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A MULTIOBJECTIVE METAHEURISTIC FOR JOB-SHOP
SCHEDULING

CRINA GROŞAN

Abstract. In this paper, we introduce a nature inspired meta-heuristic
for scheduling jobs on computational grids. Our approach is to dynami-
cally generate an optimal schedule so as to complete the tasks in a mini-
mum period of time as well as utilizing the resources in an efficient way.
The approach proposed is a variant of particle swarm optimization which
uses mutation operator. The mutation operator can affect both particle’s
personal best and the swarm’s global best. The experiments performed
show the efficiency of the proposed approach over the standard PSO and
other metaheuristics considered (namely genetic algorithms and simulated
annealing).

1. Introduction

Grid Computing (GC) is the ultimate framework to meet the growing
computational demands in the new millennium [2], [3], [4], [5], [6], [7]. To
meet the growing needs of the computational power, geographically distributed
resources need to be logically coupled together to make them work as a unified
resource. Computing resources are geographically distributed under different
ownerships each having their own access policy, cost and various constraints.
Every resource owners will have a unique way of managing and scheduling
resources and the grid schedulers are to ensure that they do not conflict with
resource owner’s policies.

In a grid environment knowing the processing speeds of the available re-
sources and the job length of user applications is a tedious task. Usually
it is easy to get information about the speed of the available resources but
quite complicated to know the computational processing time requirements
from the user. When the computing power demand is much greater than the
available resources only dynamic scheduling will be useful. To conceptualize
the problem as an algorithm, we need to dynamically estimate the job lengths
from user application specifications or historical data. Soft computing tech-
niques like fuzzy logic, evolutionary computation and artificial neural networks
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might be of useful aid in the parameters estimation process especially in times
of uncertainty and vague data.

The paper is organized as follows. Section 2 deals with some theoretical
foundations related to job scheduling. A variation of the particle swarm opti-
mization heuristic is introduced in Section 3. In Section 4, experiment results
and discussions are provided. Finally, we conclude our work.

2. Scheduling Problem Formulation

To formulate the problem, we consider Jn independent user jobs n=1,2,...,N
on Rm heterogeneous resources m=1,2,...,M with an objective of minimizing
the completion time and utilizing the resources effectively. The speed of each
resource is expressed in number of cycles per unit time, and the length of each
job in number of cycles. Each job Jn has processing requirement Pj cycles and
resource Rm has speed of Si cycles/second. Any job Jn has to be processed
in resource Rm, until completion.

To formulate our objective, define Cj as the completion time the last job
j finishes processing.

Define:

Cmax = max{Cj , j = 1, ..., N},
the makespan and

∑
Cj as the flowtime.

An optimal schedule will be the one that optimizes the flowtime and
makespan [8]. The conceptually obvious rule to minimize

∑
Cj is to schedule

Shortest Job on the Fastest Resource (SJFR). The simplest rule to minimize
Cmax is to schedule the Longest Job on the Fastest Resource (LJFR). Mini-
mizing

∑
Cj asks the average job finishes quickly, at the expense of the largest

job taking a long time, whereas minimizing Cmax, asks that no job takes too
long, at the expense of most jobs taking a long time. In summary, minimiza-
tion of Cmax will result in maximization of

∑
Cj .

Several optimization criteria can be considered for this problem, certainly
the problem is multiobjective. The fundamental criterion is that of minimizing
the makespan, that is, the time when finishes the latest task. A secondary
criterion is to minimize the flowtime of the grid system that is, minimizing
the sum of finalization times of all the tasks:

• minimization of makespan;
• minimization of flowtime.

The most common approaches of a multiobjective optimization problem
use the concept of Pareto dominance as defined below:
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Definition (Pareto dominance) Consider a maximization problem. Let x,
y be two decision vectors (solutions) from the definition domain. Solution x
dominate y if and only if the following conditions are fulfilled:

(i) fi(x) ≥ fi(y); i = 1, 2, ..., n;
(ii) ∃j ∈ 1, 2, ..., n : fj(x) > fj(y).
That is, a feasible vector x is Pareto optimal if no feasible vector y can

increase some criterion without causing a simultaneous decrease in at least
one other criterion.

3. Proposed Particle Swarm Model for Job Scheduling (PSJS)

The classical particle swarm model consists of a swarm of particles, which
are initialized with a population of random candidate solutions. They move
iteratively through the d-dimension problem space to search the new solutions,
where the fitness, f , can be calculated as the certain qualities measure.

For a d-dimensional search space the position of the i-th particle is repre-
sented as: Xi = (xi1, ..., xid).

Each particle maintains a memory of its previous best position Pbest i =
(pi1, pi2, ..., pid).

The best one among all the particles in the population is represented as
Pgbest = (pg1, pg2, ..., pgd).
The velocity of each particle is represented as: Vi = (vi1, vi2, ..., vid).
In each iteration, the P vector of the particle with best fitness in the

local neighborhood, designated g, and the P vector of the current particle are
combined to adjust the velocity along each dimension and a new position of
the particle is determined using that velocity. Equations of velocity vector
and position vector given by:

(1) vid = w · vid + c1r1(pid − xid) + c2r2(pgd − xid)

(2) xid = xid + vid.

First part of equation 1 represents the inertia of the previous velocity,
second part is the cognition part, third part represents the cooperation among
particles and is called social component. Acceleration constants c1, c2 and
inertia weight w are the predefined by the user. r1, r2 are the uniformly
generated random numbers between 0 and 1.

Even tough PSO is known as a good optimization technique, the method
still lacks in several aspects and require further improvements in order to per-
formed a better convergence. In this paper we propose the usage of mutation
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which can affect both the global best particle as well as the best known position
of each particle.

The personal best position of each particle is mutated at the end of each
iteration while the global best position is mutated only after a couple of iter-
ations (this is a parameter of the algorithm).

4. Experiments

We performed two experiments. Results obtained by PSJS are compared to
the ones obtained by Genetic Algorithm (GA), Simulated Annealing (SA) and
the standard multiobjective Particle Swarm Optimization (PSO). We should
mention that in the case of SA and GA the objectives are aggregated using
weighted sum method while in the case of both particle swarm approaches we
used Pareto dominance.

Specific parameter settings of all the considered algorithms are described
in Table 1.

Each experiment (for each algorithm except for the MOEA) was repeated
10 times with different random seeds. Each trial (except for MOEA) had a
fixed number of 50 ·m ·n iterations (m is the number of the grid nodes, n is the
number of the jobs). The makespan values of the best solutions throughout
the optimization run were recorded. In a grid environment, the main emphasis
was to generate the schedules as fast as possible. So the completion time for
10 trials was used as one of the criteria to improve their performance.

First we tested a small scale job scheduling problem involving 3 nodes and
13 jobs represented as (3,13). The node speeds of the 3 nodes are 4, 3, 2
CPUT, and the job length of 13 jobs are 6,12,16,20,24,28,30,36,40,42,48,52,60
cycles, respectively.

The results (makespan) for 10 runs were as follows:
• GA: 47, 46, 47, 47.3333, 46, 47, 47, 47, 47.3333, 49, with an average

value of 47.1167.

• SA: 46.5, 46.5, 46, 46, 46, 46.6667, 47, 47.3333, 47, 47 with an average
value of 46.6.

• PSO : 46, 46, 46, 46, 46.5, 46.5, 46.5, 46, 46.5, 46.6667,with an average
value of 46.2667.

• PSJS: 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, with an average value of 46.

Further, we tested the algorithms for the case (10, 50). All the jobs and
the nodes were submitted at one time. The average makespan values for 10
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Table 1. Parameters used by the algorithms considered in experiments

Algorithm Parameter Value
GA Population size

Crossover probability
Mutation probability
Scale for mutations

20
0.8
0.02
0.1

SA Number operations before temperature adjustment
Number of cycles
SA Temperature reduction factor
Vector for control step of length adjustment
Initial temperature

20
10
0.85
2
50

PSO Swarm size
PSO Self-recognition coefficient c1

Social coefficient c2

Inertia weight w

20
1.49
1.49
0.9 → 0.1

PSJS Swarm size
PSO Self-recognition coefficient c1

Social coefficient c2

Inertia weight w
Number of iterations for a global best mutation

20
1.49
1.49
0.9 → 0.1
10

trials are illustrated in Table 2. Although the average makespan value of SA
was better than that of GA for (3,13), the case was reversed for this second
case.

Results obtained by GA, SA and PSO are taken from [1]. As evident from
the data obtained above, MOEA results clearly outperform results obtained
by the other techniques considering a single objective approach.

Table 2. Performance comparison for the case (10, 50).

Algorithm Average makespan
GA 38.04
SA 41.78
PSO 37.66
PSJS 36.7

5. Conslusions

In this paper a new variant of multiobjective PSO which uses mutation
operator affection both personal best of each particle and the swarm’s global
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best is proposed for the scheduling problem in grid computing. Based on the
experimental results presented we can conclude that PSJS performs better
than standard PSO and it also obtains better results than the approaches
which aggregate the objective functions and consider the problem as single
objective instead of using Pareto dominance.
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