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A COMPARATIVE ANALYSIS OF CLUSTERING
ALGORITHMS IN ASPECT MINING
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CZIBULA

Abstract. Aspect mining is a research direction that tries to identify
crosscutting concerns in already developed software systems, without using
aspect oriented programming. The goal is to identify them and then to
refactor them to aspects, to achieve a system that can be easily understood,
maintained and modified. In this paper we aim at comparatively analyzing
four clustering algorithms in aspect mining. The comparison is made using
a set of quality measures previously introduced in aspect mining literature.

1. Introduction

Separation of concerns [12] is a very important principle of software engi-
neering that, in its most general form, refers to the ability to identify, encap-
sulate and manipulate those parts of software that are relevant to a particular
concept, goal, or purpose.

Crosscutting concerns [8] are parts of a program which affect or crosscut
other concerns. Usually these concerns cannot be cleanly decomposed from
the rest of the system, and they are mixed with many core concerns from the
system leading to code scattering and code tangling, and, also, to systems that
are hard to explore and understand. Identifying crosscutting concerns auto-
matically improves both the maintainability and the evolution of the software
system. Crosscutting concerns are a relevant source of problems to program
comprehension and software maintenance. Examples of crosscutting concerns
are persistence, synchronization, exception handling, error management and
logging.

The aspect oriented paradigm (AOP) is one of the approaches proposed, so
far, for designing and implementing crosscutting concerns [8]. Aspect oriented
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techniques allow crosscutting concerns to be implemented in a new kind of
module called aspect, by introducing new language constructs like pointcuts
and advices.

Aspect mining is a research direction that tries to identify crosscutting
concerns in already developed software systems, without using AOP. The goal
is to identify them and then to refactor them to aspects, to achieve a system
that can be easily understood, maintained and modified. There exist many
reasons for migrating a legacy system to an aspect oriented based system. An
inadequate solution for crosscutting concerns implementation has a negative
impact on the final system with consequences like duplicated code, scattering
of concerns throughout the entire system and tangling of concern-specific code
with that of other concerns. The code scattering symptom means that the code
that implements a crosscutting concern is spread across the system and the
code tangling symptom indicates that the code that implements some concern
is mixed with code from other (crosscutting) concerns. These consequences
lead to software systems that are hard to maintain and to evolve. When aspect
oriented techniques are used, the crosscutting concerns are cleanly separated
from the core concerns, the latters becoming oblivious of them.

Clustering [6] has been already applied in aspect mining, as clustering
aims at identifying groups of similar objects, and crosscutting concerns in
legacy systems can be viewed as such groups (of methods, statements, etc.).
Several partitional and hierarchical clustering algorithms were developed in
[1, 2, 13, 14] for crosscutting concerns identification.

In this paper we are focusing on comparing the results obtained by four
clustering algorithms (kAM , HAM , PACO and HACO) that were previously
introduced in the aspect mining literature.

The paper is structured as follows. Section 2 presents the clustering based
approach that we have used for the evaluation that we aim at performing. The
clustering algorithms used in our evaluation for identifying crosscutting con-
cerns are described in Section 3. Section 4 provides the comparative analysis
of the considered clustering algorithms, and Section 6 gives some conclusions
of the paper and further work.

2. Clustering Based Aspect Mining

In this section we present the problem of identifying crosscutting concerns
as a clustering problem [11].

Let S = {es1, es2, . . . , esn} be a software system, where esi, 1 ≤ i ≤ n,
is an element from the software system. An element can be a statement, a
method, a class, a module, etc. We denote by n (|S|) the number of elements
of the system.
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In the following, we will consider a crosscutting concern as a set of elements
C ⊂ S, C = {e1, e2, ..., ecn}, elements that implement this concern. The
number of elements in the crosscutting concern C is cn = |C|. Let CCC =
{C1, C2, ..., Cq} be the set of all crosscutting concerns that exist in the system
S. The number of crosscutting concerns in the system S is q = |CCC|.
We suppose that two different crosscutting concerns do not have elements in
common, meaning that Ci ∩ Cj = ∅,∀i, j, 1 ≤ i, j ≤ q, i 6= j.

Definition 1. [11] Partition of a system S.
The set K = {K1,K2, ..., Kp} is called a partition of the system S iff:
(1) 1 ≤ p ≤ n;
(2) Ki ⊆ S,Ki 6= ∅, ∀ i, 1 ≤ i ≤ p;

(3) S =
p⋃

i=1

Ki;

(4) Ki ∩Kj = ∅, ∀ i, j, 1 ≤ i, j ≤ p, i 6= j.

We will refer to K as a set of clusters and to Ki as the i-th cluster of K.
In fact, the problem of aspect mining can be viewed as the problem of

finding a partition K of the system S.
A partition of a software system S can be obtained by different kinds of

algorithms (i.e., a clustering algorithm).

Definition 2. [11] Optimal partition of a system S.
Being given a partition K = {K1,K2, ...,Kp} of the system S, K is called an
optimal partition of system S with respect to the set CCC = {C1, C2, ..., Cq}
of all crosscutting concerns, iff:
(1) p ≥ q;
(2) ∀C ∈ CCC, ∃KC ∈ K such that C = KC .

Intuitively, K is an optimal partition of the system S if all the elements
implementing a crosscutting concern Ci (1 ≤ i ≤ q) are in the same cluster
Kji (1 ≤ ji ≤ p) and they are the only elements in Kji .

2.1. Identification of Crosscutting Concerns. In order to discover the
crosscutting concerns from the system, we analyze the source code of the
software system to be mined. All classes, methods and relations between them
are computed. Afterwards, a clustering algorithm is used to identify a partition
of a software system S in which the methods belonging to a crosscutting
concern should be grouped together. The final step is to manually analyzed
the obtained results.

Let us consider that the software system to be mined consists of a set of
classes C = {c1, c2, . . . , cs}, each class containing one or more methods. In
our clustering approach, the objects to be clustered are the methods from the
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software system S, i.e., M = {m1, m2, . . . , mn}. Our focus is to group the
methods such that the ones belonging to the same crosscutting concern to be
placed in the same cluster.

3. Clustering Algorithms for Crosscutting Concerns
Identification

In order to group the methods in clusters we have used four clustering
algorithms especially defined for aspect mining: kAM introduced in [14], HAM
introduced in [13], PACO introduced in [1], and HACO introduced in [2]. In
the following we briefly describe the algorithms used for our evaluation.

3.1. kAM. This is based on k-means clustering techniques, but it tries to
avoid the two main disadvantages of k-means algorithm: the dependence on
the number of clusters given as input and the dependence on the initial choice
of the centroids. In order to accomplish this, kAM uses a heuristic for choosing
the optimal number p of clusters, and the initial centroids. This heuristic
provides a good enough choice of the initial centroids and is particular to
aspect mining. The main idea of kAM ’s heuristic is the following:

(i) The initial number p of clusters is n (the number of methods from the
system).

(ii) The method chosen as the first centroid is the most “distant” method
from the set of all methods (i.e., the method that maximizes the sum
of distances from all other methods).

(iii) For each remaining methods (that were not chosen as centroids), the
minimum distance (dmin) from the method and the already chosen
centroids is computed. The next centroid is chosen as the method m
that maximizes dmin and this distance is greater than a positive given
threshold (distMin). If such a method does not exist it means that
m is very close to its nearest centroid nc and should not be chosen as
a new centroid (m and nc should belong to the same cluster). In this
case, the number p of clusters will be decreased.

(iv) The step (iii) will be repeatedly performed, until the number p of
clusters and the number of centroids are equal.

3.2. HAM. This algorithm is based on the idea of hierarchical agglomerative
clustering, but uses a heuristic for merging two clusters, heuristic that is par-
ticular for aspect mining. In this algorithm, the distance between two clusters
Ki and Kj is considered to be the largest distance between the objects from
the clusters, i.e., it uses the complete linkage metric [6].

The heuristic used in HAM is that, at a given step, the most two similar
clusters (the pair of clusters that have the smallest distance between them) are
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merged only if the distance between them is less or equal to a given threshold,
distClusMin.

Both, kAM and HAM algorithms, use a vector space model in order to
compute the dissimilarity between two methods. The following vector space
model is used: a method m is characterized by an (s + 1)-dimensional vector
{FIV, B1, B2, ...Bs}, where s is the number of classes from the software system
S (called application classes), FIV is the value of the fan-in metric and Bi is
the value of the attribute corresponding to the application class ci (1 ≤ i ≤ s),
as follows:

Bi =





1 if m is called from at least one method belonging to
application class ci

0 otherwise
.

For both kAM and HAM algorithms, the distance between two methods
is computed using the Euclidian distance.

3.3. PACO. This algorithm is based on k-medoids or PAM (Partitioning
around medoids) algorithm [7], that finds representative objects, called medoids,
in clusters. The algorithm starts with p initial representative objects for the
clusters (medoids), then iteratively recalculates the clusters (each object is
assigned to the closest cluster - medoid), and their medoids until convergence
is achieved. At a given step, a medoid of a cluster is replaced by a non-medoid
if it improves the total distance of the resulting clustering [7]. k-medoids al-
gorithms have the same disadvantages as k-means algorithm: the dependence
on the number of clusters given as input and the dependence on the initial
choice of the medoids.

In order to avoid these disadvantages, PACO algorithm uses a heuristic
for choosing the number of medoids (clusters) and the initial medoids. The
heuristic is similar to the one used for kAM.

After selecting the initial medoids, PACO behaves like the classical k-
medoids algorithm.

In order to compute the dissimilarities between methods three distance
metrics were used:

• Scattering distance that captures the scattering symptom of crosscut-
ting concerns.

(1) dP
S (mi,mj) =

{
1− |in(mi)∩in(mj)|

|in(mi)∪in(mj)| if in(mi) ∩ in(mj) 6= ∅
∞ otherwise

where, for a given method m ∈ M, in(m) defines the set of methods
and classes that invoke m, as expressed in Equation (2).
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(2) in(m) = {m} ∪ {m′ ∈M∪ C| m′ invoke m}.
• Tangling distance that captures the tangling symptom of crosscutting

concerns:

(3) dP
T (mi,mj) =

{
1− |r(mi)∩r(mj)|

|r(mi)∪r(mj)| if r(mi) ∩ r(mj) 6= ∅
∞ otherwise

where, for a given method m ∈ M, in(m) is defined as in Equation
(2), and r(m) denotes the set of relevant properties for each invocation
context inv ∈ in(m).

• Scattering-Tangling distance that tries to capture both scattering and
tangling symptoms:

(4) dP
ST (mi,mj) = min{dS(mi, mj), dT (mi,mj).}

3.4. HACO. This algorithm is based on the idea of hierarchical agglomerative
clustering, and uses a heuristic for determining the number of clusters. In
order to determine the number p of clusters, the focus is on determining p
representative methods from the software system S. The method chosen as
the first representative method is the most “distant” method from the set of
all methods (the method that maximizes the sum of distances from all the
other methods). At each step we select from the remaining methods the most
distant method relative to the already chosen methods. If the selected method
is close enough to the already chosen representative methods, then the process
is stopped, otherwise the selected method is considered as a new representative
method.

The distance metric used for computing the similarity between two meth-
ods is defined as follows:

(5) dH
ST (mi,mj) =





0 i = j

1− |Col(mi)∩Col(mj)|
|Col(mi)|+|Col(mj)| if Col(mi) ∩ Col(mj) 6= ∅

∞ otherwise

,

where Col(m) is a collection consisting of: the method itself, the class in
which the method is defined, the classes and methods that invoke m and the
classes in which the classes and methods that invoke m are contained. This
distance function considers both the scattering and tangling symptoms.
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4. Comparative Analysis

In this section we comparatively analyze the results obtained by the above
presented clustering algorithms. The comparison is made considering how well
did a clustering algorithm succeed in identifying clusters corresponding to the
crosscutting concerns from the software system to be mined.

For this evaluation we have used two quality measures introduced in [11]:
• DISP. The dispersion degree of crosscutting concerns in clusters.
• DIV. The degree to which each cluster contains elements from different

crosscutting concerns or elements from other concerns.
DISP measure defines the dispersion degree of crosscutting concerns in

clusters, considering, for each crosscutting concern, the number of clusters that
contain elements belonging to the concern. DIV measure defines the degree
to which each cluster contains elements from different crosscutting concerns
or elements from other concerns.

For each measure the values are in the interval [0, 1], the ideal value being 1
for both of them. Larger values for DISP and DIV indicate better partitions
with respect to set of the crosscutting concerns to be discovered, meaning that
both measures have to be maximized. Theorem 3 that gives the neccesary and
sufficient conditions for a partition to be an optimal partition was proven in
[11]:

Theorem 3. If K is a partition of the software system S and CCC is the set
of crosscutting concerns in S, then K is an optimal partition iff
DISP (CCC,K) = 1 and DIV (CCC,K) = 1.

We will use these properties of the above presented quality measures in
analyzing the results obtained by the different clustering algorithms used for
this comparison.

4.1. Case study. We have considered a medium size software application,
the open source JHotDraw version 5.4b1 case study [3]. It is a Java GUI
framework for technical and structured graphics, developed by Erich Gamma
and Thomas Eggenschwiler, as a design exercise for using design patterns. It
consists of 396 classes and 3359 methods.

The set of crosscutting concerns used for the evaluation is: Adapter, Com-
mand, Composite, Consistent behavior, Contract enforcement, Decorator, Ex-
ception handling, Observer, Persistence, and Undo. The set of crosscutting
concerns and their implementing methods was constructed using the results
reported by Marin et al. and publicly available at [10].

We mention that the value of the threshold is 1 for all clustering algorithms.
Analyzing the results from Table 1 we can conclude the following:
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Algorithm Distance function DISP DIV
kAM Euclidian 0.4005 0.9972
HAM Euclidian 0.4005 0.9973
PACO dP

S 0.4444 0.9753
PACO dP

T 0.4433 0.8732
PACO dP

ST 0.4207 0.8798
HACO dH

ST 0.457 1
Table 1. Results for JHotDraw case study.

• From the analyzed clustering algorithms, the algorithm that provides
the best results is HACO, as DISP and DIV have the larger values.
This means that in the partition obtained by HACO algorithm, the
methods from the crosscutting concerns were better grouped than in
the partitions obtained by the other algorithms. HACO also provides
the maximum value for DIV measure, i.e. 1, meaning that for each
crosscutting concern its elements are not mixed with elements from
other (crosscutting) concerns.

• The elements of crosscutting concerns are spread in two or more clus-
ters for all algorithms, as the values of the DISP measure are less
than 0.5 for all algorithms.

• For PACO algorithm, the scattering distance has obtained the best
results, for both DISP and DIV measures.

• The vector space model approach has obtained better results for DIV
measure than PACO, but it has obtained the worst results for DISP
measure.

• The hierarchical clustering approach seems to be more appropriate in
aspect mining than partitional clustering.

• None of the clustering algorithms used has succeeded in obtaining an
optimal partition of the software systems. The value of the DISP
measure is less than 1 for all algorithms, and the value of DIV measure
is 1 only for HACO algorithm.

As a conclusion, DISP measure can be improved for HACO algorithm by
improving the distance semi-metric dH

ST used for discriminating the methods
from the software system in the clustering process.

5. Related Work

In this section we briefly present other existing clustering based approaches
used for crosscutting concerns identification.

Shepherd and Pollock [15] use clustering to find methods with similar name
as an indication of crosscuttingness. They perform agglomerative hierarchical
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clustering in order to group methods. The objects to be clustered are the
names of methods from the software system under analysis. The distance
function between two methods m1 and m2 is proportional with the common
substring length. The authors have developed a tool, called AMAV, that
helps users navigate and analyze the obtained clusters. The rest of the ap-
proach is just manual analysis of the obtained results using the tool.

He and Bai [4] have proposed an aspect mining technique based on dy-
namic analysis and clustering that also uses association rules. They first use
clustering to obtain crosscutting concern candidates and then use association
rules to determine the position of the source code belonging to a crosscutting
concern in order to ease refactoring.

We did not provide a comparison of the clustering algorithms considered
in this study with the two other existing clustering based aspect mining ap-
proaches for the following reasons:

• Shepherd and Pollock have proposed in [15] an aspect mining tool
based on clustering, but it does not automatically identify the cross-
cutting concerns. The user of the tool has to manually analyze the
obtained clusters in order to discover crosscutting concerns.

• The technique proposed by He and Bai cannot be reproduced, as they
do not report neither the clustering algorithm used, nor the distance
metric between the objects to be clustered. Also, the results obtained
for the case study used by the authors for evaluation are not available.
For these reasons, we cannot provide a comparison with this technique.

6. Conclusions and Further Work

In this paper we have provided a comparative analysis of four clustering
algorithms that are used for crosscutting concerns identification: kAM, HAM,
PACO, and HACO. For the evaluation we have used two quality measures that
were previously introduced in the aspect mining literature.

In the future we plan to apply the clustering algorithms considered in this
paper to other larger software systems. We will also consider to use other
unsupervised learning tehniques (such as self-organizing maps [9], Hebbian
learning [5]) in order to identify crosscutting concerns in existing software
systems.
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