
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIV, Number 2, 2009

CONCEPTUAL KNOWLEDGE PROCESSING FOR

DATABASES. AN OVERVIEW

CHRISTIAN SĂCĂREA AND VIORICA VARGA

Abstract. We present an overview of methods of Conceptual Knowledge
Processing and their applications for databases, pointing out recent devel-
opments and joint research work in this field. Based on the mathematical
theory of Formal Concept Analysis, we show how Conceptual Graphs can
be used as a representation tool for both database structure and queries.
Also we apply methods of Formal Concept Analysis to mine functional
dependencies in relational databases. These methods are then discussed
on several examples, presenting two software products developed so far,
FCAFuncDepMine and CGDBInterface.

1. Conceptual Knowledge Processing

1.1. Methods of Conceptual Knowledge Processing. Formal Concept
Analysis started in the early ’80s as an attempt to restructure the classical
lattice theory. The mathematical part of this theory quickly developed but the
power of its expressiveness became clear by dealing with concrete problems
of data analysis. Since then, Formal Concept Analysis has been extended
to a powerful general framework for Conceptual Knowledge Processing and
Representation.

According to [21], Conceptual Knowledge Processing is considered to be
an applied discipline dealing with ambitious knowledge which is constituted by
conscious reflection, discursive argumentation and human communication on
the basis of cultural background, social conventions and personal experiences.
Its main aim is to develop and maintain methods and instruments for pro-
cessing information and knowledge which support rational thought, judgment
and action of human beings and therewith promote the critical discourse. The
word Conceptual in the name Conceptual Knowledge Processing underlines

Received by the editors: October 30, 2009.
2010 Mathematics Subject Classification. 68P15, 03G10.
1998 CR Categories and Descriptors. H.2.1 [Database Management]: Logical design

– Normal forms; F.4.m [Mathematical Logic and Formal Languages]: Miscellaneous.
Key words and phrases. Conceptual Knowledge Processing, Formal Concept Analysis,

Database Theory, Conceptual Graphs.

59



60 CHRISTIAN SĂCĂREA AND VIORICA VARGA

the constitutive role of the thinking, arguing and communication of human
being in order to collect process knowledge. Conceptual Knowledge Process-
ing is grounded on the mathematization of traditional philosophical logic, as
a doctrine of concept, judgment and conclusion. The mathematical basis is
build on Formal Concept Analysis, a mathematical theory of concepts and
concept hierarchies, developed in the last 25 years, which has been proved
useful in a large number of applications. Conceptual Knowledge Representa-
tion, Conceptual Classification, Analysis of Concept Hierarchies, Conceptual
Identification, Conceptual Knowledge Inference, Acquisition and Retrieval are
just some methods which can prove their usefulness.

Conceptual Knowledge Processing differs from other data analysis methods
in that the emphasis is on recognizing structural similarities ([3]), turning a
collection of data into a set of knowledge units called concepts and unfolding
the subsequent encoded knowledge into a conceptual hierarchy.

Throughout this paper, information in the scope of Conceptual Knowledge
Processing should be understood in the same way as in Devlin’s book Infosense
- Turning Information into Knowledge ([6]). Here, he briefly summarize this
understanding in the formulas:

Data = signs + syntax
Information = Data + Semantics
Knowledge = Internalized Information + Possibility to use this

information in order to acquire new knowledge.

By this understanding, it becomes clear that Formal Concept Analysis
is able to support the representation of information and knowledge ([20]).
Moreover, it is important to point out the difference between information
and knowledge, difference which constitutes the very essence of knowledge
processing vs. data analysis. By this understanding, information is always
contextual, while knowledge is always conceptual.

The mathematical theory of Formal Concept Analysis is based on a set
theoretical semantics. Formal Concept Analysis starts with a formalization
of contexts. Thus, a formal context is a triple K := (G,M, I). The set G is
called the set of objects, M is the set of attributes, and I is a binary relation
between G and M indicating which object has which attribute, called incidence
relation. A formal context should be understood as a formalization of a part
of reality, containing the entire intended information about collected data.

Since a formal context is just a set of data and related information, we
need to unfold a so-called knowledge map, by highlighting the basic knowledge
units which are formal concepts. A formal concept is a pair (A,B), consisting
of two subsets, A the extension, a subset of G, and B the intension, a subset of



CONCEPTUAL KNOWLEDGE PROCESSING FOR DATABASES. AN OVERVIEW 61

M . The formal extension A contains all objects having the formal attributes
collected in the set B. The formal intension contains all attributes valid for
all formal objects collected in the set A. Concepts can be ordered in a hier-
archy by the subconcept - superconcept ordering relation. A concept (A,B) is
called a subconcept of (C,D), and (C,D) a superconcept of (A,B), if A is a
subset of C or, equivalent, D is a subset of B. We write (A,B) ≤ (C,D). A
subconcept can be understood as a specialization of the superconcept, while
the superconcept is the generalization of its subconcepts. The set of all for-
mal concepts of a given formal context K is denoted by ℬ(K). It is called
conceptual hierarchy or concept lattice. Indeed, ℬ(K) is a complete lattice or-
dered by the subconcept-superconcept relation. Conceptual hierarchies can
be understood as a knowledge map for the information encoded in the formal
context. Representing the conceptual hierarchy as a treelike structure enables
navigation and activates background knowledge. It makes possible to unfold
the conceptual structure of the entire data set in a very precise and coherent
way. Conceptual hierarchies are valuable visualization methods for complex
knowledge structures, enabling navigation from one knowledge object, i.e, a
concept, to another concept. Conceptual hierarchies are also comprehensives
knowledge maps, in which navigation is made along lines, from one node to an-
other. Every time a node is hit, the corresponding information is revealed, i.e,
what are the objects related to that node, and what are their attributes. By
restricting and/or enlarging the set of attibutes or objects navigation becomes
dynamic.

Implications in Formal Concept Analysis are an important feature for un-
derstanding the internal structure of data. The logic of data is part of the
subsequent knowledge which is unfolded in the conceptual hierarchy. Never-
theless, it might be of interest to investigate dependencies between attributes
in terms of implications. If (G,M, I) is a formal context, let A and B be sub-
sets of M . Formally, an implication is just a pair (A,B) of subsets of M . We
write A → B. We say that the implication A → B holds in (G,M, I) if and
only if every object which has all the attributes from A also has the attributes
from B. It can be proven that the implications determine the conceptual hi-
erarchy up to isomorphism and therefore offer an additional interpretation of
the conceptual structure.

1.2. Contextual Logic. The interplay of the theory of Conceptual Graphs
(CG) and Formal Concept Analysis (FCA) proved to be very fruitful in order
to formalize the Elementary Logic, defined by I. Kant as ”the theory of the
three main essential functions of thinking: concepts, judgements and conclu-
sions”.



62 CHRISTIAN SĂCĂREA AND VIORICA VARGA

While FCA provides the mathematization of the classical theory of con-
cepts, regarded as units of thoughts, CG are representing a formalization of
the theory of judgements and conclusions.

Conceptual graphs can be understood as formal judgements. A conceptual
graph is a labeled graph that represents the literal meaning of a sentence. Con-
ceptual graphs express ’meaning in a form that is logically precise, humanly
readable, and computationally tractable’ ([12]). They serve as an intermedi-
ate language for translating computer-oriented formalisms to and from natural
languages. With their graphic representation, they serve as a readable, but
formal design and specification language.

In particular, they are graphs that consist of concept nodes, which bear
references as well as types of the references. The concept boxes are connected
by edges, which are used to express different relationships between the refer-
ents of the attached concept boxes. Sowa provides rules for formal deduction
procedures on conceptual graphs; hence the system of conceptual graphs offers
a formalization of conclusions too.

Hence, a conceptual graph is a bipartite graph having to kind of labeled
nodes (concepts and relations) having the full description power of first order
logic, FCA is a mathematical theory of deriving a conceptual hierarchy from
a data table called formal context. Later on, these two theories have grown
together, FCA being now part of a successful formalization of CG theory.

As Formal Concept Analysis provides a formalization of concepts, and as
conceptual graphs offer a formalization of judgements and conclusions, a con-
vincing idea is to combine these approaches to gain a unified formal theory for
concepts, judgements and conclusions, i.e., a formal theory of elementary logic.
In [19], Wille marked the starting point for a such a theory. There he provided
a mathematization of conceptual graphs where the types of conceptual graphs
are interpreted by formal concepts of a so-called power context family. The
resulting graphs are called concept graphs. They form the mathematical basis
for contextual logic.

Interaction with computers becomes more and more important in our daily
lifes. The goal of conceptual graphs is to provide a graphical representation for
logic which is able to support human reasoning. Possible applications of such a
logical representation system have been described in [13], [14]. One interesting
application is a consistent, graphical interface for database interaction, which
has not been completely developed until today.

2. Conceptual graphs as database interface

The basic idea of using conceptual graphs as query interface to relational
databases has been stated in the mid ’70s by Sowa [11]. Almost twenty years



CONCEPTUAL KNOWLEDGE PROCESSING FOR DATABASES. AN OVERVIEW 63

later, after a consistent development of database theory, a first attemp to use
conceptual graphs for relational databases was stated ([8]), namely it presents
the scheme of a relational table as a conceptual graph and queries also as
conceptual graphs.

The mathematization of conceptual graphs started by Wille, and continued
by Prediger was completed by F. Dau [4]. Here, he studies a calculus for
the mathematization of conceptual graphs and their equivalence to first order
logic. In database theory (see [1]) the equivalence of the relational calculus
and the relational algebra is well known. Modern database languages extend
this expressivity, considering especially aggregate functions. F. Dau and J. C.
Hereth [5] developed Nested Concept Graphs with Cuts to express aggregate
functions and negation.

In our research, we made use of the previous results mentioned above, but
we decided that there is need for specialization and slightly modification of
the theory developed so far. Hence, we have modeled a new form of concep-
tual graphs. They enable vizualisation of both the structure of a relational
database, and queries, allowing a user friendly representation of queries and
structure of the relational database. A software product has been developed,
presented at [18] named CGDBInterface, which offers a graphical tool to query
an existing relational database. The aim of our software tool is to connect to
an existing database by giving the type and the name of the database, a login
name and password, then the software offers the structure of the database in
form of a conceptual graph. The relation between tables was not represented
with conceptual graphs in earlier works. We also have been successful in our
attempt to represent the relation between tables too by a conceptual graph,
method which has been implemented in the above mentioned software. We
illustrate our results by the next examples. The mathematical background of
the proposed model for database scheme and queries is under development,
since the particular structure of the conceptual graphs we use, imposes some
modifications of the theory stated in [4].

Example 1. Let be the next relational Sales database scheme. Figure 1
shows the conceptual graph obtained by CGDBInterface software.

Customers(CustomerID, CompanyName, ContactName, Address, Phone)

Suppliers(SupplierID, CompanyName, ContactName, Address, Phone)

Orders(OrderID, CustomerID, OrderDate, RequiredDate)

Products(ProductID, ProductName, SupplierID, UnitPrice,

UnitsInStock, UnitsOnOrder)

OrderDetails(OrderID, ProductID, UnitPrice, Quantity)



64 CHRISTIAN SĂCĂREA AND VIORICA VARGA

Figure 1. Conceptual graph for Sales scheme

Queries generated by software CGDBInterface covers all types of queries,
starting with simple queries to very complex ones. The software uses hypo-
static abstraction to model aggregation and nested queries.

Example 2. The next query is constructed by CGDBInterface, which has a
graph editor. The SELECT SQL statement is generated by the software,
then the generated query can be executed. In Figure 2 is presented the
query, which searches for product names having been ordered for 3th of June,
2009. It gives the OrderID and order quantity too for every product. The
selected attributes are marked by ’?’ in the query conceptual graph. To con-
struct the query we have to join three tables: Orders, OrderDetails and
Products. The join attributes connect the tables.

Example 3. The query in Figure 3 selects for every customer the number
of products ordered by him. In order to use relations as objects in other
relations, we have to reconsider these relations and to make use of a method
introduced by Peirce, called hypostatic abstractions. Hypostatic abstraction,
also known as hypostasis or subjectal abstraction, is a formal operation that
takes an element of information, such as might be expressed in a proposition
of the form X is Y , and conceives its information to consist in the relation
between a subject and another subject, such as expressed in a proposition
of the form X has Y -ness. The existence of the latter subject, here Y -ness,
consists solely in the truth of those propositions that have the corresponding



CONCEPTUAL KNOWLEDGE PROCESSING FOR DATABASES. AN OVERVIEW 65

Figure 2. Conceptual graph for query involving join operation

concrete term, here Y , as the predicate. The object of discussion or thought
thus introduced may also be called a hypostatic object ([9]).

In reasoning, we can consider the elements of a set and their properties,
and sometimes the set itself as an element on its own having other properties.
This shift in perspective transforms a relation into an object which then may
be attached to relations again. In visualization, we use nested concept boxes
as rectangle T1, which contains the joins of the tables: Orders, OrderDetails
and Products. The result of the join is a relation too and the aggregation is
applied to it.

3. Mining functional dependencies in relational databases

Functional dependencies (FDs shortly) are the most common integrity
constraints encountered in databases. FDs are very important in relational
database design to avoid data redundancy. Extracting FDs from a relational
table is a crucial task to understand data semantics useful in many database
applications. The subject of detecting functional dependencies in relational
tables was studied for a long time and recently addressed with a data mining



66 CHRISTIAN SĂCĂREA AND VIORICA VARGA

Figure 3. Conceptual graph for query involving grouping and
aggregate functions

viewpoint. Baixeries [2] gives an interesting framework to mine functional
dependencies using Formal Context Analysis.

Hereth [7] presents how some basic concepts from database theory are
translated into the language of Formal Concept Analysis. The definition of
the formal context of functional dependencies for a relational table can also
be found in [7]. Regarding to this definition, the context’s attributes are the
columns (named attributes) of the table, the tuple pairs of the table will be the
objects of the context. In [7] you can find the proposition which asserts that
in this context, implications are essentially functional dependencies between
the columns of the relational database table.

A detailed analysis and complex examples of the formal context of func-
tional dependencies for a relational table are presented in [15]. The novelty
of our method is that it builds inverted index files in order to optimize the
construction of the formal context of functional dependencies.

We implemented the method presented in [15] and completed it with a
software tool, which analyzes an existing relational database table. Our soft-
ware named FCAFuncDepMine (see [17]) can connect to a MS SQL Server,



CONCEPTUAL KNOWLEDGE PROCESSING FOR DATABASES. AN OVERVIEW 67

Oracle or MySQL database by giving the type and the name of the database,
a login name and password, then the software offers a list of identified table
names which can be selected for possible functional dependency examination.

It constructs the formal context of functional dependencies, uses Conexp
[22] to build the concept lattice and to determine the implications in this con-
text, which corresponds to functional dependencies in the analyzed table. The
software can be used in relational database design and for detecting functional
dependencies in existing tables, respectively. A detailed data analysis using
software FCAFuncDepMine is presented in [16].

Example 4. Let be a complex example, which is illustrative for our work.
The next table:

OrderDetail [OrderID, CustomerID, OrderDate, CompanyName,

Address, Phone, City, Quantity, UnitPrice, ProductID]

stores orders of different customers together with order details information
as product ID, order price and quantity too. CompanyName is the name of
customer, Address is the customer’s address and the City is his city. In
Figure 4 there are the first rows from table OrderDetail .

Figure 4. First rows from table OrderDetail



68 CHRISTIAN SĂCĂREA AND VIORICA VARGA

The conceptual lattice for context of functional dependencies in table
OrderDetail is represented in Figure 5.

Figure 5. Conceptual lattice for context of functional depen-
dencies in table OrderDetail

The implications in this lattice, which are functional dependencies in the
table can be seen as follows: concept with label OrderID is subconcept of con-
cept with labels Phone, Address, CompanyName, CustomerID and of concept
with label OrderDate too. So we can read the following functional dependen-
cies.

OrderID →CustomerID,CompanyName,Address,Phone

Figure 6. Implications, namely functional dependencies in
the table OrderDetail

Another implication is: OrderID → OrderDate. The possible implica-
tions given by Conexp software are in Figure 6. The user can make attribute



CONCEPTUAL KNOWLEDGE PROCESSING FOR DATABASES. AN OVERVIEW 69

exploration to decide which implication is valid. The number before the im-
plication can help us. The implications labeled with biger numbers usually
are valid. Having these functional dependencies we can propose the decom-
position of the table OrderDetail. It is clear that the information about
customers have to be in a separate table, candidate keys is Customers ta-
ble are: CustomerID, CompanyName, Phone, Address. If we introduce the
same name for different customers, the CompanyName attribute will appear in
a concept, which is subconcept of the concept with label CustomerID, Phone,

Address. The same results if we introduce different companies with the same
address. The CustomerID attribute is functionally dependent on OrderID, so
we will design an Orders table too. The proposed tables are:

Customers(CustomerID, CompanyName, City, Address, Phone)

Orders(OrderID, CustomerID, OrderDate)

OrderDetails(OrderID, ProductID, UnitPrice, Quantity)

4. Future work

There are two directions we intend to apply conceptual knowlegde pro-
cessing. We are developing the mathematical backgound for the schema and
query model with conceptual graphs of a relational database.

On the other hand, we intend to analyze semistructured data presented in
XML form. Many papers are dedicated to the theory of functional dependency
in XML data. Our aim is to construct the context of functional dependencies
for an XML tree and generate implications in it, which will be functional
dependencies in XML data.

References

[1] Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading
- Menlo - New York (1995)

[2] Baixeries, J.: A Formal Concept Analysis Framework to Mine Functional Dependencies,
Proceedings of Mathematical Methods for Learning, (2004).

[3] Carpineto, C., Romano, G.: Concept Data Analysis, Theory and Applications, Wiley and
Sons, 2004.

[4] Dau, F.: The Logic System of Concept Graphs with Negation And Its Relationship to
Predicate Logic, LNCS, Vol. 2892, Springer Berlin / Heidelberg (2003)

[5] Dau, F., Hereth, J. C.: Nested Concept Graphs: Mathematical Foundations and Appli-
cations for Databases. In: Ganter, B.; de Moor, A. (eds.): Using Conceptual Structures.
Contributions to ICCS 2003. Shaker Verlag, Aachen, (2003), pp. 125-139.

[6] Devlin, K.: Infosense - Turning Information into Knowledge, Freeman, New York, 1999.
[7] Hereth, J.: Relational Scaling and Databases. Proceedings of the 10th International Con-

ference on Conceptual Structures: Integration and Interfaces LNCS 2393, Springer Verlag
(2002) pp. 62-76



70 CHRISTIAN SĂCĂREA AND VIORICA VARGA

[8] Boksenbaum, C., Carbonneill, B., Haemmerle O., Libourel, T.: Conceptual Graphs for
Relational Databases in Conceptual Graphs for Knowledge Representation., Guy, M. W.,
Moulin B., Sowa, J. F. eds. Lecture Notes in AI 699, Springer-Verlag, Berlin (1993).

[9] Peirce, C.S.: The Simplest Mathematics, in Collected Papers, CP4.235, CP4.227-323,
1902.

[10] Silberschatz, A., Korth, H. F.,Sudarshan, S.: Database System Concepts, McGraw-Hill,
Fifth Edition, (2005)

[11] Sowa, J. F.: Conceptual Graphs for a Database Interface. In: IBM Journal of Research
and Development, vol. 20, no. 4, (1976) pp. 336-357.

[12] Sowa, J. F.: Conceptual Structures: Information Processing in Mind and Machine.
Addison Wesley Publishing Company Reading, (1984).

[13] Sowa, J. F.: Conceptual graphs summary, in Nagle, T. E.; Nagle, J. A.; Gerholz, L. and
Eklund, P. W. (editors): Conceptual Structures: Current Research and Practice, Ellis
Horwood, (1992), pp 3-51.

[14] Sowa, J. F.: Knowledge Representation: Logical, Philosophical, and Computational
Foundations, Brooks Cole Publishing Co., Pacific Grove, CA. (2000)

[15] Janosi Rancz, K. T., Varga, V.: A Method for Mining Functional Dependecies in Re-
lational Database Design Using FCA, Studia Univ. Babeş-Bolyai, Informatica, Vol. LIII,
Nr. 1(2008).

[16] Janosi Rancz, K.T., Varga, V., Puskas, J.: A Software Tool for Data Analysis Based on
Formal Concept Analysis, Studia Univ. Babeş-Bolyai, Informatica, Vol. LIII, Nr. 2(2008).

[17] Varga, V., Janosi Rancz, K. T.: A Software Tool to Transform Relational Databases in
order to Mine Functional Dependencies in it Using Formal Concept Analysis, Proc. of the
Sixth International Conference on Concept Lattices and Their Applications, Olomouc,
21-23 October, 2008. pp. 1-8.

[18] Varga, V., Săcărea, C., Takács, A.: A Software Tool for Interactive Database Access
using Conceptual Graphs, International Conference Knowledge Engineering Principles
and Techniques, KEPT 2009, Cluj-Napoca, July 2-4.

[19] Wille, R.: Conceptual Graphs and Formal Concept Analysis, Lecture Notes In Computer
Science; Vol. 1257, Proceedings of the Fifth International Conference on Conceptual
Structures: Fulfilling Peirce’s Dream, Springer Verlag (1997), pp 290 - 303.

[20] Wille, R.: Conceptual Contents as Information - Basics for Contextual Judgement Logic,
Conceptual Structures for Knowledge Creation and Communication, ICCS 2003, LNAI
2746, Springer, pp. 1-15, 2003.

[21] Wille, R.: Methods of Conceptual Knowledge Processing, ICFCA 2006, LNAI 3874,
Springer, pp. 1-29, 2006.

[22] Serhiy A. Yevtushenko: System of Data Analysis ”Concept Explorer”. (In Russian).
Proceedings of the 7th National Conference on Artificial Intelligence KII-2000, p. 127-
134, Russia, 2000.

Babes-Bolyai University, Faculty of Mathematics and Computer Science,
Cluj-Napoca, Romania

E-mail address: csacarea@math.ubbcluj.ro

E-mail address: ivarga@nessie.cs.ubbcluj.ro


