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PROVING THE DECIDABILITY OF THE PDL×PDL
PRODUCT LOGIC

LÁSZLÓ ASZALÓS AND PHILIPPE BALBIANI

Abstract. The propositional dynamic logic (PDL) is an adequate tool to

write down programs. In a previous article we used PDL to formulate cryp-

tographic protocols as parallel programs. In these protocols at least two

agents/individuals exchange messages, so we needed to use product logic

to formulate the parallel actions. Ágnes Kurucz proved that S5×S5×S5 —

which is the simplest triple product logic — is undecidable, hence it fol-

lows that PDL×PDL×PDL is undecidable, too. It is easy to show that the

PDL logic (without the star operator) is decidable, so it is an interesting

problem, that the PDL×PDL product logic is decidable or not.

1. Introduction

Authentication protocols emerged from numerous works of computer sci-
entists and their use has become common in the science and study of methods
of exchanging keys. They are basically sequences of message exchanges, whose
purpose is to assure users that communications do not leak confidential data.
Indeed, there is a wide variety of protocols that have been specified and imple-
mented, from protocols with trusted third party, to protocols with public key
and, even more generally, hybrid protocols. The one drawback is that many
of them have been shown to be flawed, from which one may explain the great
deal of attention devoted to the formal verification of security properties of
protocols. Examples of protocols can be found in [4].
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In the literature, the most popular logic-based formal approach to the
analysis of authentication protocols is perhaps the modal BAN calculus in-
troduced by Burrows, Abadi and Needham [3]. From the point of view of
computer science, a virtue of BAN is that it allows static characterization of
epistemic concepts. In spite of its success in finding flaws or redundancies
in some well-known protocols, the effectiveness of BAN as a formal method
for the analysis of authentication protocols has been a source of debate, see
[9] for details. The problem with the BAN logic is that it explicitly excludes
time. On the other hand there is no way to represent actions performed by
users. Communication, by its nature, refers to time, and its properties are
naturally expressed in terms of actions like sending and receiving messages.
When devising a protocol, we usually think of some property that we want the
protocol to satisfy. We are mainly interested in the correctness of a protocol
with respect to epistemic properties between two users like the arranging of a
secret key known only to them. Therefore, our emphasis is on the interplay
between knowledge and action. This leads us to consider a language that al-
lows to express notions of knowledge and actions in a straightforward way:
the language of modal logic.

We can treat protocols as programs, so we used the propositional dynamic
logic (PDL) [7] as a starting point. It allows for us to examine properties
of the protocol using logic. Protocols are not just sole programs, but a set
of programs. Usually two or three programs run parallel when a protocol
executed: the program of Alice, of Bob and maybe program of Charlie, if
we use the the traditional names of the cryptography. To handle the parallel
execution of programs, we developed the product logic PDL×PDL, using the
construction of Gabbay and Shehtman [5, 6].

We would use the logic PDL×PDL to examine real protocols, so the de-
cidability of the logic is very important. From [8] we know that S5×S5×S5
— which is the simplest triple product logic — is undecidable, so the exam-
ination of PDL×PDL×PDL unnecessary. The original PDL logic is decid-
able. What is the status of our construction which is between in PDL and
PDL×PDL×PDL? We will prove in this article that PDL×PDL is decidable.

In the following section we introduce the logic, PDL×PDL, and after we
show the method of quasimodels developed by Wolter and Zakharyaschev and
explained in [5].

2. PDL×PDL logic

The PDL logic is a logic of actions, so at first we define the set of actions.
We have a finite set of atomic actions, its elements are denoted with πi. Two
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atomic actions are special: the sending and receiving messages. They are
denoted with send and rec. For our proofs the structure of messages are
indifferent. In our previous papers [1, 2] we discussed the structure of messages
in detail. To construct complicated actions we can use the operators of test,
sequence and selections, denoted by ?, semicolon and ∪, respectively.

α ® λ | πk | A? | α; β | α ∪ β | send(m) | rec(m)

We can define the formulae based on the set of atomic formulae, by using the
usual logical connectives and the modalities constructed from a pair of actions:

A ® pk | ¬A | A ∨B | 〈α1 ‖ α2〉A
For the semantics, we use a variant of the Kripke model. We have two
agents, so the global state is build up from local states. The model M is
a (W1,W2, r, R, V ) tuple where W1 and W2 are the set of local states (possible
worlds), r and R is a family of relations on Wi (ri, Ri ⊆ Wi ×Wi ), and V
is a valuation on W1 ×W2 (V (pj) ⊆ W1 ×W2). Given a model M we define
the relation Rα‖β and the (s, t, c) |=MA truth-relation by a parallel induction
for any states s, s′ ∈ W1, t, t′ ∈ W2, actions α, β and formula A as follows:

• (s, t, c) Rλ‖λ (s′, t′, c′) iff s = s′, t = t′, c = c′;
• (s, t, c) Rπi‖λ (s′, t′, c′) iff sris

′, t = t′, c = c′;
• (s, t, c) Rλ‖πi

(s′, t′, c′) iff s = s′, tRit
′, c = c′;

• (s, t, c) RA?‖λ (s′, t′, c′) iff s = s′, t = t′, c = c′, (s, t, c) |=MA;
• (s, t, c) Rλ‖A? (s′, t′, c′) iff s = s′, t = t′, c = c′, (s, t, c) |=MA;
• (s, t, c) Rsend(m)‖λ (s′, t′, c′) iff s = s′, t = t′, and if c = (c1, c2),

then c′ = (c1, c2 ? m);
• (s, t, c) Rλ‖send(m) (s′, t′, c′) iff s = s′, t = t′, and if c = (c1, c2),

then c′ = (c1 ? m, c2);
• (s, t, c) Rrec(m)‖λ (s′, t′, c′) iff s = s′, t = t′, and if c′ = (c1, c2),

then c = (m ? c1, c2);
• (s, t, c) Rλ‖rec(m) (s′, t′, c′) iff s = s′, t = t′, and if c′ = (c1, c2),

then c = (c1, m ? c2);
• Rϕ;α‖ψ;β ® (Rϕ‖λ ◦ Rα‖ψ;β) ∪ (Rλ‖ψ ◦ Rϕ;α‖β) where ϕi and ψj are

atomic action, test, send or receive actions;
• Rα(α1∪α2)‖β ® Rα(α1)‖β ∪Rα(α2)‖β;
• Rα‖β(β1∪β2) ® Rα‖β(β1) ∪Rα‖β(β2).

• (s, t, c) |=Mpi iff (s, t) ∈ V (pi)
• (s, t, c) |=M¬A iff (s, t, c) 6|=MA.
• (s, t, c) |=MA ∨B iff (s, t, c) |=MA or (s, t, c) |=MB.
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• (s, t, c) |=M〈α ‖ β〉A, if there exists a triple (s′, t′, c′) such that (s, t, c)
Rα1‖α2

(s′, t′, c′) and (s′, t′, c′) |=MA

We say that formula A is satisfiable in model M if there is exists s ∈ W1 and
t ∈ W2 such that (s, t, (ε, ε)) |=MA; and we say that formula A is valid in model
M if for all s ∈ W1 and t ∈ W2, (s, t, (ε, ε)) |=MA.

3. Quasimodel

To prove the decidability of the PDL×PDL logic, we follow the method
described in [5]. At first we need the concept of the subformula. The standard
definition is not suitable for us, so we use a variant. The Fischer-Ladner
closure of ϕ (flc(ϕ)) defined as

• if ψ ∨ χ ∈ flc(ϕ) then ψ ∈ flc(ϕ), χ ∈ flc(ϕ);
• if ¬ψ ∈ flc(ϕ) then ψ ∈ flc(ϕ);
• if 〈α‖β〉ψ ∈ flc(ϕ) then ψ ∈ flc(ϕ);
• if 〈α(α1 ∪ α2) ‖ β〉ψ ∈ flc(ϕ) then 〈α(α1) ‖ β〉ψ ∈ flc(ϕ), 〈α(α2) ‖

β〉ψ ∈ flc(ϕ);
• if 〈α‖β(β1∪β2)〉ψ ∈ flc(ϕ) then 〈α‖β(β1)〉ψ ∈ flc(ϕ), 〈α‖β(β2)〉ψ ∈

flc(ϕ);
• if 〈π; α ‖ β〉ψ ∈ flc(ϕ) then 〈π ‖ λ〉〈α ‖ β〉ψ ∈ flc(ϕ), where π is an

atomic action or a test;
• if 〈α ‖ π; β〉ψ ∈ flc(ϕ) then 〈λ ‖ π〉〈α ‖ β〉ψ ∈ flc(ϕ), where π is an

atomic action or a test;
• if 〈ψ? ‖ λ〉χ ∈ flc(ϕ) or 〈λ ‖ ψ?〉χ ∈ flc(ϕ) then ψ ∈ flc(ϕ), and

χ ∈ flc(ϕ).
Type t for ϕ is a Boolean saturated subset t of flc(ϕ), satisfying the following
conditions:

(t1) 〈λ‖λ〉ψ ∈ t iff ψ ∈ t for all 〈λ‖λ〉ψ ∈ flc(ϕ);
(t2) 〈π; α‖λ〉ψ ∈ t iff 〈π‖λ〉〈α‖λ〉ψ ∈ t for all 〈π; α‖λ〉ψ ∈ flc(ϕ);
(t3) 〈λ‖π; β〉ψ ∈ t iff 〈λ‖π〉〈λ‖β〉ψ ∈ t for all 〈λ‖π; β〉ψ ∈ flc(ϕ);
(t4) 〈π; α‖π′; β〉ψ ∈ t iff either〈π‖λ〉〈α‖π′;β〉ψ ∈ t or 〈λ‖π′〉〈π;α‖β〉ψ ∈

t for all 〈π;α‖π′; β〉ψ ∈ flc(ϕ);
(t5) 〈α(α1 ∪ α2)‖β〉ψ ∈ t iff either〈α(α1)‖β〉ψ ∈ t or 〈α(α2)‖β〉ψ ∈ t for

all 〈α(α1 ∪ α2)‖β〉ψ ∈ flc(ϕ);
(t6) 〈α ‖ β(β1 ∪ β2)〉ψ ∈ t iff either〈α ‖ β(β1)〉ψ ∈ t or 〈α ‖ β(β2)〉ψ ∈ t for

all 〈α‖β(β1 ∪ β2)〉ψ ∈ flc(ϕ);
(t7) 〈ψ?‖λ〉χ ∈ t iff ψ ∈ t and χ ∈ t for all 〈ψ?‖λ〉χ ∈ flc(ϕ);
(t8) 〈λ‖ψ?〉χ ∈ t iff ψ ∈ t and χ ∈ t for all 〈λ‖ψ?〉χ ∈ flc(ϕ).
Modal depth of a formula ϕ (md(ϕ)) is defined as usual:



PROVING THE DECIDABILITY OF THE PDL×PDL PRODUCT LOGIC 7

• md(pi) = md(>) = 0;
• md(¬ϕ) = md(ϕ);
• md(ϕ ∨ ψ) = max(md(ϕ),md(ψ));
• md([α‖β]ϕ) = md(〈α‖β〉ϕ);
• md(〈λ‖λ〉ϕ) = md(ϕ);
• md(〈α(α1 ∪ α2)‖β〉ϕ) = max(md(〈α(α1)‖β〉ϕ),md(〈α(α2)‖β〉ϕ));
• md(〈α‖β(β1 ∪ β2)〉ϕ) = max(md(〈α‖β(β1)〉ϕ),md(〈α‖β(β2)〉ϕ));
• md(〈π;α‖β〉ϕ) = md(〈α‖π;β〉ϕ) = 1 + md(〈α‖β〉ϕ).

An n-frame F = (W,R1, . . . , Rn) is called rooted, if there is a w0 ∈ W such
that W = {w ∈ W |w0R

∗w}, where R =
⋃

1≤j≤n Rj . Such a w0 is called a root
of F . A rooted frame F = (W,R1, . . . , Rn) is said to be a tree if all the Rj are
pairwise disjoint and for every x ∈ W , the set Wx = {y ∈ W |yR∗x} is finite
and linearly ordered by the reflexive and transitive closure R∗ of the relation
R (its restriction to Wx, to be more precise). F is called intransitive if for any
Rj , Rk (1 ≤ j, k ≤ n) we have ∀x, y, z ∈ W (xRjy ∧ yRkz → ¬xRkz ∧¬xRjz).
A path of length l from x to y in F is a sequence (x0, . . . , xl) such that x0 = x,
xl = y and xkRjxk+1 for each k < l and some j, 1 ≤ j ≤ n. The length of the
path from the root of F to x is called the co-depth of x. The depth of F is the
maximum of co-depth of x (x ∈ W ), if this maximum exists. By the depth of x
in F we understand the depth of the subtree of F with root x. The Quasistate
candidate for ϕ is a pair ((T, R1, . . . , Rk), t), where (T, R1, . . . , Rk) is a finite
intransitive tree of depth md(ϕ), and t is a labeling function associating with
each x ∈ T a type t(x) for ϕ. ((T, R1, . . . , Rk), t) is a quasistate for ϕ if

(qm1) for all x ∈ T and 〈λ‖πi〉ψ ∈ flc(ϕ): 〈λ‖πi〉ψ ∈ t(x) iff there exists a
y ∈ T such that xRiy and ψ ∈ t(y).

(qm1’) for all x0, x1, x2 ∈ T such that x0Rix1, x0Rix1, and x1 6= x2 the
structures ((T x1 , Rx1

1 , . . . , Rx1
k ), tx1) and ((T x2 , Rx2

1 , . . . , Rx2
k ), tx2) are

not isomorphic. (Two quasistate candidates ((T, <1, . . . , <n), t) and
((T ′, <′

1, . . . , <
′
n), t′) are called isomorphic if there is an isomorphism

f between the trees (T, <1, . . . , <n) and (T ′, <′
1, . . . , <

′
n) such that

t(x) = t′(f(x)), for all x ∈ T .)

A basic structure for ϕ of depth m is a pair (F , q), such that F = (W, r1, . . . , rk)
and q is a function associating with each world w ∈ W and each message
c = (c1, c2) a quasistate q(w, c) = ((T c

w, Rc
w,1, . . . , R

c
w,k), t

c
w) for ϕ such that

the depth of each (T c
w, Rc

w,i) is m. Let (F , q) be a basic structure for ϕ of
depth m and let l ≤ m. An l-run through (F , q) is a function ρ giving for each
w ∈ W and the list of messages c a point ρ(w, c) ∈ T c

w of co-depth l. Given a
set R of runs we denote by Rl the set of all l-runs from R. A run ρ is called
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coherent, if for all lists of messages c, for all possible worlds w ∈ W and for all
formulae the following conditions are satisfied:

• 〈πi ‖λ〉ψ ∈ flc(ϕ): if there exists a world v ∈ W such that wriv and
ψ ∈ tcv(ρ(v, c)) then 〈πi ‖λ〉ψ ∈ tcw(ρ(w, c));

• 〈send(m) ‖ λ〉ψ ∈ flc(ϕ): if c′ = (c1, c2 ? m) where c = (c1, c2) and
ψ ∈ tc

′
w(ρ(w, c′)) then 〈send(m)‖λ〉ψ ∈ tcw(ρ(w, c));

• 〈λ ‖ send(m)〉ψ ∈ flc(ϕ): if c′ = (c1 ? m, c2) where c = (c1, c2) and
ψ ∈ tc

′
w(ρ(w, c′)) then 〈λ‖send(m)〉ψ ∈ tcw(ρ(w, c));

• 〈rec(m) ‖ λ〉ψ ∈ flc(ϕ): if c′ = (c1, c2) where c = (m ? c1, c2) and
ψ ∈ tc

′
w(ρ(w, c′)) then 〈rec(m)‖λ〉ψ ∈ tcw(ρ(w, c));

• 〈λ ‖ rec(m)〉ψ ∈ flc(ϕ): if c′ = (c1, c2) where c = (c1,m ? c2) and
ψ ∈ tc

′
w(ρ(w, c′)) then 〈λ‖rec(m)〉ψ ∈ tcw(ρ(w, c)).

In the previous definition the sign ? denotes the concatenation of messages.
A run ρ is called w-saturated for w ∈ W , if for all lists of messages c and

for all formulae the following conditions are satisfied:
• 〈πi ‖λ〉ψ ∈ flc(ϕ): if 〈πi ‖λ〉ψ ∈ tcw(ρ(w, c)) then there exists a world

v ∈ W such that wriv and ψ ∈ tcv(ρ(v, c));
• 〈send(m) ‖ λ〉ψ ∈ flc(ϕ): if 〈send(m) ‖ λ〉ψ ∈ tcw(ρ(w, c)) then ψ ∈

tc
′

w(ρ(w, c′)) where if c = (c1, c2) then c′ = (c1, c2 ? m);
• 〈λ ‖ send(m)〉ψ ∈ flc(ϕ): if 〈λ ‖ send(m)〉ψ ∈ tcw(ρ(w, c)) then ψ ∈

tc
′

w(ρ(w, c′)) where if c = (c1, c2) then c′ = (c1 ? m, c2);
• 〈rec(m) ‖ λ〉ψ ∈ flc(ϕ): if 〈rec(m) ‖ λ〉ψ ∈ tcw(ρ(w, c)) then ψ ∈

tc
′

w(ρ(w, c′)) where if c = (m ? c1, c2) then c′ = (c1, c2);
• 〈λ ‖ rec(m)〉ψ ∈ flc(ϕ): if 〈λ ‖ rec(m)〉ψ ∈ tcw(ρ(w, c)) then ψ ∈

tc
′

w(ρ(w, c′)) where if c = (c1,m ? c2) then c′ = (c1, c2).
A run is saturted, if it is w-saturated for all w ∈ W . Q = (F , q,R, C) is
a PDL×PDL-quasimodel for ϕ if (F , q) is a basic structure for ϕ of depth
m ≤ md(ϕ) such that

(qm2) there exists a world w0 ∈ W and ϕ ∈ t
(ε,ε)
w0 (x0), where x0 is the root of(

T
(ε,ε)
w0 , R

(ε,ε)
w0,1, . . . , R

(ε,ε)
w0,k

)
.

R is a set of coherent and saturated runs through (F , q) and C is a set of
binary relation on R satisfying the following conditions:
(qm3) for all ρ, ρ′ ∈ R, if ρ Ci ρ′ then ρ(w, c)Rc

w,iρ
′(w, c) for all w ∈ W and

lists of messages c.
(qm4) R0 6= ε and for all l < m, ρ ∈ Rl, w ∈ W , for all lists of messages c,

x ∈ T c
w, for all 1 ≤ i ≤ k, if ρ(w, c)Rc

w,ix then there is ρ′ ∈ Rl+1 such
that ρ′(w, c) = x and ρ Ci ρ′.
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Lemma 1. An ML2 formula ϕ satisfiable in a product frame F ×G iff there
is a PDL×PDL-quasimodel for ϕ based on F .

Proof. Let (F , q,R, C) be a PDL×PDL-quasimodel for ϕ based on F ,
where F = (W, r1, . . . , rk). Take the product frame F × (R, C), and define
a valuation V in it as follows: V(pi) = {(w, ρ, c)| p ∈ tcw(ρ(w, c))} for every
propositional variable pi. Let M be (F × (R, C),V). By induction on the
construction of ψ ∈ flc(ϕ) we need to show that for every (w, ρ, c) ∈ M we
have (w, ρ, c) |=Mψ iff ψ ∈ tcw(ρ(w, c)).

• For variables this follows from the definition.
• For Booleans, types are Boolean saturated sets.
• (w, ρ, c) |=M〈πi ‖λ〉ψ (based on the definition of the semantics) iff there

exists a world w′ ∈ W such that wriw
′ and (w′, ρ, c) |=Mψ. Then

by induction hypothesis (IH) ψ ∈ tcw′(ρ(w′, c)). ρ is saturated and
coherent, so the previous holds iff 〈πi ‖λ〉ψ ∈ tcw(ρ(w, c)).

• (w, ρ, c) |=M〈λ ‖ πi〉ψ (based on the definition of the semantics) iff
there exists a run ρ′ ∈ R such that ρ Ci ρ′ and (w, ρ′, c) |=Mψ. Then
by IH ψ ∈ tcw(ρ′(w, c)). According to (qm3), from ρ Ci ρ′ we get
ρ(w, c)Rc

w,iρ
′(w, c). Finally based on (qm1) we get that 〈λ ‖ πi〉ψ ∈

tcw(ρ(w, c)).
In other direction let assume, that 〈λ ‖ πi〉ψ ∈ tcw(ρ(w, c)) Then

by (qm1) there exists a x ∈ T c
w such that ρ(w, c)Rix and ψ ∈ tcw(x).

According to (qm4) there exists ρ′ ∈ R such that ρ Ci ρ′ and ψ ∈
tcw(ρ′(w, c)). By IH we get (w, ρ′, c) |=Mψ and finally according to the
definition of the semantics (w, ρ, c) |=M〈λ‖πi〉ψ.

• (w, ρ, c) |=M〈send(m) ‖λ〉ψ iff (w, ρ, c′) |=Mψ where if c = (c1, c2) then
c′ = (c1, c2 ? m) (by def.). Then by IH ψ ∈ tc

′
w(ρ(w, c′)). ρ is saturated

and coherent, so the previous holds iff 〈send(m)‖λ〉ψ ∈ tcw(ρ(w, c)).
• (w, ρ, c) |=M〈λ ‖ send(m)〉ψ iff (w, ρ, c′) |=Mψ where if c = (c1, c2) then

c′ = (c1 ? m, c2) (by def.). Then by IH ψ ∈ tc
′

w(ρ(w, c′)). ρ is saturated
and coherent, so the previous holds iff 〈λ‖send(m)〉ψ ∈ tcw(ρ(w, c)).

• (w, ρ, c) |=M〈rec(m) ‖ λ〉ψ iff (w, ρ, c′) |=Mψ where if c′ = (c1, c2) then
c = (m ? c1, c2) (by def.). Then by IH ψ ∈ tc

′
w(ρ(w, c′)). ρ is saturated

and coherent, so the previous holds iff 〈rec(m)‖λ〉ψ ∈ tcw(ρ(w, c)).
• (w, ρ, c) |=M〈λ ‖ rec(m)〉ψ iff (w, ρ, c′) |=Mψ where if c′ = (c1, c2) then

c = (c1,m ? c2) (by def.). Then by IH ψ ∈ tc
′

w(ρ(w, c′)). ρ is saturated
and coherent, so the previous holds iff 〈λ‖rec(m)〉ψ ∈ tcw(ρ(w, c)).
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• (w, ρ, c) |=M〈ψ? ‖λ〉χ iff (w, ρ, c) |=Mψ and (w, ρ, c) |=Mχ. By IH this is
true iff ψ ∈ tcw(ρ(w, c)) and χ ∈ tcw(ρ(w, c)). But according to (t7) this
is true iff 〈ψ?‖λ〉χ ∈ tcw(ρ(w, c))

• (w, ρ, c) |=M〈λ ‖ψ?〉χ iff (w, ρ, c) |=Mψ and (w, ρ, c) |=Mχ. By IH this is
true iff ψ ∈ tcw(ρ(w, c)) and χ ∈ tcw(ρ(w, c)). But according to (t8) this
is true iff 〈λ‖ψ?〉χ ∈ tcw(ρ(w, c))

• (w, ρ, c) |=M〈α(α1 ∪ α2)‖β〉ψ iff (w, ρ, c) |=M〈α(α1)‖β〉ψ or (w, ρ, c) |=
M〈α(α2) ‖ β〉ψ (by def.). By IH this is true iff 〈α(α1) ‖ β〉ψ ∈
tcw(ρ(w, c)) or 〈α(α2) ‖ β〉ψ ∈ tcwρ(w, c)). But according to (t5) this
is true iff 〈α(α1 ∪ α2)‖β〉ψ ∈ tcw(ρ(w, c))

• (w, ρ, c) |=M〈α ‖β(β1 ∪ β2)〉ψ iff (w, ρ, c) |=M〈α ‖β(β1)〉ψ or (w, ρ, c) |=
M〈α‖β(β2)〉ψ (by def.). By IH this is true iff 〈α‖β(β1)〉ψ ∈ tcw(ρ(w, c))
or 〈α ‖ β(β2)〉ψ ∈ tcw(ρ(w, c)). But according to (t6) this is true iff
〈α‖β(β1 ∪ β2)〉ψ ∈ tcw(ρ(w, c))

• (w, ρ, c) |=M〈πi;α‖λ〉ψ iff there exitst a world w′ such that wriw
′ and

(w′, ρ, c) |=M〈α ‖λ〉ψ (by def.). Then by IH 〈α ‖λ〉ψ ∈ tcw′(ρ(w′, c)). ρ
is coherent and saturated, so 〈πi ‖λ〉〈α‖λ〉ψ ∈ tcw(ρ(w, c)). According
to (t2) this is true iff 〈πi; α‖λ〉ψ ∈ tcw(ρ(w, c)).

• (w, ρ, c) |=M〈λ ‖ πi; β〉ψ iff there exitst a run ρ′ ∈ R such that ρ Ci ρ′

and (w, ρ′, c) |=M〈λ‖β〉ψ (by def.). Then by IH 〈λ‖β〉ψ ∈ tcw(ρ′(w, c)).
According to (qm3) ρ(w, c)Rc

w,iρ
′(w, c), and by (qm1) 〈λ‖πi〉〈λ‖β〉ψ ∈

tcw(ρ(w, c)). According to (t3) this is true iff 〈λ‖πi; β〉ψ ∈ tcw(ρ(w, c)).
• (w, ρ, c) |=M〈πi;α ‖ πj ; β〉ψ iff (w, ρ, c) |=M〈πi ‖ λ〉〈α ‖ πj ;β〉ψ or

(w, ρ, c) |=M〈λ ‖ πj〉〈πi;α ‖ β〉ψ. Based on previous points of this
proof we get that 〈πi ‖ λ〉〈α ‖ πj ; β〉ψ ∈ tcw(ρ(w, c)) or 〈λ ‖ πj〉〈πi; α ‖
β〉ψ ∈ tcw(ρ(w, c)). According to (t4) this is true iff 〈πi;α ‖ πj ; β〉ψ ∈
tcw(ρ(w, c)).

Therefore by (qm2), ϕ is satisfied in M.
For the other direction, suppose that ϕ is satisfied in a model M based on

the product F × G of frames F = (W, r1, . . . , rk) and G = (∆, R1, . . . , Rk) By
proposition 1.7 and 3.9 in [5] we may assume, that G is an intransitive tree of
depth m ≤ md(ϕ) and (w0, x0, (ε, ε)) |=Mϕ for some w0 ∈ W with x0 being the
root of G. With every triple (w, x, c) where w ∈ W , x ∈ ∆ and c is a lists of
messages we associate the type t(w, x, c) = {ψ ∈ flc(ϕ)|(w, x, c) |=Mψ}.

Fix w and c and define a binary relation ∼c
w on ∆ as follows:

• if x,y ∈ ∆ of depth 0 then x ∼c
w y iff t(w, x, c) = t(w, y, c).

• if x,y ∈ ∆ of depth l < md(ϕ) then x ∼c
w y iff t(w, x, c) = t(w, y, c)

and for all z ∈ ∆ and for all 1 ≤ i ≤ k
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– if xRiz then there exists a z′ ∈ ∆ such that yRiz
′ and z ∼c

w z′

– if yRiz then there exists a z′ ∈ ∆ such that xRiz
′ and z ∼c

w z′.
Clearly ∼c

w is an equivalence relation on ∆. Denote by [x]cw the ∼c
w-equivalence

class of x, and put ∆c
w ® {[x]cw|x ∈ ∆}, sc

w([x]cw) ® t(w, x, c) and
[x]cwRc

w,i[y]cw if there exists a y′ ∈ ∆c
w such that xRiy

′. Then by the defini-
tion of ∼c

w, rc
w is well-defined, and the structure ((∆c

w, rc
w), sc

w) clearly satisfies
(qm1’). The map x 7→ [x]cw is a p-morphism from (∆, r2) to (∆c

w, rc
w), so it

also satisfies (qm1). However (∆c
w, rc

w) is not necessarily a tree.
The tree (T c

w, <c
w) we need can be obtained from this structure:

T c
w =

{
([x0]cw, . . . , [xl]cw)

∣∣∣l ≤ m, [x0]cwrc
wi1 [x1]cw · · · [xl−1]cwrc

w,il−1
[xl]cw

}

If u, v ∈ T c
w then u <c

w,i v iff u = ([x0]cw, . . . , [xl]cw), v = ([x0]cw, . . . , [xl]cw, [xl+1]cw)
and xlRixl+1. tcw([x0]cw, . . . , [xl]cw) ® t(w, x, c). It is easy to show that
((T c

w, <c
w), tcw) is a quasistate for ϕ for any w ∈ W and messages c. More-

over ϕ ∈ t
(ε,ε)
w0

(
[x0]

(ε,ε)
w0

)
. So by taking q(w, c) ® ((T c

w, <c
w,1, . . . , <

c
w,k), t

c
w)

for each w ∈ W and each message c we obtain a basic structure (F , q) for ϕ
statisfying (qm2). We need to define runs trough (F , q). To do this for each
l ≤ m and each sequence (x0, . . . , xl) in ∆ such that x0Ri1 · · ·Rilxl, take the
map ρ : (w, c) 7→ ([x0]cw, . . . [x0]cw). It is easy to check that ρ is a coherent
and a saturated l-run. Let R be the set of all such runs. For ρ, ρ′ ∈ R let
ρ Ci ρ′ iff ρ(w, c) <c

w ρ′(w, c) for all w ∈ W and for all messages c. Then
(qm3) holds by definition. It remains to prove (qm4). Let ρ ∈ Rl, v ∈ W ,
c any messages and z ∈ T c

v be such that ρ(v, c) <c
v z. We have to show that

there is ρ′ ∈ Rl+1 such that ρ Ci ρ′, and ρ′(v, c) = z. Since ρ(v, c) <c
v,i z,

we have ρ(v, c) = ([x0]cv, . . . , [xl]cv) and z = ([x0]cv, . . . , [xl]cv, [xl+1]cv) for some
x1, . . . , xl, xl+1 with x0R

c
j1

x1 · · ·Rc
jl
xl and [xl]cvr

c
v,i[xl+1]cv. By the definition of

Rc
v,i there is y ∈ [xl+1]cv such that xlRiy. But then the map ρ′ : (w, c) 7→

([x0]cw, . . . , [xl]cw, [y]cw) is in R. Thus (F , q,R, C) is a quasimodel for ϕ.

4. Blocks

A block for ϕ with root w is quadruple B = (F , q,R, C) such that

• F = (∆, <) is a tree of depth less equal 1 with root w
• (F , q) is a basic structure for ϕ of depth m for some m < md(ϕ)
• R is a set of coherent and saturated runs through (F , q)
• C is a set of binary relation on R satisfying (qm3) and (qm4)

A set S of blocks for ϕ is called satisfying, if

• all blocks in S are of the same depth m for some m < md(ϕ)
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• S contans a block satisfying (qm2), and
• for every block B = (F , q,R, C) in S with F = (∆, <) and every

v ∈ ∆, and every messages c there exists a block B′ = (F ′, q′,R′, C′)
in S such that q(v, c) = q′(w′, c) for the root w′ of B′

Lemma 2. There is a PDL×PDL-quasimodel for ϕ iff there is a satisfying
set of blocks for ϕ such that the number of quasistates in each block does not
exceed M(ϕ) = 1 + (md(ϕ) + 1) · p(ϕ) · | flc(ϕ)|.

In the previous lemma p(ϕ) is a finite constant depending on the ϕ. Its
precise definition is in the first chapter of [5].

Proof. We call a quadruple (F , q,R, C) a weak quasimodel for ϕ if the
following conditions hold:

(wq1) F = (W, r1, . . . , rk) is a finite frame and (F , q) is a basic structure for
ϕ satisfying (qm2).

(wq2) R is a set of runs through (F , q) and Ci is a binary relation on R,
satisfying (qm3) and (qm4).

(wq3) for all messages c and for all w, v ∈ W if w 6= v and wriv then there
exists a block Bc

w,v = (Fc
w,v, q

c
w,v,Rc

w,v,Cc
w,v) in S with Fc

w,v = (∆, <)
such that

– ∆ ⊆ W , and w, v ∈ ∆
– for all u ∈ ∆, q(u, c) = qc

w,v(u, c)
– for all u, u′ ∈ ∆ if uriu

′ then u <i u′

– for all ρ ∈ R the restriction ρw,v of ρ to ∆ is a run in Rc
w,v

Let Q0 = (F0, q0,R0, C0) be a block in S with root w0 for which (qm2) holds.
Now Q0 is a weak quasimodel. Suppose now that we have already constructed
Qn = (Fn, qn,Rn,Cn) with Fn = (Wn, r1n, . . . rkn). For each w ∈ Wn −Wn−1

(where let W−1 = w0) select a block Bc
w = (Fc

w, qc
w,Rc

w, Cc
w) from S with w

as root and Fc
w = (∆c

w, <c
w) such that qn(w, c) = qc

w(w, c). The existence of
such block follows from (wq3). We may assume that all the selected blocks
are pairwise disjoint and ∆c

w ∩Wn = {w}. Define (Fn+1, qn+1) by taking

Wn+1 = Wn ∪
⋃{∆c

w|w ∈ Wn −Wn−1},
rn+1 = rn ∪

⋃{<c
w |w ∈ Wn −Wn−1},

Fn+1 = (Wn+1, rn+1),

qn+1(v, c) =

{
qc
w(v, c), if v ∈ ∆c

w, w ∈ Wn −Wn−1

qn(v, c), if v ∈ Wn
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Now let ρ ∈ Rn and s̄ = {s ∈ Rc
w|w ∈ Wn − Wn−1 and s(w, c) = ρ(w, c)}

Define the extension ρ ∪ s̄ of ρ by taking for all v ∈ Wn+1

(ρ ∪ s̄)(v, c) =

{
ρc

w(v, c), if v ∈ ∆c
w, w ∈ Wn −Wn−1

ρ(v, c), if v ∈ Wn

Let Rn+1 be the set of all such extensions and let (ρ1 ∪ s̄1) Cn+1,i (ρ2 ∪ s̄2) iff
ρ1 Cn,i ρ2 and s1 Cc

w,i s2 for all w ∈ Wn −Wn−1. It can be checked that Rn+1

and Cn satisfy (qm3) and (qm4), and Qn+1 = (Fn+1, qn+1,Rn+1, Cn+1) is a
weak quasimodel. The limit quasimodel defined as follows. Let F = (W, r),
where W =

⋃
n Wn, r =

⋃
n rn and let q =

⋃
n qn. For each sequence of

(ρ0, ρ1, . . . ), where ρn ∈ Rn and ρn+1 is an extension of ρn let ρ =
⋃

n ρn. Let
R is the set of all such runs. For ρ, ρ′ ∈ R define ρ Ci ρ′ iff ρ Cn,i ρ′ for all n
(where ρ =

⋃
n ρ′n).

We leave to the reader to show by using (wq1) and (wq3) that (F , q,R,C)
is a quasimodel for ϕ. Here we show only that all runs in R are coherent
and saturated, i.e. for all ρ ∈ R, w ∈ W , for all messages c and formula
〈πi ‖ λ〉ψ ∈ flc(ϕ): 〈πi ‖ λ〉ψ ∈ tcw(ρ(w, c)) iff there exists a world v such that
wriv and ψ ∈ tcv(ρ(v, c)). Suppose that 〈πi ‖ λ〉ψ ∈ tcw(ρ(w, c)) and let n such
that w ∈ Wn −Wn−1. Then 〈πi ‖ λ〉ψ ∈ tcw(ρn(w, c)), and by definition Qn+1

there exists v ∈ Wn+1 for which wrn+1v and ψ ∈ tcv(ρn+1(v, c)). Conversely,
suppose wrnv and ψ ∈ tcv(ρn(v, c)). Then it follows from (wq3) that 〈πi ‖
λ〉ψ ∈ tcw(ρ(w, c)).

For the other direction of the proof, let us assume that we have a given
quasimodelQ = (F , q,R,C) for ϕ of depth m ≤ md(ϕ) with F = (W, r1, . . . , rk).
Note first that we may assume each world w in F to have arbitrarily many
indistinguishable copies in Q in the following sense. Say that two distinct
worlds w, w′ ∈ W are twins (in Q) if

• for all messages c, q(w, c) = q(w′, c)
• for all v ∈ W , vriw iff vriw

′ and wriv iff w′riv,
• and for all runs ρ ∈ R and for all messages c, ρ(w, c) = ρ(w′, c).

To construct a satisfying set S of blocks, we will associate with each w ∈ W
and each messages c a block Bc

w = (Fc
w, qc

w,Rc
w, Cc

w) with w as root, such
that qc

w(w, c) = q(w, c), and put S = {B}. The resulting S will clearly be a
satisfying set of blocks for ϕ. Let w ∈ W and c some lists of messages. First
we define inductively sets of runs Pk ⊆ Rk, k ≤ m:

• P0 = {ρ0}
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• Given Pk, we construct Pk+1 as follows. For every run ρ ∈ Pk and
every x ∈ T c

w with ρ(w, c) <c
w x, select an ρ′ ∈ Rk+1 such that ρ C ρ′

and ρ′(w, c) = x, and put it into Pk+1. Such a run exists by (qm4).

Finally let P =
⋃

l≤m Pk. For every ρ ∈ P and every 〈πi ‖ λ〉ψ ∈ tcw(ρ(w, c))
we then let Sat(ρ, c, 〈πi ‖ λ〉ψ) = {v ∈ W |wRv, ψ ∈ tcv(ρ(v, c))}. As ρ is
saturated, Sat(ρ, c, 〈πi ‖ λ〉ψ) 6= ∅. We select a finite subset ∆c

w(ρ, 〈πi ‖ λ〉ψ)
of Sat(ρ, c, 〈πi ‖λ〉ψ) in the following way. If Sat(ρ, c, 〈πi ‖λ〉ψ) = {w}, then
∆c

w(ρ, 〈πi ‖ λ〉ψ) = {w} as well. Otherwise let ∆c
w(ρ, 〈πi ‖ λ〉ψ) consist of a

v 6= w from Sat(ρ, c, 〈πi ‖λ〉ψ) together with m+1 twins of v. We may assume
that the obtained sets ∆c

w(ρ, 〈πi ‖λ〉ψ) are pairwise disjoint. Now we define

• ∆c
w = {w} ∪⋃ {∆c

w(ρ, 〈πi ‖λ〉ψ)|ρ ∈ P, 〈πi ‖λ〉ψ ∈ tcw(ρ(w, c))},
• for all v, v′ ∈ ∆c

w, vrc
wv′ iff v = w and vRv′,

• Fc
w = (∆c

w, rc
w) and

• for all v ∈ ∆c
w, qc

w = q(v).

Then Fc
w is a tree of depth ≤ 1 and (Fc

w, qc
w) is a basic structure for ϕ. The

cardinality of ∆c
w is clearly bounded by 1 + (md(ϕ) + 1) · p(ϕ) · | flc(ϕ)|.

It remains to define a set Rc
w of coherent and saturated runs through

(Fc
w, qc

w) and binary relations Cc
w,i on Rc

w such that (qm3) and (qm4) hold.
Let v ∈ ∆c

w, v 6= w and suppose that ρ and ρ′ are functions whose domain
contains ∆c

w and ρ(w, c) = ρ′(w, c). Define a function ρ+v ρ′ with domain ∆c
w

by taking, for all z ∈ ∆c
w

(ρ +v ρ′)(z, c) =

{
ρ(z, c), if z = v

ρ′(z, c), if z 6= v.

Using this ‘addition’ function we now define sets Rc
wl of l-runs for every l ≤

m. Let Rc
w0 be the restriction of ρ0 to ∆c

w. For k > 0, we put all the
restrictions of runs from Pl (to ∆c

w) into Rc
wl, and also add the functions

ρ1 +v1 (ρ2 +v2 (. . . (ρn +vn ρ) . . . )), where 1 ≤ n ≤ l, ρ ∈ Pl, ρ1, . . . , ρn ∈ Rl

such that ρ(w) = ρj(w), for 1 ≤ j ≤ n, and v1, . . . , vn are pairwise distinct
points in ∆c

w different from w.
Obviously every run s ∈ Rc

w is coherent. We show that it is w-saturated.
This is clear if s is a restriction of some run from P. Otherwise, s is on the
form ρ1+v1 (ρ2+v2 (. . . (ρn+vn ρ) . . . )), for some n ≤ m. So, we modified the w-
saturated run ρ at most m places. Take some formula 〈πi ‖λ〉ψ ∈ tcw(s(w, c)).
Since we selected for ∆c

w m + 1 twins for each point in Sat(ρ, c, 〈πi ‖ λ〉ψ),
there is still at least one v left to ‘saturate s with respect to 〈πi ‖λ〉ψ’, that is
such that ψ ∈ tcv(s(v, c)).
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Finally let s = ρ1 +v1 (ρ2 +v2 (. . . (ρn +vn ρ) . . . )) and s′ = ρ′1 +v′1 (ρ′2 +v′2
(. . . (ρ′l +v′l

ρ′) . . . )) be two runs in Rc
w. If s or s′ is a restriction of some run

from P, then we consider n or l to be 0, respectively. We let s Cc
w,i s′ if the

following hold:
• s ∈ Rc

w,l and s′ ∈ Rc
w,l+1, for some l < m,

• ρ Ci ρ′,
• n ≤ l and vj = v′j for all 1 ≤ j ≤ n,
• for all z ∈ ∆c

w, ρj(z, c) rc
w,i ρ′j(z, c) whenever 1 ≤ j ≤ n and

ρ(z, c) rc
w,i ρ′j(z, c) whenever n + 1 ≤ j ≤ l.

Then (qm3) holds by definition. We show that (qm4) also holds. Suppose
that s = ρ1 +v1 (ρ2 +v2 (. . . (ρn +vn ρ) . . . )), z ∈ ∆c

w, x ∈ T c
w and s(z, c)Rc

w,ix.
We need a run s′ ∈ Rc

w such that s Cc
w,i s′ and s′(z, c) = x.

Case 1: z = vj for some 1 ≤ j ≤ n. Then s(z, c) = ρj(z, c) = vj for some
ρj ∈ R. As the original quasimodel Q satisfies (qm4), we have a run ρ′j ∈ R
such that ρj Ci ρ′j and ρ′j(z, c) = x. Similarly for all l 6= j, 1 ≤ l ≤ n, take a
run ρ′l from R such that ρl Ci ρ′l and ρ′l(w, c) = ρ′j(w, c). Finally take a run
ρ′ from P such that ρ Ci ρ′ and ρ′(w, c) = ρ′j(w, c). Such a run exists by the
definition of P. Then s′ = ρ′1 +v1 (ρ′2 +v2 (. . . (ρ′n +vn ρ′) . . . )) is a run in Rc

w

as required.
Case 2: z 6= vj for any 1 ≤ j ≤ n. Then s(z, c) = ρ(z, c). Select a run
ρ′n+1 from R such that ρ Ci ρ′n+1 and ρ′n+1(z, c) = x. For each j, 1 ≤ j ≤ n,
take a run ρ′j from R such that ρj Ci ρ′j and ρ′j(w, c) = ρ′n+1(w, c). Finally,
take a run ρ′ from P such that ρ Ci ρ′ and ρ′(w, c) = ρ′n+1(w, c). Then
s′ = ρ′1 +v1 (ρ′2 +v2 (. . . (ρ′n+1 +z ρ′) . . . )) is a run in Rc

w as required.
Thus (Fc

w, qc
w,Rc

w,Cc
w) is indeed a block with w as root.

5. Conclusions

It has been shown that there is a quasimodel for ϕ iff there is exists a finite
set S of finite blocks. The cardinality of S and the size of blocks are bounded
by ϕ. From these blocks we are able to construct the quasimodel we need.
This means that we are able to build up a finite construction for any formula
ϕ of logic PDL×PDL. The number of this kind of finite constuctions is finite
for any formulae, hence this logic is decidable.
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