADIELA PETRAŞCU, DAN CHIOREAN, AND DRAGOŞ PETRAŞCU

52 context EPackage
53 def : eContainer () : EObject = s e l f . eSuperPackage

55 context E C l a s s i f i e r
56 def : eContainer () : EObject = s e l f . ePackage

58 context EStructura lFeature
59 def : eContainer () : EObject = s e l f . eConta in ingClass

61 context EOperation
62 def : eContainer () : EObject = s e l f . eConta in ingClass

64 context EParameter
65 def : eContainer () : EObject = s e l f . eOperation

Listing 2. Query operations used by InScopeTypeParameter

ETypeParameter, for instance, is involved in two composition relationships
(with EClassifier and EOperation, see Figure 1 for reference), both of which
are unidirectional, navigable only from container to part (we did not manage
to find the rationale for this design decision). Therefore, the direct container
of a type parameter is always either a classifier or an operation. However,
this container cannot be accessed through a simple navigation. The only way
to identify it involves searching that particular type parameter within the
eTypeParameters collections of all classifiers and operations that belong to
the current model (which explains the use of allInstances() in lines 45, 49
of Listing 2). That operation or classifier which includes the searched type pa-
rameter within its eTypeParameters collection is its direct container. There
will definitely be at most one such classifier or operation, since the consid-
ered relationships are compositions. Therefore, the use of the undeterministic
any() in lines 45, 49 of Listing 2 is completely safe; it should produce the
same result no matter the tool used. The overriding of eContainer() for
EGenericType can be justified in a similar manner, only this time the number
of composition relationships involved, therefore the complexity, is greater.

EPackage
0..n

+eSubpackages
0..n

+eSuperPackage

EParameter

EClassifier
0..n+ePackage

+eClassifiers
0..n

EOperation

0..n

+eOperation

+eParameters 0..n

EClass 0..n+eContainingClass

+eOperations

0..nEStructuralFeature 0..n
+eStructuralFeatures

0..n +eContainingClass

File: D:\Vladi\Cercetare\Proiecte\PN2\Idei\CUEM_SIVLA\work\Ecore\Rose\Ecore.mdl 11:28:10 PM Saturday, November 21, 2009 Class Diagram:
ecore / Containers Page 1

Figure 7. Ecore containment relationships

The evaluation of InScopeTypeParameter using OCLE has ended suc-
cessfully for the first, third and fourth of the test examples considered above,

PROPOSAL OF A SET OF OCL WFRS FOR THE ECORE META-METAMODEL 101

while failing for the second, in accordance with the results given by the EMF
EcoreValidator and the Java compiler. In case of the first test example, the
constraint is evaluated for the EGenericType instance GT P, which references
the ETypeParameter instance P. The computed set of ancestors() of GT P
contains the ETypeParameter instance R (its direct container, of which it is a
bound) and the EClass instance Cls1 (the direct container of R). Also, the
direct container (eContainer()) of P is Cls1. Since the latter belongs to the
ancestors() set, the constraint evaluates to true on GT P. The evaluation re-
sults for the second and fourth examples (false and true, respectively) can
be explained in a similar way. In case of the third one, the invariant is eval-
uated on the EGenericType instance GT V, which references type parameter
V. The ancestors() of GT V are its direct container, param, (GT V being the
eGenericType of param) and the EOperation instance Op (the direct container
of param); the eContainer() of V is Op, therefore the required inclusion takes
place, which ends successfully the evaluation.

In order to simplify the reading, we will use the phrase “generic type”
instead of “EGenericType instance” from here on.

The invariant that completes the proposed WFR’s OCL definition, NotFor-
wardReference, rules out all generic types which reference type parameters
that are in scope, but are declared afterwards. This situation can only oc-
cur when the generic type is contained in a type parameter bound, either
of a classifier or of an operation. The employed query operations, specifi-
cally isUsedInATypeParameterBound() and boundedTypeParameter(), are
defined in Listing 3.

1 context EGenericType
2 def : isUsedInATypeParameterBound () : Boolean =
3 −− checks whether s e l f i s i nvo l v ed in de f i n i n g a type parameter bound
4 s e l f . an c e s t o r s ()−> e x i s t s (o ∣ o . oclIsTypeOf (ETypeParameter))

6 context EGenericType
7 def : boundedTypeParameter () : ETypeParameter =
8 −− re turns the type parameter in whose bound s e l f i s used
9 s e l f . an c e s t o r s ()−>any (o ∣

10 o . oclIsTypeOf (ETypeParameter)) . oclAsType (ETypeParameter)

Listing 3. Query operations used by NotForwardReference

A generic type is said to be used in a type parameter bound if and only if
there is an ETypeParameter instance among its ancestors. This is expressed
by means of line 4 of Listing 3 above. If that particular ETypeParameter
instance is its direct container, then the generic type identifies itself with the
bound, otherwise it is contained at a certain level in this bound. If a generic
type is involved in defining the bound of a type parameter, then this will be
the only ETypeParameter instance among its ancestors (since no containment,

102 VLADIELA PETRAŞCU, DAN CHIOREAN, AND DRAGOŞ PETRAŞCU

direct or not, is possible among type parameters). Therefore, the use of any()
within the OCL expression which returns the type parameter in whose bound
the current generic type is involved (line 9, Listing 3) is safe.

Resuming to the OCL definition of NotForwardReference (lines 8-34,
Listing 1), we should make clear that a forward reference can only happen
when a generic type, let us call it GT, references a type parameter, let us call
it T, which is declared at a later time compared to the moment of use of
GT. Since type parameters can only be declared within a generic classifier or
operation definition, and assuming that the referenced type parameter is in
scope (out of scope type parameters are ruled out by the first invariant), it
follows that GT can only be involved in defining a bound for a type parameter
owned by the same classifier or operation that owns T. This explains line 11
from the definition of NotForwardReference. Following this, the invariant
computes the referenced type parameter (refParameter), the bounded type
parameter (boundedParameter), and the sequence of all parameters owned by
the direct container of refParameter (paramSeq). For the invariant to evalu-
ate to true, refParameter should be declared prior to boundedParameter in
paramSeq (line 28, Listing 1), or the two should be the same type parameter
(line 29, same listing). In the latter case, however, it is prohibited for a type
parameter to bound itself (line 30). Therefore, a situation such as the follow-
ing class Cls5<P1, P2 extends P2> is not allowed, since P2 bounds itself.
Still, a declaration of the kind Cls6<P3, P4 extends Cls<P4>>, in which P4
is involved in defining its own bound, is valid.

From the test examples above, the one intended to capture forward ref-
erencing was the fourth. There, the NotForwardReference invariant will be
evaluated for the generic type GT T3, which bounds type parameter T2 and ref-
erences type parameter T3. The sequence of all parameters having the same
container as the referenced one evaluates to Seq{T1,T2,T3}, from which it is
obvious that the position of the referenced type parameter (3) is greater than
the one of the bounded parameter (2). Therefore, the boolean expression in
lines 28-32 of Listing 1 evaluates to false, and so does the whole invariant.

4. Related work

As already mentioned in Section 2, the only benchmarks we have for com-
paring our work with are the EMF implementation of the EcoreValidator and
the paper [9].

4.1. The EMF EcoreValidator. We have already made clear in Section 1
which are the advantages derived from using OCL, instead of a programming
language, in formalizing WFRs. In addition, in Section 2, we have pointed
out some of the drawbacks of the current EMF implementation of Ecore’s
WFRs. Among them, there have been mentioned some discrepancies between

PROPOSAL OF A SET OF OCL WFRS FOR THE ECORE META-METAMODEL 103

the Java specification of generics and the corresponding WFRs implemented
by the EMF EcoreValidator. We will take one such example in the following,
so as to justify a new OCL WFR that we propose for the Ecore generics and
that should also be implemented by the EcoreValidator.

Concerning the correct declaration of generic types and methods, the Java
Language Specification [10] (pp. 50) states the following constraints: “Type
variables have an optional bound, T & I1 ... In. The bound consists of either
a type variable, or a class or interface type T possibly followed by further
interface types I1, ..., In. ... It is a compile-time error if any of the types
I1 ... In is a class type or type variable. The order of types in a bound is only
significant in that ... and that a class type or type variable may only appear
in the first position.”

Figure 8. OCLE snaphot corresponding to GenericClass1
<T1 extends InterfaceA & ClassB>

Therefore, a generic type declaration of the kind

1 class GenericClass1 <T1 extends InterfaceA & ClassB >

where InterfaceA is an interface type and ClassB is a class type, gives the
following compile-time error in a Java environment “The type ClassB is not an
interface; it cannot be specified as a bounded parameter”. However, by mod-
eling the exact same type in EMF and validating it, the validation completes
successfully.

In a similar manner, the declaration

2 class GenericClass2 <T1, T2 extends T1 & InterfaceA >

generates the Java compile-time error “Cannot specify any additional bound
InterfaceA when first bound is a type parameter”, while its equivalent Ecore
model validates successfully under EMF.

This is due to the fact that the EcoreValidator class does not include
code for checking the above mentioned constraints. Therefore, we propose the
following OCL WFR for the Ecore generics:

104 VLADIELA PETRAŞCU, DAN CHIOREAN, AND DRAGOŞ PETRAŞCU

Figure 9. OCLE snaphot corresponding to GenericClass2
<T1, T2 extends T1 & InterfaceA>

1 context ETypeParameter
2 inv ValidBounds :
3 −− I f a type parameter has bounds and the f i r s t bound i s a type parameter
4 −− re ference , then there are no other bounds .
5 (s e l f . eBounds−>notEmpty () and
6 s e l f . eBounds−> f i r s t () . i sTypeParameterReference ()
7 implies s e l f . eBounds−>s i z e () = 1
8)
9 and

10 −− I f t he re are at l e a s t two bounds ,
11 −− then a l l excep t (maybe) the f i r s t one shou ld r e f e r to i n t e r f a c e types .
12 (s e l f . eBounds−>s i z e () >= 2
13 implies Sequence { 2 . . s e l f . eBounds−>s i z e ()}−> s e l e c t (i ∣
14 not se l f . eBounds−>at (i) . h a s I n t e r f a c e R e f e r e n c e ())−> isEmpty ()
15)

Listing 4. The ValidBounds OCL WFR

The aforementioned WFR makes use of the following query operations:

1 context EGenericType
2 def : h a s C l a s s i f i e r R e f e r e n c e () : Boolean =
3 not se l f . e C l a s s i f i e r . i sUnde f ined ()

5 def : hasClas sRe fe rence () : Boolean =
6 s e l f . h a s C l a s s i f i e r R e f e r e n c e () and se l f . e C l a s s i f i e r . oc l IsTypeOf (EClass)

8 def : h a s I n t e r f a c e R e f e r e n c e () : Boolean =
9 s e l f . hasClas sRe fe rence () and se l f . e C l a s s i f i e r . oclAsType (EClass) . i n t e r f a c e

11 def : i sTypeParameterReference () : Boolean =
12 not se l f . eTypeParameter . i sUnde f ined

Listing 5. Query operations used by ValidBounds

By evaluating the proposed WFR on the OCLE snapshots given in Fig-
ures 8 and 9, which correspond to the declarations in lines 1, respectively 2
above, the obtained result is false in both cases, in accordance with the Java
specification.

PROPOSAL OF A SET OF OCL WFRS FOR THE ECORE META-METAMODEL 105

4.2. The approach taken in [9]. In the following, we will focus on com-
paring our work with the one described in [9]. The above mentioned paper
aims at stating a set of OCL constraints that allow checking whether (1) a
given generic type declaration or (2) a corresponding instantiation with type
arguments (a so called parameterized type) are well formed or not. For fur-
ther reference and comparison, we provide in Listing 6 the OCL code for the
consistentTypeParameters WFR, meant to accomplish the first goal above
(the OCL specification used for accomplishing goal number 2 is omitted, since
it is not directly comparable with the WFRs included in this paper). Its cor-
responding informal specification, as can be deduced from the paper, would be
the following: “The type parameters of any classifier should have non-empty,
distinct names. The bounds of a type parameter (if any) can reference either a
type parameter or a classifier (they cannot be wildcards). If the bound refer-
ences a type parameter, then the referenced parameter should be in scope; if it
references a classifier, it should be a valid type invocation (either non-generic
or generic, possibly raw).”

1 context E C l a s s i f i e r
2 inv cons istentTypeParameters :
3 a l l D i f f e r e n t (eTypeParameters . name) and
4 eTypeParameters−>f o r A l l (tp ∣ tp . i s C o n s i s t e n t (eTypeParameters))

6 context ETypeParameter : : i s C o n s i s t e n t (
7 tpsInScope : Collection (ETypeParameter)) : Boolean
8 def : s e l f . name <> ’ ’ and (s e l f . eBounds−>isEmpty () or
9 s e l f . eBounds−>f o r A l l (t r ∣ t r . i sCons i s t entTypeRefe rence (tpsInScope)))

11 context EGenericType : : i sCons i s t entTypeRefe rence (
12 tpsInScope : Collection (ETypeParameter)) : Boolean
13 def : not i sWi ldcard () and
14 ((s e l f . isReferenceToTypeParameter () and
15 tpsInScope−>i n c l u d e s (s e l f . eTypeParameter))
16 xor
17 (s e l f . i s R e f e r e n c e T o C l a s s i f i e r () and
18 s e l f . e C l a s s i f i e r . i sVa l idTypeInvocat ion (s e l f . eTypeArguments))
19)

21 context EGenericType : : isReferenceToTypeParameter () : Boolean
22 def : e C l a s s i f i e r −>isEmpty () and
23 not eTypeParameter−>isEmpty () and eTypeArguments−>isEmpty ()

25 context EGenericType : : i s R e f e r e n c e T o C l a s s i f i e r () : Boolean
26 def : not e C l a s s i f i e r −>isEmpty () and eTypeParameter−>isEmpty ()

Listing 6. The consistentTypeParameters constraint from [9]

The set of constraints described in [9] can be analysed with respect to both
its declared purpose and our final goal of defining a complete set of WFRs for
Ecore in general, and Ecore generics in particular.

106 VLADIELA PETRAŞCU, DAN CHIOREAN, AND DRAGOŞ PETRAŞCU

Regarding the first criterion, there are certain shortcomings concerning
these constraints, that we mention briefly in the following:

(1) The proposed constraints are incomplete with respect to their intended
purpose. On the one side, those meant to check the well formedness of a
generic type declaration only constrain the bounds of a type parameter
to reference parameters from within the same type declaration, with-
out prohibiting forward references (lines 14-15, Listing 6). However,
forward referencing is not allowed, neither in EMF not in Java (whose
generics’ model inspired the one in Ecore). On the other side, for the
WFRs that check the correct instantiation of a generic type definition
(which are not reproduced here), only a skeleton is given. The OCL
expressions for captureConversion(...) and isSuperTypeOf(...)
(which are the core queries of these WFRs, both in matter of com-
plexity and functionality) are missing from the paper and no reference
to them is provided. As a consequence, it is impossible to evaluate on
snapshots the correctness or efficiency of these WFRs.

(2) There is some redundancy in the OCL specification. The isConsis-
tentTypeReference(...) query operation (starting in line 11 above)
states that a generic type used in a parameter bound (1) should not be
a wildcard and (2) shoud reference either a classifier or a type param-
eter. The latter implies the former, so it should be enough to only im-
pose (2) as a constraint. Moreover, the isConsistent(...) operation
(starting in line 6) requires any type parameter to have a nonempty
name. However, in Ecore, ETypeParameter inherits ENamedElement,
and the latter owns a WFR that checks the well formedness of its name
attribute (well formed implies not empty).

(3) As a matter of style, the OCL specification patterns state that the
use of forAll on collections should be avoided. The corresponding
constraints should be rewritten to use either reject or select, thus
allowing an easy identification of the cause of an evaluation-time error.

With respect to defining a complete set of WFRs for the Ecore generics,
those described in [9] are only a small subset. They are only focused on
the definition and instantiation of generic classifiers; generic operations are
not taken into account. Moreover, even if a given generic type is a valid
instantiation of a certain generic classifier, depending on its usage, it may be
further constrained. There are various ways of using such a generic type (we
have detailed on that in Subsection 3.1), with several constraints that result
thereof. Here are some examples: a generic type used as a generic supertype
should have a classifier that refers to a class; there may not be two different
instantiations of the same generic classifier among the generic supertypes of a
class; the classifier of a generic type that types an attribute should be a data

PROPOSAL OF A SET OF OCL WFRS FOR THE ECORE META-METAMODEL 107

type instance, while the one used for a reference should be a class instance,
and so on.

The WFRs that we have described here are part of a broader set of OCL
WFRs meant to cover all constraints that apply to the Ecore concepts, gener-
ics included. Their expressions have been written following OCL specifica-
tion patters that provide for an easy debugging in case of an evaluation-time
error; therefore all usages of forAll() have been replaced with eqivalent
select()/reject() rephrasings. Lines 13-14 of Listing 4 are a proof of this.
Unefficient OCL constructs have only been used when there has been no other
option (see the discussion related to the use of allInstances()), and the
safety of using undeterministic constructs such as any() has been justified
whenever the case. All WFRs have been tested and validated using OCLE.

The OCL WFRs that we have defined for generics take into account both
generic classifier and generic operation declarations, as well as all previously
mentioned usages of a generic type. From a completeness perspective, the
WFR described in Subsection 3.2 is stronger than its equivalent part from
Listing 6, since it checks for forward referencing, and this aligns it with both
the EMF implementation and the Java specification; the one proposed in
Subsection 4.1 is missing from the EMF implementation, while being enforced
by the Java specification.

5. Conclusions and Future Work

In this paper we have reported on the definition of a set of OCL WFRs
for Ecore. We have used medium-complexity WFRs for generics in order to
illustrate our work and relate it to existing approaches in the literature. As far
as we know, this is the first attempt to provide an OCL formalization of the
well-formedness rules of Ecore. In a broader context, we have emphasized the
importance of OCL WFRs in defining the abstract syntax of a (meta)modeling
language.

Further work includes specifying complete sets of OCL WFRs for the other
two meta-metamodels under study, MOF and XCore. This should lead to the
identification of a “core” set of constraints used by all meta-metamodels. The
definition of some relevant metamodels to help us in validating the proposed
WFRs is also considered (in this respect, in [12], [13] we have already proposed
and tested such a metamodel for components, named ContractCML).

Acknowledgements

This research has been realized in the framework of the IDEI research
project “Frame based on the extensive use of metamodeling for the specifi-
cation, implementation and validation of languages and applications”, code

108 VLADIELA PETRAŞCU, DAN CHIOREAN, AND DRAGOŞ PETRAŞCU

ID 2049, financed by the Romanian National University Research Council
(CNCSIS).

References

[1] Eclipse Modeling Framework (EMF). http://www.eclipse.org/modeling/emf/.
[2] Frame Based on the Extensive Use of Metamodeling for the Specification, Implementa-

tion and Validation of Languages and Applications (EMF SIVLA) project homepage.
http://www.cs.ubbcluj.ro/∼chiorean/CUEM SIVLA.

[3] Meta Object Facility (MOF) 2.0. http://www.omg.org/spec/MOF/2.0/.
[4] Model Development Tools (MDT) OCL. http://www.eclipse.org/modeling/mdt/

?project=ocl.
[5] Model Driven Architecture (MDA). http://www.omg.org/mda/.
[6] Object Constraint Language Environment (OCLE). http://lci.cs.ubbcluj.ro/ocle/.
[7] Object Constraint Language (OCL) 2.0. http://www.omg.org/spec/OCL/2.0/.
[8] Tony Clark, Paul Sammut, and James Willans. Applied Metamodeling. A Foundation

for Language Driven Development. Ceteva, 2008.
[9] Miguel Garcia. Rules for Type-checking of Parametric Polymorphism in EMF Generics.

In Wolf-Gideon Bleek, Henning Schwentner, and Heinz Züllighoven, editors, Software
Engineering 2007 – Beiträge zu den Workshops, volume 106 of GI-Edition Lecture Notes
in Informatics, pages 261–270, 2007.

[10] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification,
Third Edition. Addison-Wesley Longman, May 2005.

[11] Ed Merks and Marcelo Paternostro. Modeling Generics with Ecore. In EclipseCon 2007,
5-8 March 2007. http://www.eclipsecon.org/2007/index.php.

[12] Vladiela Petraşcu, Dan Chiorean, and Dragoş Petraşcu. ContractCML - a Contract
Aware Component Modeling Language. SYNASC 2008 10th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing, pages 273–276, 2008.

[13] Vladiela Petraşcu, Dan Chiorean, and Dragoş Petraşcu. Component Models’ Simula-
tion in ContractCML. Proceeding of Knowledge Engineering: Principles and Techniques
(KEPT 2009), Studia. Universitatis Babes-Bolyai. Informatica, Special Issue, pages
198–201, 2009.

[14] Douglas C. Schmidt. Model-Driven Engineering. Computer, 39(2):25–31, 2006.
[15] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse

Modeling Framework (2nd Edition). Addison-Wesley Professional, December 2008.

Babeş-Bolyai University, 1 Mihail Kogălniceanu, Cluj-Napoca, Romania
E-mail address: {vladi, chiorean, petrascu}@cs.ubbcluj.ro

