
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 2, 2008

ON SIMPLIFYING THE CONSTRUCTION OF EXECUTABLE
UML STRUCTURED ACTIVITIES

C.-L. LAZĂR AND I. LAZĂR

Abstract. UML, with its Action Semantics package, allows the user to
create object-oriented executable models. Creating such models, however,
is a very difficult task, because the UML primitives are too fine-grained
and because UML has many variation points. This article proposes a
computationally complete subset of the Action Semantics and raises the
level at which the user works, from actions to statements and expressions.
New graphical notations are also proposed, so that the resulting structured
activity diagram is more intuitive and clear.

1. Introduction

The Action Semantics package from UML [9] gives the user the possibility
to create executable models [11]. Before, the behavior of an operation, for in-
stance, had to be specified using an opaque expression, which means platform
dependent code. The package supports many features, so that it may be used
in different domains, not just in tasks similar to programming. The actions
are also very flexible: the structured control nodes, for instance, are more gen-
eral than the corresponding statements found in the most used programming
languages [5].

The UML activities support both a structured action model and a flow
action model, each one being more suited for a specific modeling task than
another. They are equivalent only for small examples, and, in general, the
functionality written in one action model can be converted in the other form,
though not easy. The two action models are not independent of each other,
as the structured action model mainly addresses control, and still needs flow
to pass data between actions.

Received by the editors: October 20, 2008.
1991 Mathematics Subject Classification. 68N15, 68N30.
1998 CR Categories and Descriptors. D.2.2 [SOFTWARE ENGINEERING]: Design

Tools and Techniques – Computer-aided software engineering, Flow charts, Object-oriented
design methods.

Key words and phrases. UML, Action Semantics, Structured Activities, Action Language.

147



148 C.-L. LAZĂR AND I. LAZĂR

The structured model fits better with a textual notation style, which is
usually designed for well nested control, using variables to pass data between
actions, instead of data flow. The textual notation is what most program-
mers are used to, so the structured action model would be more suited for
programmers using UML.

1.1. The Problem and Motivation. It is very hard to use the Action Se-
mantics package directly while trying to reproduce the functionality from a
simple piece of code written in a programming language. This happens be-
cause the Action Semantics package supports too many features, which makes
it hard to be learned, it has many variation points, which makes it hard to
be used properly [13], and combining the actions inside an activity feels like
working in an assembler language. Many implicit things from a programming
language code have to be explicitly formulated in the UML model, which cre-
ates a need for a better tool support in this area.

Another problem with the Action Semantics is that no notations are given
for many elements. In general, the graphical notation from Action is used, with
different stereotypes. The graphical notations can be improved a lot, and this
article proposes a new set of graphical notations. Also, textual notations may
be used, but this is not covered here.

1.2. The Solution. In this article we choose a well defined subset of the UML
action semantics, in order to represent the structured activities, as this is still
in the process of standardization [7]. The subset must be computationally
complete, and have a precise behavior (as opposed to the semantic variation
points from UML, which are many).

New graphical notations are introduced, which help create a clear and
simplified view of the structured activity. The expressions, for instance, will
be presented as an aggregate to the user, not as distinct UML objects, even
though, behind the scenes, the expressions are represented using the UML
model.

This article is meant to expand the Procedural Action Language model,
the UML profile and the graphical notations proposed in [10].

2. Action Semantics (subset)

A Procedural Action Language (PAL) model was presented in previous
articles [12, 6, 10]. A UML profile was also defined, so that the PAL model
can be exchanged among UML compliant tools. This PAL model is used as
a target of what are the desired capabilities of the chosen subset of Action
Semantics, with certain deviations.



EXECUTABLE UML STRUCTURED ACTIVITIES 149

The new model moves away from the procedural aspect, to object −
oriented. The structured Activity will no longer be done for a standalone
operation or program, but as the behavior of an Operation that is an owned
operation of an UML Class.

2.1. SequenceNode and StructuredActivityNode. We choose to repre-
sent the main block of an activity and all the other blocks with SequenceNodes,
and we follow as much as possible the structured programming model. If the
push model (as described below) is used to represent the statements, then
each group of actions corresponding to one statement from a programming
language will be grouped inside a StructuredActivityNode. This is done in
order to maintain a manageable model, because the number of actions will
grow very fast.

The chosen structure of the Activity is like this: the Activity has one Ini-
tialNode that marks the beginning of the execution, one SequenceNode as the
main node of the activity (the body of the operation), and an ActivityFinalN-
ode that marks the finalization of the execution [3, 5]. One ControlFlow edge
will go from the InitialNode to the main SequenceNode, and one ControlFlow
edge will go from the SequenceNode to the ActivityFinalNode. The Sequen-
ceNode is a structured node, so it may contain other actions. Also, it will
execute the actions in order, without a need for explicit ControlFlow edges.

Figure 1. General Structure of an Activity

Figure 1 shows the general structure of an activity. Part (a) shows a
possible representation inside an UML tool, part (b) shows the model structure
of an activity, and part (c) presents the proposed representation of a simple



150 C.-L. LAZĂR AND I. LAZĂR

sample activity. The tools should automatically arrange the elements in the
diagram, using a top-to-bottom layout for the statements, optionally showing
the implicit control flow with arrows.

We propose to represent the blocks of statements with rectangles, with a
double edge on the left and right sides, as shown in Figures 1, 2 and 5.

2.2. Variables. The SequenceNode has a set of Variables, that may be used
for computations inside the node. The Action Semantics package provides
convenient actions to access the values of the variables: AddVariableValue-
Action (to set a value to the variable), ReadVariableValueAction (to read the
value from a variable), and others. The proposed representation for the used
variables is shown in Figures 1, 2 and 5. Each block will present its set of
variables at the top, in a distinct compartment.

2.3. Parameters. The Operation owns a set of Parameters, that describe the
inputs and outputs of the operation. We choose that the Activity that rep-
resents the behavior of an Operation will always have a similar set of owned
Parameters as the Operation. One operation may be invoked from the be-
havior of another operation by using CallOperationAction [2]. The tools may
automate keeping the Parameters of the Operation in sync with the Parame-
ters of the Activity.

There are no actions in UML to access the values of the parameters. In-
stead, the standards ask for ActivityParameterNodes [1, 4] to be used to pro-
vide the parameter input values when the activity starts and to output values
to the parameters when the activity ends. One ActivityParameterNode will
be created for each in and inout parameter, only with outgoing edges, and
one ActivityParameterNode will be created for each inout, out and return
parameter, only with incoming edges.

The input parameter nodes will receive control when the activity starts, at
the same time as the InitialNode, and they will provide their parameter values
to the outgoing edges. Because the parameter data object may flow over only
one outgoing edge (the least resistant one), the usual approach would be to
use an intermediate ForkNode [3] to copy the value to all the InputPins of the
actions that require it.

The output parameter nodes will copy the values that reached them to
the parameters when the activity ends, at the same time when the ActivityFi-
nalNode is executed. The values reaching the parameter nodes will overwrite
each other, so, at the end, only the last value that reaches the parameter node
will be set to the parameter. Because an action cannot start executing unless
all incoming edges provide a token, the usual approach is not to set the edges
from the activity actions to go directly in the parameter node, but to merge
them before they reach the node, using a MergeNode [3].



EXECUTABLE UML STRUCTURED ACTIVITIES 151

Figure 2. Activity with inout and return Parameters

Figure 3. Problem (left) and Fix (right) for an Activity with
an inout Parameter



152 C.-L. LAZĂR AND I. LAZĂR

Figure 2, on the left side, exemplifies the usual approach of working with
parameters, for an inout and a return parameter. The figure uses the UML
notations. The “...” actions represent an action or a group of actions that
provide the functionality mentioned in the notes placed on the right side.

Using this approach of accessing the parameter values from the actions
inside the activity has some problems:

• the model and diagram get very complicated when the functionality is
bigger, or when there are many parameters, or if the parameters are
accessed many times. The diagram may be fixed if the tools would not
show the edges from the parameter nodes.

• the values that are intermediately set to an inout parameter during
the execution cannot be read, if this scheme is used, as the subsequent
actions using the parameter value will receive the initial parameter
value from the input parameter node. This can be fixed by passing the
intermediate values to the subsequent actions that use the parameter,
but this will lead to complicated structures. This issue is presented in
Figure 3.

• the out parameters cannot be built incrementally, as the stored values
cannot be accessed. This can be solved with schemes similar to the
one mentioned for inout parameters.

To solve these problems, we propose using an alternative approach, pre-
sented in Figure 4. For each parameter, except the return parameter, there
should be a similar Variable (with the same name and type) at the Activ-
ity level, and the actions that want to access the parameters will access the
corresponding variable instead.

An initialization StructuredActivityNode is introduced between the Ini-
tialNode and the main sequence node, having initialization actions:

• for each of the variables corresponding to the in and inout parameters
there will be an AddVariableValueAction that will set the value re-
ceived directly from the corresponding input ActivityParameterNode
to the variable

• for each of the variables corresponding to the out parameters there will
be an AddVariableValueAction that will set LiteralNull value to the
variable.

The actions from the main sequence node that need to access the param-
eters will simply connect themselves to AddVariableValueActions, ReadVari-
ableValueActions and ClearVariableValueActions configured with the proper
variables.

A finalize StructuredActivityNode is introduced between the main se-
quence node and the ActivityFinalNode, having actions that will read the



EXECUTABLE UML STRUCTURED ACTIVITIES 153

Figure 4. Proposed Structure of an Activity

Figure 5. Solution and Representation for an Activity with
inout Parameters



154 C.-L. LAZĂR AND I. LAZĂR

variable values from the inout and out variables and send them directly to the
corresponding output ActivityParameterNodes.

The return parameter is handled using the usual approach, but this is
described in a subsection below (Return / Output Statement).

In Figure 5 we present the example above with the inout parameter prob-
lem, solved with this approach (the structured nodes marking the statements
are omitted, for brevity). The creation of the variables that correspond to the
parameters, along with the init and finalize nodes containing the variables
initialization / output actions, should be automated by the tools. The right
side of the figure shows our proposed representation for the activity.

The parameters are presented graphically as part of the activity signature.
A distinct compartment containing all the parameters may also be present at
the activity level, similar to the compartment for the block variables.

2.4. Model for Statements and Expressions. The actions that form each
statement may be composed using either the default push style model (data
tokens will be pushed using ObjectFlow edges from OutputPins to InputPins),
or, by using the pull style model (data tokens will be pulled by ActionInput-
Pins from Actions with exactly one OutputPin) [5]. The expressions needed
in conditions, for instance, are constructed in the same manner. The differ-
ence between a statement and an expression is that an expression provides an
output value, which is used by a statement (for instance, the test node of the
LoopNode is an expression that provides a boolean value).

In the push style model, the actions are all contained in the same node.
The control will arrive at the actions with no input edges, and the data will
be pushed through the actions, to the root action. This is not a very intuitive
flow for the developers used to structured programming, but UML provides
graphical notations and the UML tools have graphical support for it.

Figure 6. Assignment Statement (v:=123) With push Style Model



EXECUTABLE UML STRUCTURED ACTIVITIES 155

Figure 7. Assignment Statement (self.field1:=123) With pull
Style Model
(Graphical representation on the left is not UML compliant!)

In the pull style model, the root action contains the action input pins,
which, in turn, contain the from actions, and so on. The control will arrive
at the root action, which will begin its execution by trying to get the data
tokens from the ActionInputPins, which, in turn, will pull the data tokens
from the contained actions, by executing them. The control will arrive in this
way at the leaf actions. After the actions are executed and the data tokens
are placed in the OutputPins, these data tokens are used as the values for the
ActionInputPins. The problem with the pull style is that UML provides no
graphical notations for the ActionInputPins, as these are meant to be used in
textual representations. And this means that most of the UML tools do not
have graphical support for the ActionInputPins.

UML provides a special kind of ActionInputPin, called ValuePin [4], that
is a shorthand for an ActionInputPin providing the value from a ValueSpecifi-
cationAction. The ValuePin provides the value directly from a ValueSpecifica-
tion. The UML tools might have graphical support for the ValuePin, though
UML doesn’t propose a graphical notation. However, using ValuePin only, in
conjunction with InputPins, is insufficient for more complex statements.

The pull style model is chosen, as it fits better to our purpose, and it
produces fewer objects, grouped in a well nested structure. However, in order
to be able to exchange the models between UML tools, a conversion tool
between the two styles is needed, so that a pull style model may be viewed
and edited inside a UML compliant tool, as a push style model.



156 C.-L. LAZĂR AND I. LAZĂR

2.5. Assignment / Input Statement.

• The AssignmentStatement from the PAL model is represented with
an action structure that has the root an AddVariableValueAction (if
the statement assigns a value to a Variable), or an AddStructuralFea-
tureValueAction (if the statement assigns a value to a Property of a
Classifier). The isReplaceAll boolean property of the action will be
set to true. The proposed representation for this statement is shown
in Figures 1, 2 and 5 (a simple rectangle containing the textual repre-
sentation).

• The InputStatement from PAL is represented with the same actions,
with the difference that the input value is obtained from a CallBe-
haviorAction using a FunctionBehavior called read, with one return
parameter. The proposed representation for this statement is shown
in Figure 1.

2.6. Return / Output Statement.

• The return parameter is handled using the usual approach (in a non-
structured fashion), because the return parameter is set only once in
an execution path, and after it is set, the execution of the activity
has to end. A return action sends its result value to the MergeNode
found in the finalize StructuredActivityNode, which forwards it to
the return ActivityParameterNode. Also, the return action gives the
control to the finalize node, so that the values from the variables are
copied to the corresponding parameter nodes and forcing the execution
of the activity to end. A CallBehaviorAction is used as the root action
of the return statement, which means a special return FunctionBe-
havior needs to exist. This behavior should have one in parameter
(the value to be returned) and one return parameter (the same value,
that is returned). The action needs one output pin, in order to forward
the value to be returned to the return ActivityParameterNode. The
proposed representation for this statement is shown in Figures 2 and
5.

• The OutputStatement from PAL is represented in a similar fashion, by
using a CallBehaviorAction as the root action of the statement. The
used FunctionBehavior is called write and it has only an in parameter.
The proposed representation for this statement is shown in Figure 1.

2.7. Branch Statement. The BranchStatement from PAL is represented
with a ConditionalNode, with one Clause object if only then branch is present,
or with two Clause objects if else branch is also present. The clauses will be



EXECUTABLE UML STRUCTURED ACTIVITIES 157

properly ordered by using their successor / predecessor properties. The Condi-
tionalNode will contain all the test and body executable nodes, and the clauses
will properly reference them as test or body nodes. The decider pin for a test
clause will always be the output pin of its test node. The else clause will
always have a true clause test, meaning that the test node will consist of one
ValueSpecificationAction for the true LiteralBoolean.

The body node is a block of statements and is represented with a single
SequenceNode, which will contain the actions for the statements.

The ConditionalNode is not assured, meaning that it is possible that no
test will succeed (this is needed when the else clause is missing). And it is
determinate, meaning that at most one test will succeed (this is needed when
else clause is present, so that, if the test of then clause passes, the body of
else clause will not be executed, as the test of else clause will always succeed).

An example for the proposed graphical representation is given in Figure 2,
on the right side. If else branch is missing, there will be a control edge shown,
with no statements, going to the merge node at the bottom.

2.8. While / Do While / For Statement. WhileStatement and ForState-
ment from PAL are represented with a tested first LoopNode. DoWhileState-
ment (a variant of RepeatStatement) is represented with a tested last LoopN-
ode.

The LoopNode is a StructuredActivityNode, so it may have variables,
which may be used as iterators for the ForStatement, as opposed to using
the built-in system of loop input/output pins, which is hard to use. The
LoopNode will contain all the actions for the setupPart, test and bodyPart,
which will simply reference the used actions. The iterator may be initialized
in the setupPart actions. The test actions will have to output a boolean
value. The decider pin for the test will always be the output pin of its test
actions. The bodyPart needs to contain both the actual body actions (inside a
SequenceNode) and, if needed, the actions that update the iterator variables.

For the While and Do While statements, the iterator parts are omitted,
and only the test and bodyPart (without the actions that update the iterator
variables) will be present.

The loop node has a set of setupPart nodes, each one being represented in
the model by actions corresponding to a single statement. ControlFlow edges
will be set between the setupPart nodes, so that the statements are executed
in order. The bodyPart node includes the main block of statements, which is
represented with a single SequenceNode. This node is the first node (has no
incoming ControlFlow edges) and will contain the actions for the statements.
The statements that update the iterator variables are kept in the bodyPart
node, also. A ControlFlow edge will go form the main block node to the first



158 C.-L. LAZĂR AND I. LAZĂR

iterator update statement, and the rest of the statements are ordered using
ControlFlow edges, similar to the setupPart nodes.

The graphical representations are similar to those provided in [14], as
they help the user understand the flow of the algorithm [15]. A sample for
WhileStatement is provided in Figure 1 (c). The tools might support different
layouts for the loop nodes, allowing the users to choose the preferred one. The
layout used in [14] for ForStatement is chosen, as it does a good job in visually
separating the four parts of the statement, while keeping the occupied space
to a minimum and providing an intuitive flow.

2.9. Extra Object related actions.
• Reading self (or this) instance will be done using ReadSelfAction.

This instance will need to be provided whenever the invoked operation
or the accessed property is not static and no other instance is explicitly
specified by the user.

• Creating a new object instance will be done using CreateObjectAc-
tion. This action will not invoke any operation, or behavior, so the
created instance could be uninitialized. To obtain the constructor
behavior found in programming languages, the tools could also exe-
cute, if needed, an operation that has the same name as the Classifier
and one return parameter of the same Classifier type. The CallOper-
ationAction becomes the root, obtaining its target input value from
the CreateObjectAction. The CallOperationAction will provide the
initialized object to the action that needs the instance, not the Cre-
ateObjectAction.

2.10. Primitive Functions. Similar to the other FunctionBehaviors men-
tioned before, a FunctionBehavior needs to be created for each primitive oper-
ation (==, +, -, ...) between Integer, Boolean and String typed operands, to be
used in expressions. The primitivefunctions are limited, at this point, to hav-
ing only operands of the data types defined in UML. All these primitivefunctions
should be packaged in a separate model resource, so that they may be easily
reused in different UML tools and different projects.

3. Conclusions and Future Work

Using SequenceNode (sequence), ConditionalNode (decision) and LoopN-
ode (loop) from UML’s CompleteStructuredActivities package, the chosen sub-
set of actions is computationally complete.

The new level at which the user creates the executable models is raised
from actions to statements and expressions, increasing user efficiency. The
tools should take care of a lot of redundant steps while creating the model,



EXECUTABLE UML STRUCTURED ACTIVITIES 159

as well as properly arranging the diagram, allowing the user to focus on the
actual algorithm.

The Action Semantics subset was chosen in such a way that the resulting
models are as simple and clear as possible, while preserving the abstract syntax
and the execution semantics of the UML elements. This has great benefits, as
the resulting models are small and well structured, which makes it easier for an
user to analyze them, if needed. It is also not that hard to create conformant
models for small operations using existing UML tools.

There is no UML profile defined for the Action Semantics subset chosen
in this article, which means that the executable models can be built without
having to apply stereotypes. Instead, the article provides exact operational
semantics for the selected elements, so that there is an exact interpretation of
the model.

Formal OCL [8] constraints need to be defined, so that the UML models
can be statically analyzed for conformance with the proposed action language,
before being executed. In order to be conformant with this action language,
the models must not contain other UML elements, except those proposed here,
and they must also comply with the extra operational semantics defined in this
article.

This article provides an exhaustive description for the core of an action
language using UML Action Semantics. There are many elements remaining
to be considered in the future: preconditions, postconditions, ...; re-analyze
the support for arrays; switch statement; in-line if statement (with output
value): a > b ? a : b; other non-structured statements: break, continue;
exception handling; threads; synchronized blocks; operations for associations;
events.

FunctionBehaviors for common utility operations may also be defined in
the future, and packaged together with the primitive functions. Also, more
data types could be defined, as the existing ones are far from being enough.

ACKNOWLEDGMENTS

This work was supported by the grant ID 546, sponsored by NURC -
Romanian National University Research Council (CNCSIS).

References

[1] Conrad Bock. UML 2 activity and action models. Journal of Object Technology, 2(4):43–
53, 2003.

[2] Conrad Bock. UML 2 activity and action models, part 2: Actions. Journal of Object
Technology, 2(5):41–56, 2003.

[3] Conrad Bock. UML 2 activity and action models, part 3: Control nodes. Journal of
Object Technology, 2(6):7–23, 2004.



160 C.-L. LAZĂR AND I. LAZĂR

[4] Conrad Bock. UML 2 activity and action models, part 4: Object nodes. Journal of
Object Technology, 3(1):27–41, 2004.

[5] Conrad Bock. UML 2 activity and action models, part 6: Structured activities. Journal
of Object Technology, 4(4):43–66, 2005.

[6] I.-G. Czibula, C.-L. Lazăr, I. Lazăr, S. Motogna, and B. Pârv. Comdevalco development
tools for procedural paradigm. Studia Univ. Babeş-Bolyai, III, 2008.

[7] Object Management Group. Semantics of a Foundational Subset for Executable UML
Models RFP. http://www.omg.org/docs/ad/05-04-02.pdf, 2005.

[8] Object Management Group. Object Constraint Language Specification, version 2.0.
http://www.omg.org/docs/formal/06-05-01.pdf, 2006.

[9] Object Management Group. UML 2.1.2 Superstructure Specification.
http://www.omg.org/docs/formal/07-11-02.pdf, 2007.

[10] I. Lazăr, B. Pârv, S. Motogna, I.G. Czibula, and C.-L. Lazăr. An agile MDA approach
for executable UML structured activities. Studia Univ. Babeş-Bolyai, LII(2):101–114,
2008.

[11] Stephen J. Mellor and Marc J. Balcer. Executable UML: A Foundation for Model-Driven
Architecture. Addison Wesley, 2002.

[12] Bazil Pârv. Comdevalco - a framework for software component definition, validation,
and composition. Studia Univ. Babeş-Bolyai, LII(2):59–68, 2007.

[13] Tim Schattkowsky and Alexander Förster. On the pitfalls of UML 2 activity modeling.
International Workshop on Modeling in Software Engineering, 2007.

[14] Tia Watts. A Structured Flow Chart Editor. http://watts.cs.sonoma.edu/SFC/.
[15] Tia Watts. The SFC editor a graphical tool for algorithm development. Journal of

Computing Sciences in Colleges, 4(1):73–85, 2004.

Department of Computer Science, Faculty of Mathematics and Computer
Science, Babeş-Bolyai University, 1, M. Kogălniceanu, Cluj-Napoca 400084, Ro-
mania

E-mail address: ilazar@cs.ubbcluj.ro


