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DEFAULT REASONING BY ANT COLONY OPTIMIZATION

MIHAIELA LUPEA

Abstract. Drawing conclusions from incomplete information by making
default assumptions represents default reasoning. Default logics, a class
of nonmonotonic logical systems, formalize this type of reasoning using
special inference rules, the defaults. During the inferential process, a de-
fault theory is extended with plausible conclusions (beliefs) obtaining de-
fault extensions. The very high theoretical complexity of the extension
computation problem suggests the use of non-deterministic techniques for
an efficient computation. In this paper we propose a uniform theoretical
approach of the extension computation problem for all default logics (clas-
sical, justified, constrained, rational) applying Ant Colony Optimization
metaheuristic.

1. Introduction

A lot of applications from Artificial Intellingence domain suppose reasoning
with incomplete information. The specificity of this reasoning process, the
nonmonotonicity, imposes that in the light of new information, some already
derived conclusions (which are only consistent, not necessarily true) to be
invalidated.

A special case of nonmonotonig reasoning, default reasoning, uses reason-
ing patterns of the form: ”in the absence of information to the contrary of... it
is consistent to assume that...”. In the deductive process, default assumptions
are applied in order to derive conclusions (called beliefs).

A class of nonmonotonic logical systems, default logics was introduced to
formalize the default reasoning. Based on first-order logic, default logics use
special inference rules, called defaults, to model the above nonmonotonic rea-
soning patterns. The differences among the versions (classical [10], justified [5],
constrained [11], rational [8]) of default logic are caused by the semantics of
the defaults.
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Default logics provide a very expressive representation of an incomplete
knowledge base (default theory), ruled by laws that are true with a few ex-
ceptions, using a simple syntactic formalism (first-order formulas and the de-
faults). The default reasoning process consists of combining the classical de-
duction with the defaults in order to derive new facts (beliefs), and obtain the
default extensions, even if some information are not available.

This great power of the inferential process causes a high level of theoreti-
cal complexity. The problem of computing the extensions (classical, justified,
constrained, rational) of a default theory is NPNP -complete, this class be-
longing to the second level of the polynomial hierarchy of complexity classes
based on calculus with oracles. For an efficient computation non-deterministic
approaches must be used.

Automated proof systems for default logics proposed in the literature
[1, 2, 6, 12] and based on the well known classical theorem proving meth-
ods as resolution, connection method, semantic tableaux method, have good
performances only for particular classes of default theories and are not efficient
for general non-trivial default theories.

In the paper [9] new generation systems for default reasoning were intro-
duced. These are based on heuristics such as Genetic Algorithms, Ant Colony
Optimization and Local Search, in order to overcome the high complexity and
to obtain efficient reasoning systems. ANTDEL [9] is a system which uses Ant
Colony Optimization to compute the classical default extension of a default
theory that is equivalent to a logic program.

Inspired from the good performances of ANTDEL, in this paper we propose
a uniform theoretical approach of the extension computation problem (ECP)
for all versions (classical, justified, constrained, rational) of default logic using
Ant Colony Optimization metaheuristic.

The paper is structured as follows. In Section 2 the main theoretical as-
pects of default logics are presented. A heuristic approach of the extension
computation problem for default logics (classical, justified, constrained, ratio-
nal) is introduced in Section 3. In section 4 an Ant Colony Optimization based
procedure to compute all types of extensions for a default theory is proposed.
Conclusions and future work are outlined in Section 5.

2. Default logics

Definition 1. [10] A default theory Δ = (D,W ) consists of a set D of
default rules and W , a set of consistent first-order logic formulas (the facts). A

default has the form d = �:�1,...,�m
 , where: � is called prerequisite, �1, . . . , �m

are called justifications and  is called consequent.
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A default d = �:�1,...,�m
 can be applied and thus derive  if � is believed

and it is consistent to assume �1, . . . , �m (meaning that ¬�1, . . . ,¬�m are not
believed).

Using the classical inference rules and the defaults, the set of facts, W ,
can be extended with new formulas, called nonmonotonic theorems (beliefs),
obtaining extensions. The set of all the defaults used in the construction of
an extension is called the generating default set for that extension.

Default theories can be represented by unitary theories (all the defaults
have only one justification), in such a way that extensions (classical, justified,
constrained, rational) are preserved. In the paper we will use only unitary
default theories and the following notations:
d = �:�

 - a default, Prereq(d) = �, Justif(d) = �, Conseq(d) = ,

Prereq(D) =
∪
d∈D Prereq(d), Justif(D) =

∪
d∈D Justif(d),

Conseq(D) =
∪
d∈D Conseq(d),

Tℎ(U) = {A∣U ⊢ A}, the classical deductive closure of the set U of formulas.

Definition 2. [11] A set X of defaults is grounded in the set of facts W if
there is an enumeration ⟨di⟩i∈I of the defaults from X such that:
∀i ∈ I, W ∪ Prereq({d0, d1, ..., di−1}) ⊢ Prereq(di).

The following theorems provide global characterizations for default exten-
sions using the generating default sets.

Theorem 1. [11] Let (D,W ) be a default theory, and let E be a set of
formulas. E is a classical extension of (D,W ) if and only if E = Tℎ(W ∪
Conseq(D′)) for a maximal set D′ ⊆ D such that D′ is grounded in W and
the conditions:

− ∀d = �:�
 ∈ D

′: W ∪ Conseq(D′) ∪ {�} is consistent;

− ∀d = �:�
 /∈ D′: W ∪ Conseq(D′) ∪ {�} is inconsistent or

W ∪ Conseq(D′) ∪ {¬�} is consistent
are satisfied.

Theorem 2. [6] Let (D,W ) be a default theory, and let E, J be sets
of formulas. (E, J) is a justified extension of (D,W ) if and only if E =
Tℎ(W ∪ Conseq(D′)) and J = Justif(D′) for a maximal set D′ ⊆ D such
that D′ is grounded in W and the conditions:

∀d = �:�
 ∈ D

′: W ∪ Conseq(D′) ∪ {�} is consistent;

are satisfied.
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From the above theorems we remark that a classical/justified default ex-
tension is a consistent set and these two logics satisfy the weak regularity
property, expressed as an individual consistency condition (stronger in justi-
fied logic than in classical default logic) for the justifications of the generating
defaults.

Theorem 3. [11] Let (D,W ) be a default theory, and let E,C be sets
of formulas. (E,C) is a constrained extension of (D,W ) if and only if
E = Tℎ(W ∪ Conseq(D′)) and C = Tℎ(W ∪ Conseq(D′) ∪ Justif(D′)) for a
maximal set D′ ⊆ D such that D′ is grounded in W and the condition:

W ∪ Conseq(D′) ∪ Justif(D′) is a consistent set;
is satisfied.

Theorem 4. [6] Let (D,W ) be a default theory, and let E,C be sets
of formulas. (E,C) is a rational extension of (D,W ) if and only if E =
Tℎ(W ∪Conseq(D′)) and C = Tℎ(W ∪Conseq(D′)∪ Justif(D′)) for a max-
imal set D′ ⊆ D such that D′ is grounded in W and the conditions:

− W ∪ Conseq(D′) ∪ Justif(D′) is a consistent set;
− ∀d ∈ D∖D′ we have:

W ∪ Conseq(D′) ∪ ¬Prereq(d) is consistent or
W ∪ Conseq(D′) ∪ Justif(D′ ∪ d) is inconsistent;

are satisfied.

Theorems 3 and 4 show that the strong regularity property is common to
these logics. According to this property, the reasoning process is guided by a
consistent context C containing the actual extension E and the assumptions
(justifications) of the applied defaults. For the rational default logic the set of
generating defaults must be maximal-active [8] with respect to W and E.

Another important formal property is semi-monotonicity which expresses
a ”monotonicity” with respect to the set of defaults. Justified and con-
strained default logics have this desirable property (useful in the computa-
tion of an extension), with an important consequence: the existence of a
justified/constrained extension for any default theory. The existence of a
classical/rational extension for a default theory is not guaranteed and semi-
monotonicity property is not satisfied by classical/rational default logics.

From theorems 1, 2, 3 and 4 we can conclude that all four types of exten-
sions are deductive closures of the set W (explicit content) and the consequents
of the generating default set D′(implicit content).

According to the initial fixed-point definitions of all variants of default
logic, the generating default sets are defined as follows:
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Definition 3. Let E1 be a classical extension, (E2, J) be a just ified exten-
sion, (E3, C3) be a constrained extension and (E4, C4) be a rat ional extension
of the default theory (D,W ). The generating default sets are:

GDE1,clas
(D,W ) =

{
�:�
 ∈ D∣if � ∈ E1 and E1 ∪ {�} consistent , tℎen  ∈ E1}

for the classical extension E1;

GD
(E2,J),just
(D,W ) =

{
�:�
 ∈ D∣if � ∈ E2 and ∀� ∈ J ∪ {�} : E2 ∪ {, �} consistent

tℎen  ∈ E2, � ∈ J} for the justified extension (E2, J);

GD
(E3,C3),cons
(D,W ) =

{
�:�
 ∈ D∣if � ∈ E3 and C3 ∪ {�, } consistent

tℎen  ∈ E3, �,  ∈ C3} for the constrained extension (E3, C3);

GD
(E4,C4),rat
(D,W ) =

{
�:�
 ∈ D∣if � ∈ E4 and C4 ∪ {�} consistent, tℎen  ∈ E4,

�,  ∈ C4} for the rational extension (E4, C4).

Example 1. The default theory (D,W ), with W = {A}) and D ={
d1 = A:B

F , d2 = :¬B
G , d3 = :¬F∧¬G

H

}
has:

- one classical extension: E1 = Tℎ({A,F,G}) and GDE1,clas
(D,W ) = D1 = {d1, d2};

- two justified extensions:

(E1, J1)=(Tℎ({A,F,G}),{B,¬B}), GD(E1,J1),just
(D,W ) = D1;

(E2, J2)=(Tℎ({A,H}),{¬F ∧ ¬G}), GD(E2,J2),just
(D,W ) = D2={d3};

- three constrained extensions:
(E2, C2) = (Tℎ({A,H}),Tℎ({A,H,¬F ∧ ¬G})), GD(E2,C2),cons

(D,W ) = D2;

(E3, C3) = (Tℎ({A,F}),Tℎ({A,F,B})), GD(E3,C3),cons
(D,W ) = D3 = {d1};

(E4, C4) = (Tℎ({A,G}),Tℎ({A,G,¬B})), GD(E4,C4),cons
(D,W ) = D4 = {d2}

- two rational extensions: (E3, C3) and (E4, C4) with GD
(E3,C3),rat
(D,W ) = D3 and

GD
(E4,C4),rat
(D,W ) = D4.

3. A heuristic approach of the extension computation problem

In this section we extend the heuristic approach of the classical ECP from
[9] to all types of default extensions: justified, constrained, rational.

The theorems from the previous section show that the problem of finding
extensions can be reduced to the problem of finding the generating default
sets for those extensions.

In this heuristic approach we need to define a search space for the gener-
ating default sets and an evaluation function to compute the fitness of each
element of this space according to the definitions of default extensions.
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Definition 4. [7] For a default theory (D,W ) we define the search space
as the set CGD = 2D, representing all possible configurations, called candi-
date generating default sets.

Definition 5. [7] Let (D,W ) be a default theory and X ∈ CGD, a can-
didate generating default set. We define:
- the candidate extension associated to X: CE(X) = Tℎ(W ∪ Conseq(X));
- the candidate context associated to X:

CC(X) = Tℎ(W ∪ Conseq(X) ∪ Justif(X));
- the candidate support set associated to X: CJ(X) = Justif(X).

For defining the evaluation function we need four intermediate functions:
f type0 , f type1 , f type2 , f type3 , where type=clas for classical extensions, type=just for
just ified extensions, type=cons for constrained extensions and type=rat for
rat ional extensions.

Using f type0 we check if the candidate extension (for classical and justified
default logics) or the candidate context (for constrained and rational default
logics) is consistent or not, according to Theorems 1, 2, 3 and 4:

f clas0 (X), f just0 (X) =

{
0 if CE(X) is consistent
1 otherwise

f cons0 (X), f rat0 (X) =

{
0 if CC(X) is consistent
1 otherwise

f type1 rates the correctness of the candidate generating default set according
to the definitions of different types of default extensions.

f type1 (X) =
∑n

i=1 �(di), where D = {d1, d2, ..., dn}
The table below defines �(di) ∈ Z, a penalty for each default di ∈ D,

indicating if a default fromX was correctly/wrongly applied and a default from
D −X was correctly/wrongly not applied, in order to generate the candidate
extension CE(X). k is an integer constant.

di ∈ X Cpre(X, di) Ctype
justif (X, di) �(di) di = �i : �i

i
true true true 0 correctly applied
true true false k wrongly applied
true false true k wrongly applied
true false false k wrongly applied
false true true k wrongly not applied
false true false 0 correctly not applied
false false true 0 correctly not applied
false false false 0 correctly not applied
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Cpre(X, di) : CE(X) ⊢ �i is the groundness condition for di.

The conditions Ctypejustif , according to Definition 3, imply the weak regularity

property for classical/justified default logics and the strong regularity property
for constrained/rational default logics.

∙ Cclasjustif (X, di): the set CE(X) ∪ {�i} is consistent;

∙ Cjustjustif (X, di): ∀� ∈ CJ(X) ∪ {�i}, the set

CE(X) ∪ {�, i} is consistent;
∙ Cconsjustif (X, di): the set CC(X) ∪ {�i, i} is consistent;

∙ Cratjustif (X, di): the set CC(X) ∪ {�i} is consistent.

f type2 rates the level of groundness of the candidate generating default set.

f type2 (X) = card(Y ), where Y is the biggest grounded set Y ⊆ X ∈ CGD.

f type3 checks the groundness property of X:

f type3 (X) =

{
0 if X is grounded
1 otherwise

Definition 6. [7] For a default theory (D,W ) the evaluation function
for a candidate generating default set X ∈ CGD of an extension of type ∈
{clas, just, cons, rat} is defined by:

evaltype : CGD 7−→ Z ∪ {⊥,⊤} with ∀z ∈ Z,⊥ < z < ⊤
if f type0 (X) = 1

then evaltype(X) = ⊤
else if f type1 (X) = 0 and f type3 (X) = 0

then evaltype(X) = ⊥
else evaltype(X) = f type1 (X)− f type2 (X)

endif
endif

The following theorem provides a necessary and sufficient condition for a
set of defaults to be a generating set for an extension, using evaltype.

Theorem 7.[7] Let (D,W ) be a default theory. A candidate generating
default set X ∈ CGD generates an extension of type ∈ {clas, just, cons, rat}
if and only if evaltype(X) = ⊥.

This evaluation function can be used by different non-deterministic ap-
proaches as Genetic Algorithms and Ant Colony Optimization, to evaluate
the candidate generating default sets from the search space. The efficiency of
these approaches derives from the fact that the search space is not entirely
explored. An initial candidate is progressively improved in order to obtain a
solution for the extension computation problem (ECP).
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4. Computing default extensions using Ant Colony Optimization

Based on the theoretical considerations of ANTDEL [9], in this section we
propose a uniform theoretical approach of the extension computation problem
for all versions of default logic using Ant Colony Optimization.

Ant Colony Optimization (ACO) [3, 4] is a population-based metaheuristic
successfully used to solve difficult optimization problems which can be reduced
to finding good paths through graphs. The collective behavior of ants, seeking
for food and cooperating via the environment (the pheromone deposited on
the paths), was the inspiration for this optimization technique.

Informally, the extension computation problem is represented as a search
problem and it is solved using the ACO metaheuristics as follows:

- Given a default theory, a default graph, representing all the candidate
generating default sets, is built. The default rules and two particular vertices:
in and out form the set of vertices. The arcs connect the vertices containing
compatible defaults. Each arc is weighted by pheromone which is initialized
to 1 and is updated (deposited and evaporated) during the search process.

- An ant colony must find an optimal path from in to out in the graph,
path which corresponds to a generating default set for an extension.

- The ants individually build their paths from in to out (corresponding to
candidate generating default sets), using a probabilistic choice biased on the
pheromone deposited on the arcs and a local evaluation function.

- The pheromone evaporates in time and increases on better paths. There-
fore, during the optimization process, the paths are progressively improved in
order to find an optimal solution (according to the evaluation function).

The following definitions formalize the above description using the con-
cepts defined in the previous section.

Definition 7. Let (D,W ) be a default theory. The default graph of
type∈ {clas, just, cons, rat} associated to the default theory is Gtype(D,W ) =
(D ∪ {in, out} , Atype, '). The arc set, Atype, is defined as follows:
Atype = {(in, out)} ∪ {(d, out),∀d ∈ D}∪

∪
{

(d, d′) ∈ D2∣d ∕= d′ and Ctype(d, d′) is true
}
∪

∪
{

(in, d),∀d = �:�
 ∈ D∣W ⊢ � and W ∪ {�, } consistent

}
,

where: d = �:�
 , d

′ = �′:�′

′ and the conditions Ctype are:

Cclas(d, d′) = Cjust(d, d′) : W ∪ {�, , ′} and W ∪ {�′, , ′} consistent;
Ccons(d, d′) = Crat(d, d′) : W ∪ {�, �′, , ′} consistent;

Each arc (i, j) ∈ Atype is weighted by a positive real number 'i,j , called
artificial pheromone.
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In order to decrease the search space, the arc set of the default graph is
built using the following observations:

- The arc (in, d) is added to the arc set if d is applicable to W and its
application will not lead to a contradiction. This condition is the same for all
versions of default logic.

- There is an arc between two defaults d and d′ only if they are ”compati-
ble”, meaning that they can belong together to a candidate generating default
set. Cclas(d, d′), Cjust(d, d′), Ccons(d, d′), Crat(d, d′) express these ”compatibil-
ity” conditions which are particular cases of the weak/strong regularity prop-
erties for the default logics.

Definition 8. For the default theory (D,W ) and a path P = (in, ..., out)
in Gtype(D,W ), DP = D∩P ∈ CGD represents a candidate generating default
set of type ∈ {clas, just, cons, rat}.

Definition 9. Let P be a path in the default graph Gtype(D,W ) and

d = �:�
 ∈ D − P .

- d is grounded in P if W ∪ Conseq(DP ) ⊢ �,
- d is type-compatible with P if Ctype(P, d) is true, where:
DP = P ∩D, type ∈ {clas, just, cons, rat}
Cclas(P, d) : W ∪ Conseq(DP ) ∪ {�} consistent;
Cjust(P, d) : ∀� ∈ Justif(DP )∪{�} : W ∪Conseq(DP )∪{�, } consistent;
Ccons(P, d) : W ∪ Conseq(DP ) ∪ Justif(DP ) ∪ {�, } consistent;
Crat(P, d) : W ∪ Conseq(DP ) ∪ Justif(DP ) ∪ {�} consistent;
- the local evaluation function is defined by:

loctype(P, d) =

⎧⎨⎩ 1 if d is grounded in P and
d is type-compatible with P

0 otherwise

Remarks:
1. The compatibility conditions for all types of versions are the apllicability

conditions of the defaults and are used to apply one by one the defaults and
to build candidate generating default sets (paths from in to out in the default
graph).

2. The local evaluation function is used to choose efficiently the next vertex
in the path (the next default to be applied) in order to reach the out vertex.

3. Due to the semi-monotonicity property of justified/constrained default
logics, applying new defaults will not contradict previously applied defaults.
If the locjust/cons(P, d) = 1, then DP = P ∩D is a partial generating default
set and P is a ”good” path, which will lead to an optimal solution.

4. For classical/rational default logics, which do not satisfy the semi-

monotonicity property, locclas/rat(P, d) = 1 will not guarantee that P is a
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”good” path, because the application of new defaults can lead to a contradic-
tion and the defaults from DP = P ∩D can not be generating defaults.

Definition 10. Let (D,W ) be a default theory and P = (in, ..., vi) a path
in the default graph Gtype(D,W ) = (V,Atype, '). The set of vertices reachable
from vi is R(vi, P ) =

{
vj ∈ V − P ∣(vi, vj) ∈ Atype

}
. The attractivity of each

reachable vertex vj from vi ∈ P is defined as follows:

attype(vi, vj , P, �, �) =
'�i,j∗(loctype(P,vj))�∑

vk∈R(vi,P ) '
�
i,k∗(loctype(P,vk))�

, �, � > 0

An ant chooses the next vertex on its path using the probability given by
the attractivity function. � and � are used to give more or less influence of
the pheromone or local evaluation.
The following ACO-based procedure, computes default extensions of any type.

Procedure Extension-Computation-Problem-ACO
Input data:

(D,W ) - a default theory
type - the type ∈ {clas, just, cons, rat} of default extension
na - the number of ants in the colony
ni - the maximum number of iterations
�, � - used to give more or less influence of the pheromone or local evaluation
e - the evaporation coefficient
k - the number of the best paths used for reinforcement

Output data:
- a generating default set for a type default extension of (D,W ) or
- the best candidate, after ni iterations, for a generating default set of a type

default extension of (D,W )
build G = (V,A, ') // the default graph: Gtype(D,W );
it← 1; sol← false;
while (it <= ni and not sol) do

for i = 1 to na do
P [i]← path-ant(G, type, �, �);
ev[i]← evaltype(DP [i]);

endfor
order the arrays ev[i], P [i], i = 1, na ascending with respect to ev[i]
bestP = P [1];
if (ev[1] = ⊥) then sol← true; break; endif
'←update(', P, k);
'←evaporation(', e);
it← it+ 1;

endwhile
if (sol = true) then



DEFAULT REASONING BY ANT COLONY OPTIMIZATION 81

write ”DbestP is the generating default set of the type- default extension CE(DbestP )
else

write ”DbestP is the best candidate, after ni iterations, for a generating default
set of a type default extension of (D,W )”

endif
endprocedure

Function path-ant(G, type, �, �)
v ← in; patℎ← {in};
while (v ∕= out) do

compute R(v, patℎ); // the vertices of V , reachable from v
for all u ∈ R(v, patℎ) do

compute attype(v, u, patℎ, �, �); // attractivity
endfor
choose w ∈ R(v, patℎ) with the probability attype(v, w, patℎ, �, �);
patℎ← patℎ ∪ {w};
v ← w;

endwhile
return patℎ;
endfunction

The evaporation function acts globally decreasing the pheromone on all
the arcs: '(i, j)← (1− e) ∗ '(i, j), ∀(i, j) ∈ Atype.

In order to improve the paths in the next iterations, the pheromone on the
best k paths is increased by the function update as follows:

'(i, j)← '(i, j) + 0.9k−m, ∀(i, j) ∈ D ∩ P [m],m = 1, . . . , k.
We remark that the update function can be improved, for justified/ con-

strained extensions, by reinforcing all the partial paths representing partial
generating defaults, due to the semi-monotonicity property.

The fact that the existence of classical/rational extensions for a default
theory is not guaranteed implies that in some cases the execution of the pro-
cedure will stop when the maximum number of iterations was executed, but
we can not conclude if there is a classical/justified extension for the initial
default theory or not.

For justified/constrained logics, in the worst case there is at least one
extension for a default theory, corresponding to the path (in, out), which rep-
resents ∅ as the generating default set. If the maximum number of iterations
is big enough, the procedure computes always a justified/constrained default
extension.

For all types of extensions if the procedure stops without giving an exten-
sion, we obtain an approximate solution, the best candidate for a generating
default set of an extension, that can be useful.
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5. Conclusions and future work

In this paper we proposed a uniform theoretical approach of the extension
computation problem for all versions (classical, justified, constrained, rational)
of default logic using Ant Colony Optimization. Due to the high complexity
(NPNP ) of this problem for non-trivial default theories, the ECP is solved as
a search problem using this metaheuristic.

We are now working at the implementation of an automated system in
order to obtain experimental results for non-trivial general default theories and
to find the best combinations for the parameters of the proposed procedure.
A first-order theorem prover [6], based on the sematic tableaux method will
be used to check the consistency, inconsistency, derivability and groundness,
needed for computing the local and general evaluation functions.

References

[1] G. Antoniou, A. P. Courtney, J. Ernst, J., M. A. Williams, “A System for Computing
Constrained Default Logic Extensions”, Logics in Artificial Intelligence, Lecture Notes
in Artificial Intelligence, 1126, pp. 237–250, 1996.

[2] P. Cholewinski, W. Marek, M. Truszczynski, “Default reasoning system DeReS”, Pro-
ceedings of KR-96, pp. 518–528, Morgan Kaufmann,1996.

[3] M. Dorigo, E. Bonabeau, G. Theraulaz, “Ant algorithms and stigmergy”, Future Gener-
ation Computer Systems, no. 16, pp. 851–871, 2000.

[4] M. Dorigo, T.Stutzle, Ant Colony Optimization, MIT Press, 2004.
[5] W. Lukasiewicz, “Considerations on default logic - an alternative approach”, Computa-

tional Intelligence, no. 4, pp. 1–16, 1988.
[6] M. Lupea, Nonmonotonic Reasoning Using Default Logics, Ph.D. Thesis, Babes-Bolyai

University, Cluj-Napoca, 2002.
[7] M. Lupea, “Computing default extensions - a heuristic approach”, Studia Universitatis

Babes-Bolyai, Informatica, L, no. 2, pp. 49–58, 2005.
[8] A. Mikitiuk, M. Truszczynsky, “Constrained and Rational Default Logics”, Proceedings

of IJCAI-95, pp. 1509–1515, Morgan Kaufman, 1995.
[9] P. Nicolas, F. Saubion, I. Stephan, “New generation systems for non-monotonic rea-

soning”, International Conference on Logic Programming and NonMonotonic Reasoning,
pp. 309–321, 2001.

[10] R. Reiter, “A Logic for Default Reasoning”, Artificial Intelligence, no. 13, pp. 81–132,
1980.

[11] T. H. Schaub, Considerations on Default Logics, Ph.D.Thesis, Technischen Hochschule
Darmstadt, Germany, 1992.

[12] T. H. Schaub, “XRay system: An implementation platform for local query-answering
in default logics”, Applications of Uncertainty Formalisms, Lecture Notes in Computer
Science, no. 455, pp. 254–378, Springer Verlag, 1998.
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