
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 2, 2008

A PARTITIONAL CLUSTERING ALGORITHM FOR
IMPROVING THE STRUCTURE OF OBJECT-ORIENTED

SOFTWARE SYSTEMS

ISTVAN GERGELY CZIBULA AND GABRIELA CZIBULA

Abstract. In this paper we are focusing on the problem of program re-
structuring, an important process in software evolution. We aim at intro-
ducing a partitional clustering algorithm that can be used for improving
software systems design. The proposed algorithm improve several clus-
tering algorithms previously developed in order to recondition the class
structure of a software system. We experimentally validate our approach
and we provide a comparison with existing similar approaches.

1. Introduction

The software systems, during their life cycle, are faced with new require-
ments. These new requirements imply updates in the software systems struc-
ture, that have to be done quickly, due to tight schedules which appear in
real life software development process. That is why continuous restructuring
of the code is needed, otherwise the system becomes difficult to understand
and change, and therefore it is often costly to maintain. Without continuous
restructurings of the code, the structure of the system becomes deteriorated.
Thus, program restructuring is an important process in software evolution.

A continuous improvement of the software systems structure can be made
using refactoring, that assures a clean and easy to maintain software structure.

We have previously introduced in [6] a clustering approach for identifying
refactorings in order to improve the structure of software systems. For this pur-
pose, a clustering algorithm named kRED was introduced. To our knowledge,
there is no approach in the literature that uses clustering in order to improve
the class structure of a software system, excepting the approach introduced in

Received by the editors: November 10, 2008.
2000 Mathematics Subject Classification. 68N99, 62H30.
1998 CR Categories and Descriptors. D.2.7 [Software Engineering]: Distribution,

Maintenance, and Enhancement –Restructuring, reverse engineering, and reengineering ;
I.5.3 [Computing Methodologies]: Pattern Recognition – Clustering .

Key words and phrases. Software design, Refactoring, Clustering.

127

128 ISTVAN GERGELY CZIBULA AND GABRIELA CZIBULA

[6]. The existing clustering approaches handle methods decomposition [26] or
system decomposition into subsystems [13].

We have improved the approach from [6] by developing several clustering
algorithms that can be used to identify the refactorings needed in order to
recondition the class structure of an object-oriented software system [3–5, 20,
21].

The aim of this paper is to introduce a partitional clustering algorithm
which takes an existing software and reassembles it, in order to obtain a better
design, suggesting the needed refactorings. The clustering algorithm proposed
in this paper improves all the algorithms that we have already developed.

The rest of the paper is structured as follows. Section 2 presents the main
aspects related to the clustering approach (CARD) for determining refactor-
ings [6] that we intend to improve in this paper. A new partitional clustering
algorithm for determining refactorings is introduced in Section 3. Section 4
presents experimental evaluations of the proposed approach: the open source
case study JHotDraw [10] and a real software system. Some conclusions and
further work are given in Section 6.

2. Background

We have previously introduced in [6] a clustering approach (CARD) in or-
der to find adequate refactorings to improve the structure of software systems.
CARD approach consists of the following steps:

(1) The existing software system is analyzed in order to extract from it
the relevant entities: classes, methods, attributes and the existing re-
lationships between them: inheritance relations, aggregation relations,
dependencies between the entities from the software system.

(2) The set of entities extracted at the previous step are re-grouped in clus-
ters (classes) using a clustering algorithm (PARED in our approach).
The goal of this step is to obtain an improved structure of the existing
software system.

(3) The newly obtained software structure is compared with the original
software structure in order to provide a list of refactorings which trans-
form the original structure into an improved one.

3. A Partitional Clustering Algorithm for Refactorings
Determination (PARED)

In this section we introduce a new partitional clustering algorithm (PARED)
(Partitional Clustering Algorithm for Refactorings Determination). PARED
algorithm can be used in the Grouping step of CARD in order to identify a

IMPROVING THE STRUCTURE OF SOFTWARE SYSTEMS 129

partition of a software system S that corresponds to an improved structure
of it.

In our clustering approach, the objects to be clustered are the entities from
the software system S, i.e., O = {s1, s2, . . . , sn}. Our focus is to group similar
entities from S in order to obtain high cohesive groups (clusters).

We will adapt the generic cohesion measure introduced in [22] that is
connected with the theory of similarity and dissimilarity. In our view, this
cohesion measure is the most appropriate to our goal. We will consider the
dissimilarity degree between any two entities from the software system S.
Consequently, we will consider the distance d(si, sj) between two entities si

and sj as expressed in Equation (1).

(1) d(si, sj) =

{
1− |p(si)∩p(sj)|

|p(si)∪p(sj)| if p(si) ∩ p(sj) 6= ∅
∞ otherwise

,

where, for a given entity e ∈ S, p(e) defines a set of relevant properties of
e, expressed as follows. If e ∈ Attr(S) (e is an attribute) then p(e) consists
of: the attribute itself, the application class where the attribute is defined,
and all the methods from Meth(S) that access e. If e ∈ Meth(S) (e is a
method) then p(e) consists of: the method itself, the application class where
the method is defined, all the attributes from Attr(S) accessed by the method,
all the methods from S used by e, and all methods from S that overwrite
method e. If e ∈ Class(S) (e is an application class) then p(e) consists of: the
application class itself, all the attributes and the methods defined in the class,
all interfaces implemented by class e and all classes extended by class e.

Our distance, as defined in Equation (1), highlights the concept of cohe-
sion, i.e., entities with low distances are cohesive, whereas entities with higher
distances are less cohesive.

Based on the definition of distance d (Equation (1)) it can be easily proved
that d is a semi-metric function, so a k-medoids based approach can be applied.

In order to avoid the two main disadvantages of the traditional k-medoids
algorithm, PARED algorithm uses a heuristic for choosing the number of
medoids (clusters) and the initial medoids. This heuristic is particular to our
problem and it will provide a good enough choice of the initial medoids.

After selecting the initial medoids, PARED behaves like the classical k-
medoids algorithm.

The main idea of PARED ’s heuristic for choosing the initial medoids and
the number p of clusters (medoids) is the following:

(i) The initial number p of clusters is n (the number of entities from the
software system) and the intial number nr of medoids is 0.

130 ISTVAN GERGELY CZIBULA AND GABRIELA CZIBULA

(ii) The entity chosen as the first medoid is the most “distant” entity from
the set of all entities (the entity that maximizes the sum of distances
from all other entities). The number nr of medoids becomes 1.

(iii) In order to choose the next medoid we reason as follows. For each re-
maining entity (that was not chosen as medoid), we compute the mini-
mum distance (dmin) from the entity and the already chosen medoids.
The next medoid is chosen as the entity e that maximizes dmin and
this distance is greater than a positive given threshold (distMin), and
nr is increased. If such an entity does not exist, it means that e is very
close to all the medoids and should not be chosen as a new medoid
(from the software system structure point of view this means that e
should belong to the same application class with an existing medoid).
In this case, the number p of medoids will be decreased.

(iv) The step (iii) will be repeatedly performed, until the number nr of
chosen medoids is equal to p.

We have to notice that step (iii) described above assures, from the software
system design point of view, that near entities (with respect to the given
threshold distMin) will be merged in a single application class (cluster), instead
of being distributed in different application classes.

We mention that at steps (ii) and (iii) the choice could be a non-deterministic
one. In the current version of PARED algorithm, if such a non-deterministic
case exists, the first selection is made. Future improvements of PARED algo-
rithm will deal with these kind of situations.

The main idea of the PARED algorithm that we apply in order to group
entities from a software system is the following:

(i) The initial number p of clusters and the initial medoids are determined
by the heuristic described above.

(ii) The clusters are recalculated, i.e., each object is assigned to the closest
medoid.

(iii) Recalculate the medoid i of each cluster k based on the following idea:

if h is an object from k such that
∑

j∈k

(d(j, h)−d(j, i)) is negative, then

h becomes the new medoid of cluster k.
(iv) Steps (ii)-(iii) are repeatedly performed until there is no change in the

partition K.
We mention that PARED algorithm provides a partition of a software

system S, partition that represents a new structure of the software system.
Regarding to PARED algorithm, we have to notice the following:

• If, at a given moment, a cluster becomes empty, this means that the
number of clusters will be decreased.

IMPROVING THE STRUCTURE OF SOFTWARE SYSTEMS 131

• Because the initial medoids are selected based on the heuristic de-
scribed above, the dependence of the algorithm on the initial medoids
is eliminated.

• We have chosen the value 1 for the threshold distMin, because dis-
tances greater than 1 are obtained only for unrelated entities (Equation
(1)).

The main refactorings identified by PARED algorithm are Move Method,
Move Attribute, Inline Class, Extract Class [9]. We have currently imple-
mented the above enumerated refactorings, but PARED algorithm can also
identify other refactorings, like: Pull Up Attribute, Pull Down Attribute, Pull
Up Method, Pull Down Method, Collapse Class Hierarchy. Future improve-
ments will deal with these situations, also.

4. Experimental Evaluation

In order to experimentally validate our clustering approach, we will con-
sider two evaluations, which are described below.

Our first evaluation is the open source software JHotDraw, version 5.1 [10].
It is a Java GUI framework for technical and structured graphics, developed
by Erich Gamma and Thomas Eggenschwiler, as a design exercise for using
design patterns. It consists of 173 classes, 1375 methods and 475 attributes.
The reason for choosing JHotDraw as a case study is that it is well-known as
a good example for the use of design patterns and as a good design.

Our focus is to test the accuracy of our approach on JHotDraw, i.e., how
accurate are the results obtained after applying PARED algorithm in com-
parison with the current design of JHotDraw. As JHotDraw has a good class
structure, PARED algorithm should generate a nearly identical class struc-
ture.

After applying PARED algorithm, we have obtained a partition in which
there are no misplaced methods and attributes, meaning that the class struc-
ture discovered by PARED is identical to the actual structure of JHotDraw.

Our second evaluation is a DICOM (Digital Imaging and Communica-
tions in Medicine) [8] and HL7 (Health Level 7) [11] compliant PACS (Picture
Archiving and Communications System) system, facilitating medical images
management, offering access to radiological images, and making the diagnosis
process easier. We have applied PARED algorithm on one of the subsystems
from this application, subsystem containing 1015 classes, 8639 methods and
4457 attributes.

After applying PARED algorithm, a total of 84 refactorings have been
suggested: 7 Move Attribute refactorings, 75 Move Method refactorings, and

132 ISTVAN GERGELY CZIBULA AND GABRIELA CZIBULA

2 Inline Class refactoring. From the refactorings obtained by PARED algo-
rithm, 55% were accepted by the developers of the considered software system.

Analyzing the obtained results, we have concluded that a large number
of miss-identified refactorings are due to technical issues: the use of Java
anonymous inner classes, introspection, the use of dynamic proxies. These kind
of technical aspects frequently appear in projects developed in JAVA. In order
to correctly deal with these aspects, we have to improve only the data collection
step from our approach, without modifying PARED algorithm. Another cause
of miss-identified refactorings is due to the fact that the distance (Equation
(1)) used for discriminating entities in the clustering process take into account
only two aspects of a good design: low coupling and high cohesion. It would be
also important to consider other principles related to an improved design, like:
Single Responsibility Principle, Open-Closed Principle, Interface Segregation
Principle, Common Closure Principle [7], etc. Future improvements of our
approach will deal with these aspects, also.

5. Related Work

In this section we present some approaches existing in the literature in
the fields of software clustering and refactoring. We provide, for similar ap-
proaches, a comparison with our approach.

There is a lot of work in the literature in the field of software clustering.
One of the most active researches in the area of software clustering were

made by Schwanke. The author addressed the problem of automatic cluster-
ing by introducing the shared neighbors technique [17], technique that was
added to the low-coupling and high-cohesion heuristics in order to capture
patterns that appear commonly in software systems. In [18], a partition of a
software system is refined by identifying components that belong to the wrong
subsystem, and by placing them in the correct one. The paper describes a
program that attempts to reverse engineer software in order to better provide
software modularity. Schwanke assumes that procedures referencing the same
name must share design information on the named item, and are thus “design
coupled”. He uses this concept as a clustering metric to identify procedures
that should be placed in the same module. Even if the approaches from [17]
and [18] were not tested on large software systems, they were promising.

Mancoridis et al. introduce in [14] a collection of algorithms that facilitate
the automatic recovery of the modular structure of a software system from
its source code. Clustering is treated as an optimization problem and genetic
algorithms are used in order to avoid the local optima problem of hill-climbing
algorithms. The authors accomplish the software modularization process by

IMPROVING THE STRUCTURE OF SOFTWARE SYSTEMS 133

constructing a module dependency graph and by maximizing an objective func-
tion based on inter- and intra-connectivity between the software components.
A clustering tool for the recovery and the maintenance of software system
structures, named Bunch, is developed. In [15], some extensions of Bunch are
presented, allowing user-directed clustering and incremental software structure
maintenance.

A variety of software clustering approaches have been presented in the
literature. Each of these approaches looks at the software clustering problem
from a different angle, by either trying to compute a measure of similarity
between software objects [17]; deducing clusters from file and procedure names
[1]; utilizing the connectivity between software objects [2, 12, 16]; or looking
at the problem at hand as an optimization problem [14]. Another approach
for software clustering was presented in [1] by Anquetil and Lethbridge. The
authors use common patterns in file names as a clustering criterion. The
authors’ experiments produced promising results, but their approach relies on
the developers’ consistency with the naming of their resources.

The paper [24] also approaches the problem of software clustering, by
defining a metric that can be used in evaluating the similarity of two differ-
ent decompositions of a software system. The proposed metric calculates a
distance between two partitions of the same set of software resources. For
calculating the distance, the minimum number of operations (such as moving
a resource from one cluster to another, joining two clusters etc.) one needs to
perform in order to transform one partition to the other is computed. Tzerpos
and Holt introduce in [25] a software clustering algorithm in order to discover
clusters that follow patterns that are commonly observed in decompositions
of large software systems that were prepared manually by their architects.

All of these techniques seem to be successful on a number of examples.
However, not only is there no approach that is widely recognized as superior,
but it is also hard to compare the effectiveness of different approaches. As
presented above, the approaches in the field of software clustering deal with the
software decomposition problem. Even if similarities exist with refactorings
extraction, a comparison is hard to make due to the different granularity of
the decompositions (modules vs. classes, methods, fields).

There were various approaches in the literature in the field of refactoring,
also. But, only very limited support exists in the literature for automatic
refactorings detection.

For most existing approaches, the obtained results for relevant case studies
are not available. There are given only short examples indicating the obtained
refactorings. That is why we have selected for comparison only two techniques
mentioned below.

134 ISTVAN GERGELY CZIBULA AND GABRIELA CZIBULA

The paper [23] describes a software vizualization tool which offers sup-
port to the developers in judging which refactoring to apply. We have applied
PARED algorithm on the example given in [23] an the Move Method refactor-
ing suggested by the authors was obtained.

A search based approach for refactoring software systems structure is pro-
posed in [19]. The authors use an evolutionary algorithm for identifying refac-
torings that improve the system structure.

The advantages of our approach in comparison with the approach pre-
sented in [19] are illustrated bellow. Our technique is deterministic, in com-
parison with the approach from [19]. The evolutionary algorithm from [19] is
executed 10 times, in order to judge how stable are the results, while PARED
algorithm from our approach is executed just once. The technique from [19]
reports 11 misplaced methods, while in our approach there are no misplaced
methods. The overall running time for the technique from [19] is about 300
minutes (30 minutes for one run), while PARED algorithm in our approach
provide the results in about 1.2 minutes. We mention that the execution was
made on similar computers. Because the results are provided in a reasonable
time, our approach can be used for assisting developers in their daily work for
improving software systems.

6. Conclusions and Future Work

We have presented in this paper a new partitional clustering algorithm
(PARED) that can be used for improving software systems design. We have
demonstrated the potential of our algorithm by applying it to the open source
case study JHotDraw and to a real software system, and we have also presented
the advantages of our approach in comparison with existing approaches. Based
on the feedback provided by the developers of a real software system we have
identified some potential improvements of our approach.

Further work will be done in the following directions: to use other search
based approaches in order to determine refactorings that improve the design
of a software system; to improve the distance function used in the clustering
process; to apply PARED algorithm on other large software systems; to apply
our approach in order to transform non object-oriented software into object-
oriented systems.

ACKNOWLEDGEMENT

This work was supported by the research project TD No. 411/2008, spon-
sored by the Romanian National University Research Council (CNCSIS).

IMPROVING THE STRUCTURE OF SOFTWARE SYSTEMS 135

References

[1] Nicolas Anquetil and Timothy Lethbridge, Extracting concepts from file names; a new
file clustering criterion, 20th International Conf. Software Engineering, 1998, pp. 84–93.

[2] Song C. Choi and Walt Scacchi, Extracting and restructuring the design of large systems,
IEEE Softw. 7 (1990), no. 1, 66–71.

[3] I.G. Czibula and G. Serban, A hierarchical clustering algorithm for software systems
design improvement, KEPT 2007: Proceedings of the first International Conference on
Knowledge Engineering: Principles and Techniques, August 2007June 6, pp. 316–323.

[4] I. G. Czibula and G. Serban, Hierarchical clustering for software systems restructuring,
INFOCOMP Journal of Computer Science, Brasil 6 (2007), no. 4, 43–51.

[5] I.G. Czibula and G. Serban, Software systems design improvement using hierarchical
clustering, SERP’07: Proceedings of SERP’07, 2007, pp. 229–235.

[6] Istvan G. Czibula and Gabriela Serban, Improving Systems Design Using a Clustering
Approach, International Journal of Computer Science and Network Security (IJCSNS)
6 (2006), no. 12, 40–49.

[7] Tom DeMarco, Structured analysis and system specification (2002), 529–560.
[8] Digital Imaging and Communications in Medicine. http://medical.nema.org/.
[9] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts, Refactoring:

Improving the design of existing code, Addison-Wesley, Reading, MA, USA, 1999.
[10] E. Gamma, JHotDraw Project. http://sourceforge.net/projects/jhotdraw.
[11] Health Level 7. www.hl7.org/.
[12] David H. Hutchens and Victor R. Basili, System structure analysis: clustering with data

bindings, IEEE Trans. Softw. Eng. 11 (1985), no. 8, 749–757.
[13] Chung-Horng Lung, Software architecture recovery and restructuring through cluster-

ing techniques, Isaw ’98: Proceedings of the third International Workshop on Software
Architecture, 1998, pp. 101–104.

[14] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E. R. Gansner, Using automatic
clustering to produce high-level system organizations of source code, IEEE Proceedings
of the 1998 int. Workshop on Program Understanding (IWPC’98), 1998, pp. 45–52.

[15] Spiros Mancoridis, Brian S. Mitchell, Yih-Farn Chen, and Emden R. Gansner, Bunch:
A clustering tool for the recovery and maintenance of software system structures, ICSM,
1999, pp. 50–59.

[16] James M. Neighbors, Finding reusable software components in large systems, Working
Conference on Reverse Engineering, 1996, pp. 2–10.

[17] R. W. Schwanke and M. A. Platoff, Cross references are features, Proceedings of the
2nd International Workshop on Software Configuration Management, 1989, pp. 86–95.

[18] Robert W. Schwanke, An intelligent tool for re-engineering software modularity, ICSE
’91: Proceedings of the 13th International Conference on software engineering, 1991,
pp. 83–92.

[19] Olaf Seng, Johannes Stammel, and David Burkhart, Search-based determination of
refactorings for improving the class structure of object-oriented systems, GECCO ’06:
Proceedings of the 8th annual conference on genetic and evolutionary computation,
2006, pp. 1909–1916.

[20] G. Serban and I.G. Czibula, A new clustering approach for systems designs improvement,
SETP-07: Proceedings of the International Conference on Software Engineering Theory
and Practice, December 2007 July 9, pp. 47–54.

136 ISTVAN GERGELY CZIBULA AND GABRIELA CZIBULA

[21] G. Serban and I. G. Czibula, Restructuring software systems using clustering, ISCIS
2007: Proceedings of the 22nd International Symposium on Computer and Information
Sciences, September 2007 November 7, pp. 33, IEEExplore.

[22] Frank Simon, Silvio Loffler, and Claus Lewerentz, Distance based cohesion measuring,
Proceedings of the 2nd European Software Measurement Conference (FESMA), 1999,
pp. 69–83.

[23] Frank Simon, Frank Steinbruckner, and Claus Lewerentz, Metrics based refactoring,
CSMR ’01: Proceedings of the Fifth European Conference on Software Maintenance
and Reengineering, 2001, pp. 30–38.

[24] Vassilios Tzerpos and Richard C. Holt, Mojo: A distance metric for software clusterings,
Working conference on reverse engineering, 1999, pp. 187–193.

[25] Vassilios Tzerpos and Richard C. Holt, ACDC: An algorithm for comprehension-driven
clustering, Working conference on reverse engineering, 2000, pp. 258–267.

[26] Xia Xu, Chung-Horng Lung, Marzia Zaman, and Anand Srinivasan, Program restruc-
turing through clustering techniques, SSAM ’04: Proceedings of the Workshop on source
code analysis and manipulation, Fourth IEEE International (SCAM’04), 2004, pp. 75–
84.

Department of Computer Science, Babeş-Bolyai University, 1, M. Kogălniceanu
Street, Cluj-Napoca, Romania,

E-mail address: istvanc@cs.ubbcluj.ro

Department of Computer Science, Babeş-Bolyai University 1, M. Kogălniceanu
Street, Cluj-Napoca, Romania,

E-mail address: gabis@cs.ubbcluj.ro

