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A METHOD WITH RANDOM MODIFICATION OF
GRADIENT COMPONENTS FOR CONVEX MODELS

PAVEL BĂLAN

Abstract. A stochastic method is proposed and analyzed, that is a prob-

abilistic generalization of gradient method, for solving convex models with

restrictions. A random change of ”old” partial derivatives with ”new” ones

is performed from one iteration to another. Convergence aspects of this

method are analyzed for the case when the step is adjusted programmati-

cally. Certain conditions are indicated, that ensure its convergence to the

optimal solution with probability 1.

1. Introduction

Current method has an iterative approach of “Connection-Disconnection”
type. Using two random variables a series of indices is generated for next
iteration. One is meant to be used for target function and the other one -
for function that describes the restriction. Distribution laws that can be used
can be a priori set or can be modified within iterations. Usage of different
distribution laws may increase convergence speed of the method. Generated
indices suggest what components of movement vector should be modified.
“Old” components are replaced with corresponding partial derivatives with
the same indices from the above mentioned series. The idea of “Connection-
Disconnection” mechanism is following: if the restriction inequality is satisfied
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at the current iteration, then the vector that determines the movement direc-
tion is built using partial derivatives of target function; otherwise this vector
contains only partial derivatives of the function from restriction.

2. A method with random modification of gradient components

for convex models

The following problem is considered:

(1)





F (x) −→ min
ϕ(x) ≤ 0
x ∈ X

where X represents a compact and convex set in Euclidian space En.
Suppose that problem (1) is solvable.
Let us define V (X, ε) = ∪

x∈X
V (x, ε) - vicinity with ε radius of X set. By

V (x, ε) is marked the vicinity with radius ε > 0 of the point x ∈ En, or,
formally:

V (x, ε) = {y ∈ En : ‖x− y‖ < ε}
Let’s admit for some ε > 0 that F (x) and ϕ(x) are convex and differen-

tiable functions (with continuous gradients) on V (X, ε). Therefore, for ∀x ∈ X

are defined the following vectors:

(gF,1(x), . . . , gF,n(x)) = gF (x) = gradF (x) =
(

dF (x)
dx1

, . . . ,
dF (x)
dxn

)

(gϕ,1(x), . . . , gϕ,n(x)) = gϕ(x) = gradϕ(x) =
(

dϕ(x)
dx1

, . . . ,
dϕ(x)
dxn

)

Obviously, the norms ‖gF (x)‖ =

√√√√
n∑

i=1

g2
F,i(x), ‖gϕ(x)‖ =

√√√√
n∑

i=1

g2
ϕ,i(x) are

continuous functions on X compact and, consequently, a constant C exists, so
that ‖gF (x)‖ ≤ C, ‖gϕ(x)‖ ≤ C for ∀x. Hence ‖gF,i(x)‖ ≤ C, ‖gϕ,i(x)‖ ≤ C,
∀i = 1, n, ∀x ∈ X.

The numerical method that is proposed to solve the problem (1) has an
iterative approach. Assuming that we are positioned on kth iteration the
schema is following:
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Step 1. Two random variables ξk, ψk are simulated in series mk ≥ 1, lk ≥ 1 of
independent probes with discrete distribution laws a priori defined:

ξk 1 2 . . . n

P P k
ξ,1 P k

ξ,2 . . . P k
ξ,n

ψk 1 2 . . . n

P P k
ψ,1 P k

ψ,2 . . . P k
ψ,n

That is, on every iteration k the sets Ik = {i1, i2, . . . , imk
}, Jk =

{j1, j2, . . . , jlk} of elements that are independent realizations of ξk, ψk

variables with distribution laws defined above are generated, where

(2)
P k

ξ,i ≥ Pξ > 0, ∀i = 1, n, ∀k = 0, 1, . . .

P k
ψ,i ≥ Pψ > 0,∀i = 1, n, ∀k = 0, 1, . . .

Particularly, we can take mk = lk = 1, that is a single simulation is
accomplished for every random variable ξk, ψk on every iteration.

Step 2. gk
F (xk), gk

ϕ(xk) vectors are calculated according to the rule:
(3)

gk
F (xk) =

(
gk
F,1, . . . , g

k
F,i, . . . , g

k
F,n

)
, gk

F,i =

[
gk−1
F,i , if i /∈ Ik

dF (x)
dxi

, if i ∈ Ik

gk
ϕ(xk) =

(
gk
ϕ,1, . . . , g

k
ϕ,i, . . . , g

k
ϕ,n

)
, gk

ϕ,i =

[
gk−1
ϕ,i , if i /∈ Jk

dϕ(x)
dxi

, if i ∈ Jk

∀i = 1, n

Step 3. The element xk+1 is determined according to relation:

(4) xk+1 =
∏

X

(
x̃k+1

)
, where x̃k+1 = xk − ρkη

k

∏
X

(
x̃k+1

)
represents the projection of element x̃k+1 on the set X.

Starting point x0 is arbitrary taken from X (it can be indicated under
certain considerations for some concrete situations).

Step 4. The numerical sequence
{
ηk

}
is defined in following way:

(5) ηk =
{ gk

‖gk‖ , if gk 6= 0̄, ∀k = 1, 2, . . .

0̄, for gk = 0̄

g0 is considered to be an arbitrary, but bounded vector.
Necessarily, classical requirements are imposed on sequence {ρk} to ensure

the convergence from probabilistic point of view of the iterative process (4)
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which have the form:

(6) ρk ≥ 0; ρk −→
k→∞

0;
∞∑

k=0

ρk = ∞

Additionally we will require existence of such a number ε̄ > 0, that for
∀r ∈ (0, ε̄] and ∀τ ∈ (0, 1) the convergence of the series occurs [1]:

(7)
∞∑

k=0

τL(k,r) < ∞, L (k, r) =
{0, if ρk ≥ r or k = 0

sk, if
k∑

l=k−sk

ρl < r and
k∑

l=k−sk−1

ρl ≥ r

In other words sk is the biggest integer number among all numbers j ≥ 0

that satisfies the relation
k∑

l=k−j

ρl.

Remark 1. Particularly, it is easy to show that numerical sequence ρk =
R

(k+1)α , R > 0, α ∈ (0, 1] satisfies the conditions (6)-(7).

B.T. Polyak proposes a schema to solve general convex models [4]. This
is a deterministic ”connect-disconnect” schema where the vector gk defines
movement direction and is formulated in following way:

gk = gk(xk) =
{

gradF
(
xk

)
, if ϕ

(
xk

) ≤ 0
gradϕ (xk) , if ϕ (xk) > 0

But actual method proposes another representation of movement vector gk:

(8) gk = gk(xk) =
{

gk
F

(
xk

)
, if ϕ

(
xk

) ≤ τk

gk
ϕ (xk) , if ϕ (xk) > τk

, τk > 0

Remark 2. The iterative process can be modified in following way: different
distribution laws can be taken for random variables ξk, ψk, from one iteration
to another, with the condition that relation (2) holds. This can favour the
increase of convergence speed of the sequence

{
xk

}
.

Applicability of described method can be confirmed, first of all, by estab-
lishing convergence, in probabilistic terms, of sequence

{
xk

}
towards optimal

domain of solutions X∗. A special interest represents the convergence with
probability 1 (only this type of convergence can be accepted with confidence
from applied point of view).
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Theorem 1. For fixed ∀ε > 0, all elements of random sequence
{
xk

}
k≥0

,
obtained as a result of application of described method, are localized almost
certain (with probability 1) in vicinity V (X∗, 2ε), but excepting a finite number
of elements. Formally this can be represented in the following way:

P

{
θ : lim

k→∞
min

x∗∈X∗

∥∥xk − x∗
∥∥ = 0

}
= 1,

where xk = xk (θ) and θ =
(
θ0, θ1, . . . , θk, . . .

)
,

θk =
(
i0, i1, . . . , ik

) ∈ Bk- σ- algebra generated by
Cartesian product ((I0 × J0)× (I1 × J1)× . . .× (Ik × Jk)).

Proof. If X ⊂ V (X∗, 2ε) then the statement is obvious.
Let’s admit X\ V (X∗, 2ε) 6= ∅. A problem of the form:

(9)





F (x) −→ min

ϕ (x) ≤ τk, τk > 0, τk → 0,
∞∑

k=0

ρkτk = ∞, τk
ρk
→∞

x ∈ X

is associated to initial model (1) on every iteration k.
Two stages for proof development will be accentuated.

Stage 1. Firstly the existence of a subsequence
{
xkl

} ⊂ {
xk

}
k≥0

, that almost
certain is contained in VX (X∗, ε) will be demonstrated, i.e.

P
{
∃{

xkl
} ⊂ {

xk
}

k≥0
: xkl ∈ VX (X∗, ε)

}
= 1.

Let’s suppose the contrary. In this case for some q ∈ (0, 1) a natural
number Kq can be indicated such that the following event is produced

(10)
A1 =

{
∃Kq : ∀k ≥ Kq,

∥∥∥xk − x∗
∥∥∥ ≥ ε, or xk /∈ VX (X∗, ε) , ∀x∗ ∈ X∗

}

with probability P (A1) ≥ q.
Let’s denote Xε = X \ V (X∗, ε).
Since F (x), ϕ (x) are convex and differentiable, the following in-

equalities are valid:

F (x∗)− F
(
xk

) ≥
(

dF(xk)
dx , x∗ − xk

)
,

ϕ (x∗)− ϕ
(
xk

) ≥
(

dϕ(xk)
dx , x∗ − xk

)

for ∀x∗ ∈ X∗, ∀xk ∈ X.
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Let us denote ∆F = min
x∈Xε,x∗∈X∗ [F (x)− F (x∗)]. Evidently, ∆F > 0,

if ε > 0.
Taking into consideration all properties enumerated above, two con-

stants C1 > 0, C2 > 0 may be chosen, such that ‖x′ − x′′‖ ≤ C1,
∀x′, x′′ ∈ X and

∥∥∥dF (x)
dx

∥∥∥ ≤ C2, ∀x ∈ X.

If ϕ
(
xk

) ≤ τk and xk ∈ Xε, then F
(
xk

)− F (x∗) ≥ ∆F , or

(11)

(
dF

(
xk

)

dx
, xk − x∗

)
≥ ∆F

(
dF(xk)

dx , xk − x∗
)

∥∥∥∥
dF(xk)

dx

∥∥∥∥ · ‖xk − x∗‖
≥

(
dF(xk)

dx , xk − x∗
)

C2C1
≥ ∆F

C1C2

Also, if ϕ
(
xk

)
> τk for xk ∈ Xε, then:

(12)

(
dϕ

(
xk

)

dx
, xk − x∗

)
≥ τk

(
dϕ(xk)

dx , xk − x∗
)

∥∥∥∥
dϕ(xk)

dx

∥∥∥∥ · ‖xk − x∗‖
≥

(
dϕ(xk)

dx , xk − x∗
)

C2C1
≥ τk

C1C2

Let’s consider some numbers δF , δk
ϕ from intervals

(
0, ∆F

C1C2

)
,
(
0, τk

C1C2

)

and label δ̄k = min
{
δF , δk

ϕ

}
. As a result the following inequalities may

be obtained:

(13)

(
dF(xk)

dx , xk − x∗
)
≥ 2δ̄k

∥∥∥∥
dF(xk)

dx

∥∥∥∥ ·
∥∥xk − x∗

∥∥ , if ϕ
(
xk

) ≤ τk(
dϕ(xk)

dx , xk − x∗
)
≥ 2δ̄k

∥∥∥∥
dϕ(xk)

dx

∥∥∥∥ ·
∥∥xk − x∗

∥∥ , if ϕ
(
xk

)
> τk

Particularly, δF , δk
ϕ may be chosen as centres of intervals

(
0, ∆F

C1C2

)
,(

0, τk
C1C2

)
:

(14) δF =
∆F

2 (C1C2)
, δk

ϕ =
τk

2 (C1C2)

The following events are being considered
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Ak
1 =

{(
ηk, xk − x∗

) ≥ δ̄k

∥∥xk − x∗
∥∥ , ∀x∗ ∈ X∗}. Obviously, the

opposite event with regards to Ak
1 has the following form

Ak
1 =

{∃x∗ ∈ X∗ :
(
ηk, xk − x∗

)
< δ̄k

∥∥xk − x∗
∥∥}

.

Then D1 =
{

∞∪
k=Kδ

∞∩
i=k

Ai
1

}
, or, in other words, occurs all Ak

1(k ≥
Kq), without, perhaps, a finite number. It is obvious that D1 ={

∞∩
k=Kδ

∞∪
i=k

Ai
1

}
, or, in other words, an infinite number of events Ak

1

are produced.
Let us evaluate P (A1). In order to do this let’s represent

P (A1) = P (A1 ∩D1) + P
(
A1 ∩D1

)

Both terms from last expression will be estimated.
From the realization of event A1 ∩D1 follows the existence of such

a natural number Kδ < ∞ that for all k ≥ Kδ and ∀x∗ ∈ X∗ following
inequality occurs

(15)
(
ηk, xk − x∗

)
≥ δ̄k

∥∥∥xk − x∗
∥∥∥

Taking into consideration (15), for k ≥ Kδ we have the following
sequence of relations:∥∥xk+1 − x∗

∥∥2 ≤ ∥∥xk − ρkη
k − x∗

∥∥2 =
=

∥∥xk − x∗
∥∥2 − 2ρk

(
xk − x∗, ηk

)
+ ρ2

k

∥∥ηk
∥∥2 ≤

≤ ∥∥xk − x∗
∥∥2 − 2ρkδ̄k

∥∥xk − x∗
∥∥ + ρ2

k ≤
≤ ∥∥xk − x∗

∥∥2 − 2ρkδ̄kε + ρ2
k =

=
∥∥xk − x∗

∥∥2 − ρk

(
2δ̄kε− ρk

)

Because ρk −→
k→∞

0, for some Kϕ: δF > δk
ϕ or δ̄k = δk

ϕ, as soon as

k ≥ Kϕ. According to (9), (14) for some Kε ≥ Kϕ: ρk ≤ δ̄kε, as soon
as k ≥ Kε. Evidently, for k ≥ k̂ = max {Kδ,Kε}:

∥∥∥xk+1 − x∗
∥∥∥

2
≤

∥∥∥xk − x∗
∥∥∥

2
− ρkδ̄kε,
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∥∥∥xk − x∗
∥∥∥

2
≤

∥∥∥xk−1 − x∗
∥∥∥

2
− ρk−1δ̄k−1ε ≤

≤
∥∥∥xk−2 − x∗

∥∥∥
2
− ε

(
ρk−2δ̄k−2 + ρk−1δ̄k−1

)
, . . .

∥∥∥xk+1 − x∗
∥∥∥

2
≤

∥∥∥xk̂ − x∗
∥∥∥

2
− ε

k∑

i=k̂

ρiδ̄i or
∥∥∥xk+1 − x∗

∥∥∥
2
≤

≤
∥∥∥xk̂ − x∗

∥∥∥
2
− ε

k∑

i=k̂

ρiδ
i
ϕ

Due to imposed conditions on τk in (9), based on relation (14), we get:

(16)
∥∥∥xk+1 − x∗

∥∥∥
2
≤

∥∥∥xk̂ − x∗
∥∥∥

2
− ε

2 (C1C2)

k∑

i=k̂

ρiτi →∞, for k →∞

We obtain a contradiction because the norm of any vector, moreover
its square value, cannot be negative. Therefore, the realization of event
A1∩D1 implies realization of an event, that is practically unrealizable,
F1 =

{∥∥xk+1 − x∗
∥∥2

< 0, k −→∞
}

. That is P (A1 ∩D1) ≤ P (F1) =

0. It means that P (A1) = P
(
A1 ∩D1

)
.

Let us evaluate P
(
A1 ∩D1

)
. The following event Bk

1 is defined:
Bk

F ={at least one time among iterations of the form j = k − sk, k

is generated every possible value of the discrete random variable ξk}.
Bk

ϕ ={at least one time among iterations of the form j = k − sk, k

is generated every possible value of the discrete random variable ψk}.
Bk

1 = Bk
F ∩Bk

ϕ.
Simulation of variables ξk and ψk is produced in parallel and inde-

pendently. Thanks to the fact that Bk
F , Bk

ϕ events are independent,
follows that P

(
Bk

1

)
= P

(
Bk

F

) · P (
Bk

ϕ

)
.

Let us prove that P
(
Bk

1

) −→
k→∞

1. Contrary is supposed: P
(
Bk

1

) ≤
p < 1, for ∀k. We have P

(
Bk

F

)
= 1 − P

(
Bk

F

)
and P

(
Bk

ϕ

)
= 1 −

P
(
Bk

ϕ

)
.
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It is absolutely clear that P
(
Bk

F

)
≤

n∑
i=1

(
1− P k

ξ,i

)sk −→
k→∞

0, P
(
Bk

ϕ

)
≤

n∑
i=1

(
1− P k

ψ,i

)sk −→
k→∞

0. Indeed, if we label P = min
{

Pξ, Pψ

}
, the fol-

lowing sequence of relations takes place:

(17)

P
(
Bk

F

)
≤

n∑
i=1

(
1− P k

ξ,i

)sk ≤ n · max
1≤i≤n

(
1− P k

ξ,i

)sk ≤

≤
(

sk
√

n
(
1− Pξ

))sk ≤ ( sk
√

n (1− P ))sk ,

P
(
Bk

ϕ

)
≤

n∑
i=1

(
1− P k

ψ,i

)sk ≤ n · max
1≤i≤n

(
1− P k

ψ,i

)sk ≤

≤
(

sk
√

n
(
1− Pψ

))sk ≤ ( sk
√

n (1− P ))sk

Because k →∞, then sk →∞ and sk
√

n → 1+0. For an arbitrary, but
fixed value τ ∈ (1− P , 1): ∃Kτ ∈ N, so that for k ≥ Kτ takes place
inequality sk

√
n (1− P ) ≤ τ < 1. Thus, ( sk

√
n (1− P ))sk ≤ τ sk → 0.

Or P
(
Bk

F

)
≤ τ sk and P

(
Bk

ϕ

)
≤ τ sk . It means that P

(
Bk

F

)
→ 0 and

P
(
Bk

ϕ

)
→ 0, or, P

(
Bk

F

) → 1 and P
(
Bk

ϕ

) → 1 for k → ∞. These

considerations conclude to the fact that P
(
Bk

1

) −→
k→∞

1.

The realization of event Bk
1 means following: ”renovation” of all

components of the vectors gk−sk
F and gk−sk

ϕ is performed during sk

iterations starting from k − sk till k (inclusively). In other words,
movement vector gk contains as its components all partial derivatives,
all evaluated after iteration k − sk.

The realization of event Bk
1 and the fact that partial derivatives of

functions F (x), ϕ (x) are continuous, conclude to realization of follow-
ing event:

(18)




∀˜̃ε > 0 :

∥∥∥∥gi − ∂F(xk)
∂x

∥∥∥∥ ≤ ˜̃ε, if ϕ
(
xk

) ≤ τk∥∥∥∥gi − ∂ϕ(xk)
∂x

∥∥∥∥ ≤ ˜̃ε, if ϕ
(
xk

)
> τk

, ∀i = k − sk, k





Taking into consideration (18), continuity of dot product and satis-
faction of conditions (10), (13), we can draw a conclusion that event

Ak
1 is realized starting with some k = ̂̂

k = max
{

Kτ , k̂
}

.
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Thus, Bk
1 ⊂ Ak

1. In this case P
(
Bk

1

) ≤ P
(
Ak

1

)
and, therefore

P
(
Ak

1

)
≤ P

(
Bk

1

)
. But, according to (2), (7) and (17) follows:

P
(
Bk

1

)
≤ τL(k,r), that is

∞∑

k=0

P
(
Ak

1

)
≤

∞∑

k=0

P
(
Bk

1

)
≤

∞∑
τL(k,r) < ∞

k=0

We are in such situation that the conditions of the Borel-Cantelli
lemma [3] are satisfied. It means that P

(
D1

)
= 0. Therefore, q ≤

P (A1) = P
(
A1 ∩D1

) ≤ P
(
D1

)
= 0. Thus, q = 0.

A contradiction has been obtained, because we have supposed that
q > 0. Thus, it exists a subsequence

{
xkl

} ⊂ {
xk

}
k≥0

that almost
certainly is contained in VX (X∗, ε).

Stage 2. Further will be proved that all elements of sequence
{
xk

}
, without just

a finite number, belong to set VX (X∗, 2ε) with probability 1.
Following events are defined:

(19)
A2 =

{∃{
xkl

} ⊂ {
xk

}
:
{
xkl

} ⊂ VX (X∗, ε)
}

B2 =
{∃{

zkm
} ⊂ {

xk
}

:
{
zkm

}
* VX (X∗, 2ε)

}

Next, P (B2) will be appreciated. We will find out that P (B2) =
P (B2 ∩A2). Indeed,

P (B2) = P
(
(B2 ∩A2) ∪

(
B2 ∩A2

))
= P (B2 ∩A2)+P

(
B2 ∩A2

)
=

P (B2 ∩A2), because P
(
B2 ∩A2

) ≤ P
(
A2

)
= 0.

Further, following event will be considered: D2 = A2∩B2. Suppose
that P (D2) > 0. Realization of event D2 means that the transfer from
VX (X∗, ε) to X \ VX (X∗, 2ε) and vice versa takes place infinitely.

Let us denote by:
K1 - the first iteration the event

{
xK1 ∈ VX (X∗, ε)

}
is produced,

K2 - the first iteration the event
{
xK2 ∈ VX

(
X∗, 3

2ε
)}

is produced,
K3 - the first iteration theinequality ρK3 ≤ 2εδ̄k is satisfied,
K̄ = max {K1,K2,K3}.
In case that for some k ≥ K̄ and xk /∈ VX

(
X∗, 3

2ε
)

is satisfied
inequality that defines event Ak

1, then following sequence of inequalities
occurs:∥∥xk+1 − x∗

∥∥2 ≤ ∥∥xk − x∗
∥∥2−ρk

(
2εδ̄k − ρk

)
<

∥∥xk − x∗
∥∥2

, because∥∥xk − x∗
∥∥ > ε.
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That is, as soon as k ≥ K̄ and xk /∈ VX

(
X∗, 3

2ε
)

means that:

(20)
∥∥∥xk+1 − x∗

∥∥∥ <
∥∥∥xk − x∗

∥∥∥

Since ρk −→
k→∞

0, will appear K∗ ≥ K̄ with property that xK∗ ∈
VX (X∗, 2ε) \ VX

(
X∗, 3

2ε
)
. This will happen certainly. Particularly,

for ρk < ε
2 :
∥∥∥xk+1 − xk

∥∥∥ ≤
∥∥∥xk − ρkη

k − xk
∥∥∥ ≤ ρk <

ε

2

Therefore, there exists a value k that satisfies xk ∈ VX (X∗, 2ε) \
VX

(
X∗, 3

2ε
)
.

According to (20),
∥∥xK∗+1 − x∗

∥∥ <
∥∥xK∗ − x∗

∥∥. In the case that
xK∗+1 /∈ VX

(
X∗, 3

2ε
)
, then we have

∥∥xK∗+2 − x∗
∥∥ <

∥∥xK∗+1 − x∗
∥∥ <

<
∥∥xK∗ − x∗

∥∥, and so forth, for all j ≥ 0 that satisfy xK∗+j /∈
VX

(
X∗, 3

2ε
)
, takes place

(21) min
x∗∈X∗

∥∥∥xK∗+j − x∗
∥∥∥ < min

x∗∈X∗

∥∥∥xK∗ − x∗
∥∥∥ < 2ε

Let us denote
{

xkl
}

l≥1
- sequence of all elements

{
xk

}
with the

property that kl ≥ K∗, xkl ∈ VX (X∗, 2ε) \ VX

(
X∗, 3

2ε
)

and xkl−1 ∈
VX

(
X∗, 3

2ε
)
. Then for l ≥ 1, kl < j < kl+1 and xj /∈ VX

(
X∗, 3

2ε
)

the
following inequality occurs:

(22) min
x∗∈X∗

∥∥xj − x∗
∥∥ < min

x∗∈X∗

∥∥∥xkl − x∗
∥∥∥ < 2ε

Thus, in other words, admitting that for some K elements of type
xk /∈ VX

(
X∗, 3

2ε
)
, k < ∞, k ≥ K satisfy inequality from event Ak

1,
then event B2 cannot occur with positive probability. Supposition
that D2 is realized means that beyond layer VX

(
X∗, 3

2ε
)

penetration of
layer X \VX (X∗, 2ε) takes place only when infinitely is produced event
Ak

1 considered previously. But P
(
D1

)
= 0. So, the conclusion that

can be drawn is that the transfer from layer VX (X∗, 2ε) \VX

(
X∗, 3

2ε
)

into layer X \ VX (X∗, 2ε) occurs only a finite number of times. That
is, P (D2) = 0, and implies P (B2) = 0.

Theorem is proved.
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3. Conclusions

Elaborated method is especially practical for models where modification
of gradients is “relatively slow”. Such models are often encountered in eco-
nomical, technical problems etc. It represents a significant generalization of
methods meant to solve extremum problems. It can be classified as a di-
rect method of optimization and does not use penalty functions or Lagrange
function – common toolkit used to solve such kind of problems.
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