
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIV, Number 2, 2009

TOWARDS AUTOMATED EXECUTION OF SECURITY

PROTOCOLS FOR WEB SERVICES

BÉLA GENGE

Abstract. Existing solutions for authentication and authorization in Web
services make use of technologies such as SAML or WS-Security. These
provide a static solution by using a set of predefined protocols. We pro-
pose a dynamic approach for the automated execution problem by de-
veloping a semantic security protocol model from which security protocol
specifications are generated and automatically executed by participants.
The proposed model consists of a sequential component, implemented as
a WSDL-S specification, and an ontology component, implemented as an
OWL specification. The correctness of the proposed model is ensured by
using a set of rules and algorithms for generating it based on a protocol
model given by the user. We validate our approach by generating and im-
plementing several specifications for existing protocols such as the ISO9798
or Kerberos protocol.

1. Introduction

Security protocols are widely used today to provide secure communication
in insecure environments. By examining the literature we come upon various
security protocols designed to provide solutions to specific problems [1]. With
this large amount of protocols to chose from, distributed heterogenous systems
must be prepared to handle multiple security protocols.

Existing technologies, such as the Security Assertions Markup Language
[2] (i.e. SAML) or WS-Security [3] provide a unifying solution for the au-
thentication and authorization issues through the use of predefined protocols.
By implementing these protocols, Web services authenticate users and provide
authorized access to resources. However, despite the fact that existing solu-
tions provide a way to implement security claims, these approaches are rather

Received by the editors: November 17, 2008.
2010 Mathematics Subject Classification. 68M14, 68Q55, 94A62.
1998 CR Categories and Descriptors. H.3.5 [Information Systems]: Information Stor-

age and Retrieval – Online Information Services K.6.5 [Computing Milieux]: Management
of Computing and Information Systems – Security and Protection.

Key words and phrases. Security protocols, Automated protocol execution, Web services.

23



24 BÉLA GENGE

static. This means that in case of new security protocols, services must be
reprogrammed.

The solutions developed over the years such as the one described in [4],
propose a formal description for protocol specifications. These specifications
do not make use of Web service technologies, because of which inter-operability
of systems executing the given specifications becomes a real issue. Another
approach for automated security protocol implementation is provided in [5],
where the specification is constructed as an XML document from which the
code is automatically generated. In order to provide automated execution so-
lutions, specifications must not generate code, but must provide an automated
implementation solution without any user intervention.

In this paper we propose a semantic security protocol model (SSPM) for
generating security protocol specifications that can be automatically executed
by participants. The SSPM has two components: a sequential model and
an ontology model. The first component is implemented as a WSDL-S [6]
specification while the second component is implemented as an OWL [7] spec-
ification. The role of the WSDL-S implementation is to describe the message
sequences and directions that must be executed by protocol participants. The
role of the OWL implementation is to provide semantic information such as
the construction, processing and implementation of cryptographic operations
(e.g. encryption algorithm, encryption mode, key).

The proposed SSPM is constructed from a security protocol model (SPM)
provided by the user. This model describes message sequences, protocol pre-
conditions and effects. Protocol preconditions are used to identify the knowl-
edge required for running the protocol while protocol effects identify the goal
of the protocol (e.g. authentication, key exchange).

The construction of the SSPM from a given SPM must maintain the pro-
tocol’s security properties. For this we propose several generating rules and
algorithms that provide a mapping for each component from SPM to SSPM.
The correctness of the proposed rules and algorithms results from the one-to-
one mapping of each component and from the correctness of SPM.

In order to validate the proposed solution we have generated and imple-
mented several security protocol specifications. From our results we can clearly
state that the SSPM contains sufficient information to enable participants to
execute the generated specifications.

2. Protocol Model

Protocol participants communicate by exchanging terms constructed from
elements belonging to the following basic sets: P, denoting the set of role
names; N, denoting the set of random numbers or nonces (i.e. “number once



AUTOMATED EXECUTION 25

used”); K, denoting the set of cryptographic keys; C, denoting the set of cer-
tificates and M, denoting the set of user-defined message components.

In order for the protocol model to capture the message component types
found in security protocol implementations [2, 3] we specialize the basic sets
with the following subsets:

∙ PDN ⊆ P, denoting the set of distinguished names; PUD ⊆ P, denoting
the set of user-domain names; PIP ⊆ P, denoting the set of user-ip
names; PU = {P∖{PDN ∪PUD∪PIP }}, denoting the set of names that
do not belong to the previous subsets;
∙ NT , denoting the set of timestamps; NDH , denoting the set of random

numbers specific to the Diffie-Hellman key exchange; NA = {N∖{NDH∪
NT }}, denoting the set of random numbers;
∙ KS ⊆ K, denoting the set of symmetric keys; KDH ⊆ K, denoting the

set of keys generated from a Diffie-Hellman key exchange; KPUB ⊆ K,
denoting the set of public keys; KPRV ⊆ K, denoting the set of private
keys;

To denote the encryption type used to create cryptographic terms, we
define the following function names:

FuncName ::= sk (symmetric function)

∣ pk (asymmetric function)

∣ ℎ (ℎasℎ function)

∣ ℎmac (keyed ℎasℎ function)

The above-defined basic sets and function names are used in the definition
of terms, where we also introduce constructors for pairing and encryption:

T ::= . ∣ R ∣ N ∣ K ∣ C ∣ M ∣ (T,T) ∣ {T}FuncName(T),

where the ‘.’ symbol is used to denote an empty term.
Having defined the terms exchanged by participants, we can proceed with

the definition of a node and a participant chain. To capture the sending and
receiving of terms, the definition of nodes uses signed terms. The occurrence
of a term with a positive sign denotes transmission, while the occurrence of a
term with a negative sign denotes reception.

Definition 1. A node is any transmission or reception of a term denoted as
⟨�, t⟩, with t ∈ T and � one of the symbols +,−. A node is written as −t or
+t. We use (±T) to denote a set of nodes. Let n ∈ (±T), then we define the
function sign(n) to map the sign and the function term(n) to map the term
corresponding to a given node.



26 BÉLA GENGE

Definition 2. A participant chain is a sequence of nodes. We use (±T)∗ to
denote the set of finite sequences of nodes and ⟨±t1,±t2, . . . ,±ti⟩ to denote an
element of (±T)∗.

In order to define a participant model we also need to define the precon-
ditions that must be met such that a participant is able to execute a given
protocol. In addition, we also need to define the effects resulting from a par-
ticipant executing a protocol.

Preconditions and effects are defined using predicates applied on terms:
CON TERM : T, denoting a term that must be previously generated (pre-
conditions) or it is generated (effects); CON PARTAUTH : T, denoting a
participant that must be previously authenticated (preconditions) or a partic-
ipant that is authenticated (effects); CON CONF : T, denoting that a given
term must be confidential (preconditions) or it is kept confidential (effects);
CON INTEG : T, denoting that for a given term the integrity property must
be provided (preconditions) or that the protocol ensures the integrity prop-
erty for the given term (effects); CON NONREP : T, denoting that for a given
term the non-repudiation property must be provided (preconditions) or that
the protocol ensures the non-repudiation property for the given term (effects);
CON KEYEX : T, denoting that a key exchange protocol must be executed
before (preconditions) or that this protocol provides a key exchange resulting
the given term (effects).

The set of precondition-effect predicates is denoted by PR CC and the
set of precondition-effect predicate subsets is denoted by PR CC∗. Next, we
define predicates for each type of term exchanged by protocol participants.
These predicates are based on the basic and specialized sets provided at
the beginning of this section. We use the TYPE DN : T predicate to de-
note distinguished name terms, TYPE UD : T to denote user-domain name
terms, TY PE IP : T to denote user-ip name terms, TYPE U : T user
name terms, TYPE NT : T to denote timestamp terms, TYPE NDH : T
to denote Diffie-Hellman random number terms, TYPE NA : T to denote
other random number terms, TYPE NDH : T × T × T × P × P to denote
Diffie-Hellman symmetric key terms (term, number1, number2, participant1,
participant2), TYPE KSYM : T × P × P to denote symmetric key terms
(term, participant1, participant2), TYPE KPUB : T × P to denote public
key terms (term, participant), TYPE KPRV : T × P to denote private key
terms (term, participant), TYPE CERT : T × P do denote certificate terms
(term, participant) and TYPE MSG : T to denote user-defined terms.

The set of type predicates is denoted by PR TYPE and the set of type
predicate subsets is denoted by PR TYPE∗. Based on the defined sets and
predicates we are now ready to define the participant and protocol models.



AUTOMATED EXECUTION 27

Definition 3. A participant model is a tuple ⟨prec, eff , type, gen, part, cℎain⟩,
where prec ∈ PR CC∗ is a set of precondition predicates, eff ∈ PR CC∗ is a set
of effect predicates, type ∈ PR TYPE is a set of type predicates, gen ∈ T∗ is
a set of generated terms, part ∈ P is a participant name and cℎain ∈ (±T)∗

is a participant chain. We use the MPART symbol to denote the set of all
participant models.

Definition 4. A security protocol model is a collection of participant models
such that for each positive node n1 there is exactly one negative node n2 with
term(n1) = term(n2). We use the MPROT symbol to denote the set of all
security protocol models.

3. Semantic Security Protocol Model

In this section we described the proposed semantic security protocol model
(SSPM). The proposed model must maintain the security properties of the
protocol and must provide sufficient information for participants to be able to
execute the protocol.

Protocols are given using their SPM model described in the previous sec-
tion. Based on this model we must generate the corresponding SSPM from
which the specifications can be constructed. The SSPM has two components:
the sequential model (SEQM) and the ontology model (ONTM). The first
component is implemented as a WSDL-S specification while the second com-
ponent is implemented as an OWL specification. In the remaining of this
section we provide a description of each component and we provide a set of
rules to generate SSPM from a given SPM.

3.1. Sequential and Ontology Models. We use the symbol URI to denote
the set of Uniform Resource Identifiers, CONC to denote the set of all concepts
and CONC∗ to denote the set of subsets with elements from CONC.

Definition 5. An annotation is a pair ⟨uri, c⟩, where uri ∈ URI and c ∈
CONC. The set corresponding to a SSPM is denoted by ANNOT and the set
of subsets with elements from ANNOT is denoted by ANNOT∗. A message is
a pair ⟨d, a⟩, where d ∈ {in, out} and a ∈ ANNOT. We define MSG to denote
a set of messages and MSG∗ to denote the set of subsets with elements from
MSG.

Next, we define the sequential model as a collection of preconditions, effects
and messages, based on the previous definitions.

Definition 6. A sequential model is a triplet ⟨s prec, s eff , s msg⟩, where
s prec ∈ ANNOT∗ is a set of preconditions, s eff ∈ ANNOT∗ is a set of effects
and s msg ∈ MSG∗ is a set of messages.



28 BÉLA GENGE

The ontology model follows the description of OWL.

Definition 7. An ontology model is a triplet ⟨conc, propr, inst⟩, where conc ∈
CONC is a set of concepts, propr ∈ PROPR is a set of properties and inst ∈
INST is a set of instances. An element from propr is a pair ⟨�, �⟩, where � is
a unique id and � is a syntactic construction denoting the property name.

Let pr1 = ⟨�1, �1⟩ and pr2 = ⟨�2, �2⟩. Then pr1 = pr2 iff �1 = �2 and
�1 = �2. We define the function ( )id to map the � component and the function
( )nm to map the � component of a given property.

We use PROPR to denote the set of all properties and INST to denote
the set of all instances. We use PROPR∗ to denote the set of all subsets with
elements from PROPR and INST∗ to denote the set of all subsets with elements
from INST.

In order to handle the previously defined ontology model we define the
function ( )d : PROPR→ CONC to map the domain concept of a given prop-
erty, ( )c : PROPR→ CONC to map the category concept of a given property,
( , )ci : CONC× PROPR→ INST to map the instance corresponding to a do-
main concept and property, ( )s

e : CONC→ CONC∗ to map the set of concepts
for which the given concept is parent, ( )p : CONC→ PROPR∗ to map the set
of properties for which the given concept is domain.

3.2. Generating the Semantic Security Protocol Model. In order to
generate the SSPM of a given SPM, we start with a core ontology model
(OM) (figure 1) that contains concepts found in classical security protocols.
The core OM was constructed by consulting security protocols found in open
libraries such as SPORE [1] or the library published by John Clark [8].

The core ontology is constructed from 7 sub-ontologies. The sub-ontologies
that must be extended with new concepts for each SSPM are denoted in figure
1 by interrupted lines, while the permanent sub-ontologies are denoted by
continuous lines.

The SecurityProperty sub-ontology contains concepts such as Authenti-
cation, Integrity, Confidentiality, Session key exchange. The TermType sub-
ontology includes concepts related to term types used in security protocol
messages such as SymmetricKey, PublicKey or ParticipantName. Concepts
related to cryptographic specifications such as encryption algorithms or en-
cryption modes are found in the sub-ontology CryptoSpec. In order to model
modules needed to extract keys, names or certificates we use the LoadingMod-
ule sub-ontology. The ParticipantRole sub-ontology defines concepts model-
ing roles handled by protocol participants such as Initiator, Respondent and
Third Party.



AUTOMATED EXECUTION 29

The Knowledge sub-ontology contains 5 concepts: PreviousTerm, Ac-
cessedModule, InitialTerm, GeneratedTerm and DiscoveredTerm. Each con-
cept defines a class of terms specific to security protocols: terms from previous
executions, modules, initial terms, generated terms and discovered terms.

The last sub-ontology is CommunicationTerm, which defines two concepts:
SentTerm and ReceivedTerm. The ontology is extended for each SEM-S with
concepts that are sent or received. For each concept, functional properties
are defined denoting the operations performed on the terms corresponding to
concepts. The concepts used to extend the core ontology are specific to each

Figure 1. Core ontology of SSPM

protocol, however, the defined properties are applied on all constructions.
From these properties we mention: isOfType, isEncrypted, isStored, isVerified,
isExtracted, hasSymmetricAlgorithm, hasKey, hasLength.

In order to generate the SSPM from a given SPM we define a set of rules
and generating algorithms. The developed rules use the ←r operator to
denote set reunion and the ←a operator to denote a value transfer.

The first two rules generate the predicate concepts corresponding to pre-
conditions prec from a SPM, where the function gc : T → CONC is used to
generate the concept corresponding to a given term and the function gcc :
PR CC → CONC is used to generate the concept corresponding to a given
precondition predicate:

pr ∈ prec pr = CON TERM (t)

c←a gc(t) s prec ←r {⟨uri, c⟩} (InitialTerm)s
e ←r {c}

pr term,

pr ∈ prec pr ∕= CON TERM (t)

s prec ←r {⟨uri, gcc(pr)⟩, ⟨uri, gc(t)⟩}
pr propr.

The rules generating the effects have a similar structure because of the eff
set. Concatenated terms corresponding to each transmitted or received term
are modeled using similar rules. For each sent term the SSPM must provide
the construction operations and for each received term the SSPM must provide
processing operations.



30 BÉLA GENGE

Processing the received terms is done according to the type of each term
and to the knowledge available to the user. The modeled operations introduce
constraints on the type and location of knowledge through the following rules.

In the Knowledge sub-ontology, each concept has an isOfType property
attached based on which participants can decide on the operations to execute.
For each type, additional properties are defined such as the hasSymmAlg or
hasKey properties for symmetric encrypted terms. The rules based on which
these properties are generated are specific to each type.

The remaining generating rules are similar to the presented ones and a
complete presentation is out of the scope of this paper. We now provide a
brief description of the algorithms that apply the rules we have defined.

The first algorithm generates the preconditions, effects and message se-
quences of SSPM.

Algorithm 1 Generate preconditions, effects and message sequences

Require: ⟨prec, eff , type, gen, part, cℎain⟩ ∈ MPART
for all pr ∈ prec do

@pr term(pr), @pr propr(pr)
end for
for all ef ∈ eff do

@eff term(pr), @eff propr(pr)
end for
for all n ∈ cℎain do

if sign(n) = + then
@msg tx(n)

else
@msg rx(n)

end if
end for

Generating concepts corresponding to the Knowledge sub-ontology is done
through the use of algorithm 2 and 3. Here, the set of knowledge KNOW,
corresponding to each executing participant, grows with the construction and
reception of each new term. We used the function mpart : T→ T∗ to map the
set of concatenated terms and the keyword “Exec” to denote the execution of
sub-algorithms.

3.3. Correctness of SSPM. In the generation process of SSPM from a given
SPM, we consider a correct SPM constructed by the user. With the large
number of attacks reported in the literature [9], [10], it is vital for new protocol



AUTOMATED EXECUTION 31

Algorithm 2 Model positive nodes

Require: n ∈ (±T), sign(n) = +
for all t ∈ mpart(term(n)) do

Let c = gc(t)
Let p⇐ @con extr(c)
if t ∈ KNOW then

(p)c ←a c
else if t = {t′}f(k) then

(GeneratedTerm)s
e ←r {c}

Exec ModelEncryptedGenerated(t)
else if t ∈ gen then

(GeneratedTerm)s
e ←r {c}

Exec ModelP lainGenerated(t)
else

(DiscoveredTerm)s
e ←r {c}

Exec ModelDiscoveredLoaded(t)
end if
KNOW ←r t

end for

Algorithm 3 Model negative nodes

Require: n ∈ (±T), sign(n) = −
for all t ∈ mpart(term(n)) do

if t ∈ KNOW then
@con verif

else if t = {t′}f(k) then
if f = sk ∨ (f = pk ∧ TYPE KPUB(k, r) ∈ type, r ∈ P) then

@con decr
Exec ModelEncryptedDiscovered(t)

else
@con verif
Exec ModelEncryptedGenerated(t)

end if
else

@con stored
Exec ModelDiscovered(t)

end if
KNOW ←r t

end for



32 BÉLA GENGE

models to maintain the security properties of protocols for which security
properties have been proved to hold.

In order to prove the correctness of the generated SSPM, we consider Γ
representing the set of all information included in an SSPM. The informa-
tion generated by the proposed rules can be divided into three components:
mapped information, user-provided information and participant knowledge-
based information.

The set of mapped information is denoted by map and represents infor-
mation originating directly from SPM. The set of user-provided information
is denoted by up and represents information originating from the user (e.g.
cryptographic algorithms). The set of knowledge-based information originates
from the knowledge available when running the protocol and is denoted by
know.

By using the above sets Γ = map ∪ up ∪ know. The correctness of the
information contained in map results from the original protocol model, while
the correctness of the information contained in up results from the assumption
that the user provides correct input data.

The information contained in know is generated based on the design prin-
ciples of fail-stop [14] protocols. These principles state that the correctness
of each received term must be verified and the protocol execution must be
stopped immediately in case of invalid terms. By using these principles, the
rules we proposed generate verification properties for each received term found
in the participant’s knowledge set. Protocols that do not follow these rules
can not be modeled with our method.

The the correctness of the generated SSPM follows from the correctness
of the information generated in the Γ set, constructed from the three sets
map, up, know for which the correctness has been discussed above.

4. Experimental Results

In this section we exemplify the construction of a SSPM from a given SPM
and we provide a few experimental results from the collection of semantic
security protocol models we have implemented.

4.1. Constructing the SSPM for the “BAN” protocol. In order to pro-
vide an example for constructing an SSPM for a given SPM, we use the well-
known “BAN Concrete Secure Andrew RPC” protocol [1]. This is a two-party
protocol providing a session key exchange using symmetric cryptography. The
protocol assumes that participants are already in the possession of a long-term
key Kab.

In the remaining of this sub-section we provide only the construction of the
SSPM for participant A. The SSPM corresponding to participant B can be



AUTOMATED EXECUTION 33

similarly constructed because it defines the inverse operations of participant
A.

The precondition set precA for participant A is precA = {CON TERM (A),
CON TERM (B), CON TERM (Kab)} and the effect set eff A for the same par-
ticipant is eff A = {CON KEYEX (Kab)}. The set typeA = {TYPE UD (A),
TYPE UD(B), TYPE KSYM (A,B,Kab), TYPE KSYM (A,B,K), TYPE NA
(Na), TYPE NA(Nb)} defines the type corresponding to each term and the set
genA = {Na} defines the terms generated by participant A. The participant
name is partA = A and the participant chain is cℎainA = ⟨+(A,Na),−{Na,K,B
}sk(Kab),+{Na}sk(K),−Nb⟩.

By applying the rules and algorithms described in the previous sections
we generate the SSPM model. The sequential model is implemented as a
WSDL-S specification, while the ontology model is implemented as a OWL
specification.

Part of the resulted WSDL-S specification is given in figure 2 and part of
the graphical representation of the OWL specification is given in figure 3.

...

<xsd:element name="Msg1Request">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Term1" type="xsd:base64Binary"

wssem:modelReference=".../SecProt.owl#SentTerm1">

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="Msg2Response">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="EncTerm1" type="xsd:base64Binary"

wssem:modelReference=".../SecProt.owl#RecvdEncTerm1">

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

...

<wsdl:operation name="Msg1">

<wsdl:output message="tns:Msg1Request"/>

</wsdl:operation>

<wsdl:operation name="Msg2">

<wsdl:input message="tns:Msg2Response"/>

</wsdl:operation>

<wssem:effect name="SessionKeyExchange"

wssem:modelReference=".../SecProt.owl#SessionKey"/>

...

Figure 2. Sequential model partial implementation



34 BÉLA GENGE

(a) (b)

Figure 3. Ontology model partial implementation: (a) Com-
munication terms sub-ontology (b) Discovered terms sub-
ontology

4.2. Experimental Results. In order to prove that the SSPM model con-
tains sufficient information for participants to execute the generated imple-
mentations, we generated over 38 WSDL-S and 38 OWL specifications corre-
sponding to initiator and respondent protocol roles.

In order to execute the specifications, messages were encoded and trans-
mitted according to the constructions provided by the WS-Security standard
[3]. In the experiments we conducted, participants downloaded the specifi-
cation files from a public server and they were able to execute the protocols
based only on the received descriptions. The participants hardware and soft-
ware configurations: Intel Dual Core CPU at 1.8GHz, 1GByte of RAM, MS
Windows XP.

Part of the experimental results are given in table 1, where the values cor-
respond to milliseconds. The “Spec. proc” column denotes the specification
processing time, the “Msg. constr.” column denotes the message construc-
tion time (for output messages) and the “Msg. proc.” column denotes the
message processing time (for input messages). The table contains two two-
party protocols (“BAN Concrete Andrew Secure RPC”, or more simply BAN,
and ISO9798) and one three-party protocol (Kerberos). The performance dif-
ferences between the BAN and ISO9798 protocols are due to the fact that
ISO9798 makes use of public key cryptography, while BAN uses only symmet-
ric cryptography.



AUTOMATED EXECUTION 35

Table 1. Protocol execution timings

Protocol Spec. proc. Msg. constr. Msg. proc. Total
participant (ms) (ms) (ms) (ms)

BAN Init. 14.58 11.81 3.68 30.08
BAN Resp. 14.03 2.86 1.62 18.52
ISO9798 Init. 13.07 35.784 23.30 72.16
ISO9798 Resp. 13.51 6.876 12.24 32.63
Kerb. Init. 1 22.63 0.83 0 23.47
Kerb. Init. 2 12.61 0.55 1.58 14.76
Kerb. Init. 3 2.23 3.34 0.94 6.52
Kerb. Resp. 1 19.28 0 0.41 19.69
Kerb. Resp. 2 10.81 3.379 1.67 15.87
Kerb. Resp. 3 5.25 11.41 3.59 20.26

5. Conclusion and Future Work

We developed a novel method for the automated execution of security
protocols. Our approach is based on a semantic security protocol model from
which security protocol specifications are generated. The sequential compo-
nent of the proposed model is implemented as a WSDL-S specification while
the ontology component is implemented as an OWL specification.

Constructing the SSPM model is not a trivial task and can induce new
flaws in correct protocols that can lead to attacks. In order to ensure a correct
construction process, we developed several generating rules and algorithms.
The proposed rules and algorithms map each component from the input pro-
tocol model to a component in the SSPM model. The components from SPM
are extended with implementation-specific elements, that do not affect the se-
curity properties of the original protocol, as long as correct methods are used
to execute the resulted specifications.

In order to prove that the proposed model contains sufficient informa-
tion for automated execution, we generated and implemented several security
protocol specifications. The generated specifications were constructed for well-
known security protocols such as the ISO9798 protocol, CCITTX509 or the
Kerberos protocol.

As future work we intend to develop a service-based middleware to support
secure distribution of these specifications. The middleware will also be able
to create new protocols based on already existing protocols and distribute the
new specifications to Web services.



36 BÉLA GENGE

References

[1] Security Protocol Open Repository. Laboratoire Specification et Verification,
http://www.lsv.ens-cachan.fr/spore/, 2008.

[2] SAML V2.0 OASIS Standard Specification. Organization for the Advancement of Struc-
tured Information Standards, http://saml.xml.org/, 2007.

[3] OASIS Web Services Security (WSS). Organization for the Advancement of Structured
Information Standards, http://saml.xml.org/, 2006.

[4] L. Mengual, N. Barcia, E. Jimenez, E. Menasalvas, J. Setien, and J. Yaguez. Automatic
implementation system of security protocols based on formal description techniques. Pro-
ceedings of the Seventh International Symposium on Computers and Communications,
pages 355–401, 2002.

[5] I. Abdullah and D. Menasc. Protocol specification and automatic implementation using
XML and CBSE. IASTED conference on Communications, Internet and Information
Technology, November 2003.

[6] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M. Schmidt, A. Sheth, and K. Verma.
Web Service Semantics - WSDL-S. A joint UGA-IBM Technical Note, 2005.

[7] W. W. W. Consortium. OWL Web Ontology Language Reference. W3C Recommendation,
2004.

[8] J. Clark, J. Jacob. A Survey of Authentication Protocol Literature: Version 1.0. York
University, 17 November 1997.

[9] Gavin Lowe. Some new attacks upon security protocols. In Proceedings of the 9th Com-
puter Security Foundations Workshop, IEEE Computer Society Press, 1996, pp. 162–169.

[10] C. J. F. Cremers. Compositionality of Security Protocols: A Research Agenda. Electr.
Notes Theor. Comput. Sci., 142, pp. 99–110, 2006.

[11] C.J.F. Cremers, S. Mauw, E.P. de Vink. Injective Synchronization: an extension of the
authentication hierarchy. TCS 6186, Special issue on ARSPA’05, Editors: P. Degano and
L. Vigano, 2006, Elsevier.

[12] P. Gutmann. Cryptlib Encryption Toolkit. http://www.cs.auckland.ac.nz/-
pgut001/cryptlib/index.html, 2008.

[13] OpenSSL Project. version 0.9.8h, http://www.openssl.org/, 2008.
[14] Gong, L.: Fail-Stop Protocols: An Approach to Designing Secure Protocols. In Proceed-

ings of the 5th IFIP Conference on Dependable Computing and Fault-Tolerant Systems,
pp. 44–55 (1995).

“Petru Maior” University of Târgu Mureş, Electrical Engineering Depart-
ment, Nicolae Iorga str., No. 1, 540088, Târgu Mureş, jud. Mureş, ROMANIA

E-mail address: bgenge@engineering.upm.ro


