
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIV, Number 2, 2009

GENERALIZED FORMAL DEFINITION OF CONFLICT

DETECTION AND RESOLUTION

CIPRIAN COSTA

Abstract. In a distributed environment where information that is not
read-only is shared between multiple parts of the system, the problem
of conflict detection and resolution has to be addressed. In this paper
we discuss the issue of generalized conflict definition because this main
aspect of the consistency of any distributed system is often treated on a
case by case basis. Based on the formal definition we can move on and
identify what are the main types of conflict resolution algorithms which is
very important for an accurate description of the guarantees offered by a
distributed system.

1. Introduction

A lot of effort was channelled into making sure that the conflicts do not
appear in a distributed environment mainly because a system that is fully
consistent is a simple abstraction and we can reuse many of the concepts that
were developed and proven in non-distributed systems. Several types of dis-
tributed systems have abandoned this line of thought and moved towards more
complicated abstractions, where conflicts are allowed to exist. A simple ex-
ample are classical desktop database front end applications that have moved
from connected environments using pessimistic concurrency to disconnected
environments using optimistic concurrency techniques in order to manage the
relatively rare but possible conflicts. Why and when these types of systems
are created and how to decide which to use is not in the scope of this paper.
However, since they gained a lot of traction in recent times, we think that the
notion of conflict detection and resolution deserves a unified and formal defi-
nition that can be used to better understand these distributed environments.

It is proven by the CAP theorem that availability, consistency and parti-
tion tolerance can not be achieved at the same time in a distributed system([2]).
Consistency is a desirable property of any system since it makes programming
and reasoning on the results of that system simpler, practically eliminating

Received by the editors: December 1, 2009.
2010 Mathematics Subject Classification. 68P15, 68M14.
1998 CR Categories and Descriptors. H.2.4 [Systems]: Subtopic – Distributed databases;
Key words and phrases. distributed systems, conflict.

83



84 CIPRIAN COSTA

uncertainty. In order to achieve consistency in a distributed system, a ma-
jority of the parts need to agree on every operation that affects the common
state. In order to achieve that, a lot of consensus algorithms like Paxos ([6])
were created and found their way into various real live implementations like
the Chubby system at Google ([3]).

The problem with consistency is that, according to the CAP theorem, we
need to give up on availability or partition tolerance. Since in many distributed
systems of large scale such requirements are non-negotiable because of the
impact they would have on the perceived quality of the system, new approaches
in which conflicts are allowed to temporarily exist in the system have been
proposed ([10]).

Because the system is no longer consistent, it is much more difficult to
build something on top of it (one may never be sure that the values returned
by a part of the system are actually correct), it is important to define what
type of guarantees can the system provide. We argue that an important part
of this is generated by the way conflicts are detected and resolved. Throughout
this paper we analyse existing work in the domain of conflict detection and
resolution and propose a generalized conflict detection definition and some
criteria that can be used for conflict resolution categorization.

2. Conflict definition

Informally, we define conflicts as situations in which one or more parts of
a system have different representations of a shared fact.

Significant research on conflicts has been done in the field of autonomous
agents, specifically addressing the problem of distributed constraint satisfac-
tion DCSP ([11]). A constraint satisfaction problem is defined as finding an
assignment to a set of variables with the property that a set of given pred-
icates are satisfied by the said assignment. A DCSP is a CSP (constraint
satisfaction problem) where the variables and the predicates are distributed
among several independent agents and gathering all the information required
for solving the CSP on a single node is impossible for various reasons (avail-
ability requirements, software incompatibility, etc). In this case, a conflict is
defined as an assignment chosen by one of the agents that is valid under all
the local predicates but does not hold in at least one of the other predicates.

Another field in which conflicts and conflict resolution algorithms were
researched is collaborative editing ([8], [1], [5]). Several aspects related to
conflicts and conflict resolution appear in collaborative editing that are not
present in DCSPs:

∙ Intent - In the case of distributed agents the software that runs on
each agent is well understood and the intent of any operation is always
known. In the case of collaborative editing the intent of the user has
to be inferred from their actions, it is not a priori known .



GENERALIZED FORMAL DEFINITION OF CONFLICT DETECTION AND RESOLUTION85

∙ Operational transformations - certain conflicts can be transformed in
ways that allow them to be applied to the same document and pre-
serve the operations of both users. This situation occurs when a user
inserts a character at position 2 while another will insert a character
at position 6. If we transform the operation of the second in an insert
on position 7, both users can save their edits. This conflict is called
a non-exclusive conflict . Extensive studies of operational transforma-
tions in various scenarios can be found in Sun and all 1998 [7] and Sun
and all 2004 [9].

A definition that is often used in these scenarios is based on causality
relations because they are supposed to capture the intent of the user. The
supposition is that everything the user knows about a document is the cause
of the intent, and any change in the cause could possibly alter the intent. From
this, if two users are performing an operation having different knowledge of
the environment, their actions could be in conflict. Informally, we say that
o1 → o2 (o1 causally precedes o2) if the user performing o2 was aware of o1
before performing o2. A conflict in this case is defined as a pair of operations
with the property that o1 ↛ o2 and o2 ↛ o1.

We consider this to be a pessimistic intent preservation. The problem
with it is that, in some systems, it could lead to a lot of false positives and
the main assumption of these distributed systems is that conflicts are rare
and far between. We argue that we need a more generic definition of conflict
that would allow a finer grained control over what constitutes intent, what
part of the existing state is relevant for an operation and what alternatives
are available to merge the two operations thus avoiding a conflict that might
lead to an expensive negotiation in order to be resolved.

3. Generalized conflict definition

Let us assume that x1 ∈ D1, x2 ∈ D2, ..., xn ∈ Dn is a set of facts shared
between multiple parts of the system. We define an operation as being the
tuple

ok = (xk1 , ..., xkp , statek, altk)

where k is the system that executed the operation, xk1 , ... xkp are assignment
on a subset of shared facts, state is a representation of the facts and other
information that captures the relevant context of the operation, thus defining
the intent of the user performing the operation, alt is a function defined as
alt : O × O → O ∪ {⊘} where O is a set of all the possible operations. The
function alt represents the means of merging two operations into a third with
the property that the third is not in conflict with either of the first two. We
say that two operations can not be merged if alt(o1, o2) = ⊘.

In order to define conflicts based on causality relations we can consider
state to be some sort of vector clocks that summarize the knowledge of the



86 CIPRIAN COSTA

user when attending the operation, while alt would be undefined. But in this
definition we have the freedom to alternate state from user generated intent
description to artificial intelligence algorithms, depending on how the system
deals with conflicts and what sort of conflict tolerance it has. The complexity
of the conflict definition reflects directly in the guarantees the system is able
to make about consistency and other observable metrics, therefore most of
the systems will probably stay on the safe side, but still prefer to relax causal
dependency.

Since, unlike in the case of the DCSP, we are not trying to solve a set
of constraint that may not all fit on an agent but rather satisfy the single
constraint of consistency, we can use specific predicates defined on the data
existing on each node and define conflicts based on the evaluation of these
predicates. We consider consistency to be a predicate defined on O ×O that
is evaluated to true if the two operations can be applied in parallel and preserve
the intent of both. We define the conflict between two operations and write
o1 ⊗ o2 if

¬consistency(o1, o2) ∧ alt(o1, o2) = ⊘
.

As it can be seen from the definition, there are simplified implementation
of the predicates and functions that will lead to all the conflict definitions
that were described earlier. Also, the definition allows us to further define and
formalize the conflict resolution algorithms.

4. Conflict resolution types

Once a conflict is detected, it must be resolved in order for the system as a
whole to function properly. Most of the systems that allow conflicts to appear
between parts have a certain built in tolerance for conflicts, but that usually
degrades the quality of the service or renders it useless. Since the degradation
is acceptable because the cost of avoiding it altogether is prohibitive, the
system must ensure that the conflicts are resolved as quick as possible, or, at
the very least, ensure that the conflicting situation will not exist forever in the
condition of normal functioning of the system.

We identify the following characteristics of any conflict resolution algo-
rithm that can be used in order to classify and better understand the conse-
quences of using them:

∙ Convergence - The guarantee that the system will converge from a con-
flict state to a conflict free state in a bounded interval of time. It is very
difficult to work with a system that does not guarantee convergence
in at least some cases. While such systems where perpetual conflict
situations are accepted could exist, usually there are guarantees like
”system converges if it is partition free, all the components are up and
no additional conflicts are added”. It is very important for a conflict



GENERALIZED FORMAL DEFINITION OF CONFLICT DETECTION AND RESOLUTION87

resolution algorithm to clearly state the conditions under which it will
converge, since convergence under any conditions is impossible.
∙ Performance - One of the reasons to implement conflict tolerance in

the first place is to decrease the cost of the system, therefore perfor-
mance is an important characteristic. The performance level can be
measured in many ways and the relevance of these metrics depend on
the specific application. Possible metrics include the time, the net-
work resources that are used, the number and type of resources that
are involved (for example an algorithm that requires a human to make
decisions will probably be more expensive than one that relies entirely
on computers).
∙ Impact on non-conflicting state - Most of these systems accept conflicts

because they are supposed to be rare, and an optimistic approach
to resolving them is applicable. However, if the enforcement of the
optimistic concurrency will affect all operations, including the majority
that will be conflict free, the price might be prohibitive. One might
argue that this is just another possible type of performance metric, but
we would rather consider it as a separate category because performance
is strictly bound to the process of resolving a conflict situation.
∙ Intention preservation - This characteristic takes into consideration

the source of the conflict. Usually conflicts are not introduced by
errors in the system but by users or systems working independently
and having only a partial knowledge of the environment. In such cases,
it is important to determine how and to what degree is the intent of
each state that is in conflict being preserved by the conflict resolution
algorithm. For example, if a document contains a circle, a user can
alter the document to become a ”happy face” while another could
change the circle to a square. The result of having a square ”happy
face” will not preserve the intent of either user.

5. Conclusions and future work

In this paper we unified approaches from various communities involved in
the research of distributed systems and created a generic definition of what a
conflict is. Another contribution is the enumeration of several aspects that are
important in the conflict resolution phase. As a system can not remain in a
conflict state forever, all systems need to address the issue of conflict resolution,
therefore, identifying the characteristics of a conflict resolution algorithm is of
utmost importance.

We have used the conflict detection and resolution analysis from this pa-
per in order to implement the JStabilizer ([4]) system and model the object
oriented framework so that it accommodates a wide range of possible usage



88 CIPRIAN COSTA

patterns. We will continue to develop the JStabilizer framework and imple-
ment more test cases that will refine and reinforce the validity and generality
of the definitions and concepts included in this paper.

References

[1] Pauline M. Berry, Tomás Uribe, Neil Yorke-Smith, Cory Albright, Emma Bowring, Ken
Conley, Kenneth Nitz, Jonathan P. Pearce, Bart Peintner, Shahin Saadati, and Milind
Tambe. Conflict negotiation among personal calendar agents. Proceedings of the fifth
international joint conference on Autonomous agents and multiagent systems - AAMAS
’06, page 1467, 2006.

[2] E.A. Brewer. Towards robust distributed systems. Proceedings of the Annual ACM Sym-
posium on Principles of Distributed Computing, 19:710, 2000.

[3] T.D. Chandra, R. Griesemer, and J. Redstone. Paxos made live: an engineering perspec-
tive. Proceedings of the twenty-sixth annual ACM symposium on Principles of distributed
computing, page 407, 2007.

[4] Costa Ciprian. JStabilizer code repository (http://code.google.com/p/jstabilizer/),
2009.

[5] S. Citro, J. McGovern, and C. Ryan. Conflict management for real-time collaborative
editing in mobile replicated architectures. Proceedings of the thirtieth Australasian con-
ference on Computer science-Volume 62, page 124, 2007.

[6] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems
(TOCS), 16:133–169, 1998.

[7] C Sun, X Jia, Y Zhang, Y Yang, and D Chen. Achieving convergence, causality preser-
vation, and intention preservation in real-time cooperative editing systems. ACM Trans-
actions on Computer Human Interaction, 5:63–108, 1998.

[8] Chengzheng Sun and David Chen. Consistency maintenance in real-time collaborative
graphics editing systems. Interactions, 9:1–41, May 2002.

[9] D. Sun, S. Xia, C. Sun, and D. Chen. Operational transformation for collaborative word
processing. Proceedings of the 2004 ACM conference on Computer supported cooperative
work, 6:446, 2004.

[10] Werner Vogels. Eventually consistent. ACM Queue Communications, 2008.
[11] M. Yokoo, E.H. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint satis-

faction problem: Formalization and algorithms. IEEE Transactions on Knowledge and
Data Engineering, 10:673685, 1998.

Babes-Bolyai University, Department of Computer Science, Cluj-Napoca,
Romania

E-mail address: costa@cs.ubbcluj.ro


