
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 2, 2008

ADVANTAGES AND DISADVANTAGES OF THE METHODS
OF DESCRIBING CONCURRENT SYSTEMS

ANITA VERBOVÁ AND RÓBERT HUŽVÁR

Abstract. This paper provides a review of existing paradigms for mod-

elling concurrent processes. First we describe in short some formal methods

designed for the development of the theory of concurrency.

Because no unified theory or calculus for concurrency has showed up,

we concentrate on interaction categories and their features relevant for our

purposes. They are able to describe some essential features of communi-

cating processes.

Finally we confront all these methods and point out their limitations

and expressive power. We highlight some open problems with regard to

reasoning about concurrent systems.

1. Description of concurrent systems by process calculi

There exists many methods for the formal description of concurrent sys-
tems. The most substantial of these paradigms is the process calculus [3]. Its
pioneers were Milner a Hoare with their methods CCS [7] and CSP [5] respec-
tively. There are also another paradigms, which describe concurrent processes
and some of their properties. Here belongs for instance the π-calculus [10],
the structure of events [17], Petri nets [4] and SCCS [8]. SCCS (synchronous
calculus of communicating systems) is a process algebra in which processes
contribute their visible activity synchronously, or in other words, in unison
with a global clock. The algebra also contains operators for structuring process

Received by the editors: September 14, 2008.

2000 Mathematics Subject Classification. 18C10.

1998 CR Categories and Descriptors. F.3.2 [Logics and Meanings of Programs]:

Semantics of Programming Languages – Process models; F.4.1 [Logics and Meanings of

Programs]: Mathematical Logic – Proof theory .

Key words and phrases. Category theory, Concurrent systems, Process algebra, Interac-

tion categories.

This paper has been presented at the 7th Joint Conference on Mathematics and Computer

Science (7th MaCS), Cluj-Napoca, Romania, July 3-6, 2008.

117

118 ANITA VERBOVÁ AND RÓBERT HUŽVÁR

definitions, renaming and inhibiting actions and permitting nondeterministic
choices of behaviour [11].

Main result of this paradigm is to develop an algebraic theory of concur-
rency as a foundation for structural methods for describing concurrent systems.

2. Description of concurrent systems by the π-calculus

In [9] Milner describes the π-calculus as a step towards a canonical calculus
for concurrent systems. It is a minimal calculus such that all programs that
are computable by a concurrent system can be encoded in it. The π-calculus
hopes to play a similar role for concurrent systems to that played by the
λ-calculus for sequential computation.

The π-calculus is a process algebra, similar to CCS, but is designed to
model systems with dynamically changing structure: that is, the links bet-
ween the components of a system can vary dynamically during the evolution
of the system. This property, which is called mobility, can at best be modelled
indirectly in established process algebras.

The π-calculus allows channel names to be passed as values in communi-
cations. In fact the π-calculus combines the concepts of channel names, value
and value variables into a single syntactic class: names. The π-calculus is not
a higher order calculus: it is only accesses to agents that are being passed
in communications, not the agents themselves. The passing of agents as pa-
rameters in communications is undesirable since agents would then become
replicated, and the replication of agents with state is difficult. Limiting our-
selves to the passing of accesses means that we can allow certain agents only
limited access to other agents, and have several agents having different access
abilities to some common agent.

The main features of the π-calculus are the dynamic creation of channel
names and handshake communication on these names.

3. Mathematical theory of computational paradigm

The latest established of current paradigms for the semantics of computa-
tion is denotational semantics. In spite of its pretensions to universality, deno-
tational semantics has a natural slant to computational paradigm: functional
computation. By this we mean not only functional programming languages,
but the whole range of computation, where the behaviour of the program is ab-
stracted as the computation of a function. This view of programs as functions

ON METODS OF DESCRIBING CONCURRENT SYSTEMS 119

is built into the fundamental mathematical framework, which was denota-
tional semantics found on: a category of sets for the interpretation of types,
and specific functions between these sets for the interpretation of programs.

4. Category theory for modelling concurrent systems

The development of interaction categories [15] results from the limitations
of the paradigms mentioned above. These paradigms have developed indepen-
dently. Their separate development is considered to be the main open prob-
lem, i.e. how can we combine the functional and concurrent process paradigms
with their associated mathematical support in a single unified theory. This
unification is the consequence of the following investigations:

(1) in process algebras:
• There is no typing, hence there is a need of a good type theory for

concurrent processes.
• Stress is laid mainly on which are these processes, rather than on

what structure they have collectively.
• There is a real confusion of formalisms, combinators and equiva-

lences.
• Their major objection is that did not appear any generalized the-

ory or calculus for concurrency.
(2) in denotational semantics:

• Denotational semantics works well not only for the description
but also for the language design and programming methods.

Unification of these two methods is necessary to obtain correct basis for
languages connecting concurrent processes and communication with types on
one hand, and higher order constructions with polymorphism on the other. It
is also desirable for the foundations of suitable type systems for concurrency.

4.1. Interaction categories. In the categorical semantic approach, we define
a category of processes [2], where we model types as objects, processes as
morphisms, and interaction as morphism composition.

Once this structure of typed arrows closed under composition has formu-
lated, then a great amount of further structure is determined up to isomor-
phism.

4.2. Categorical structure of synchronous processes. In [2] interaction
categories are introduced by presentation of a canonical example, category of
synchronous processes SProc. In general objects of interaction categories are

120 ANITA VERBOVÁ AND RÓBERT HUŽVÁR

concurrent system specifications, their morphisms are synchronisation trees,
composition is given by synchronous product and restriction and identities are
synchronous buffers. The category SProc has a very rich structure.

More formally the objects of SProc are pairs A = (ΣA, SA), where ΣA

is an alphabet of actions (labels) and SA ⊆nepref Σ∗A is a safety specification.
Hence, a safety specification is a non-empty and prefix-closed set of traces over
A, which represents a linear-time safety property.

A process p of type A, written p : A, is a synchronization tree modulo
strong bisimulation, with labels from ΣA, such that traces(p) ⊆ SA. Follow-
ing Aczel we use a representation of synchronization trees as non-well-founded
sets, in which a process p with transitions p

a→ q, p
b→ r becomes {(a, q) (b, r)}.

The most convenient way of defining the morphisms of SProc is first to
define a *-autonomous structure on objects, then say that the morphisms from
A to B are processes of the internal hom type A (B. Given objects A and
B, the object A�B has

ΣA�B = ΣA × ΣB

SA�B =
{
σ ∈ Σ∗A�B|fst∗ (σ) ∈ SA ∧ snd∗ (σ) ∈ SB

}
.

The duality is trivial on objects: A⊥ = A. This means that at the level
of types, SProc makes no distinction between input and output. Because
communication is based on synchronization, rather than on value-passing, pro-
cesses do not distinguish between input and output either.

The definition of � makes clear how are processes in Sproc synchronous.
An action performed by a process of type A�B consists of a pair of actions,
one from the alphabet of A and one from that of B. Thinking of A and B as
two ports of the process, synchrony means that at every time step a process
must perform an action at every one of its ports.

A *-autonomous category in which� is self-dual, i.e. such that (A�B)⊥ ∼=
A⊥ � B⊥, is a compact closed category. Hence in a compact closed category
AOB ∼= A � B. In the special case when A⊥ ∼= A the linear implication,
defined by A (B = A⊥OB, also corresponds to A� B. In SProc A⊥ = A,
and so AOB = A (B = A�B.

Not all interaction categories are compact closed, but those that are, sup-
port more process constructions than those, that are not.

A morphism of SProc p : A → B is a process p of type A (B. Since
A (B = A�B, this means for the process p that it is of type A�B.

Given p : A → B and q : B → C then we can define their composition
p; q : A → C in the category SProc as follows:

ON METODS OF DESCRIBING CONCURRENT SYSTEMS 121

p
(a,b)−→ p′ q

(b,c)−→ q′

p; q
(a,c)−→ p′; q′

in which matching of actions takes place in the common type B (as in rela-
tional composition), at each time step. This ongoing communication is the
interaction of interaction categories.

The identity morphisms are synchronous buffers: whatever is received by
idA : A → A in the left copy of A is instantaneously transmitted to the right
copy (and vice versa – there is no real directionality). If p is a process with
sort Σ and S ⊆nepref Σ∗ then the process p¹S is defined by:

p
a−→ q a ∈ S

p¹ S
a−→ q ¹(S/a)

where S/a
def= {ε} ∪ {σ|aσ ∈ S}.

The identity morphism idA : A → A is defined by idA
def= id ¹ SA(A

where the process id with sort ΣA is defined by:

a ∈ ΣA

id
(a,a)−→ id

Since � is a coproduct, its dual is a product; because all objects of SProc
are self-dual, this means that A � B is itself also a product of A and B – so
it is a biproduct. If p; q : A → B then their non-deterministic combinator is
defined by:

p + q = A
∆A−→ A�A

[p,q]−→ B

= A
〈p,q〉−→ B �B

∇B−→ B

where ∆A
def= 〈idA, idA〉 is the diagonal and ∇B

def= [idB, idB] is the codiag-
onal. To make clear the definition of +, consider the composition 〈p, q〉 ;∇B.
Pairing creates a union of the behaviours of p and q, but with disjointly la-
belled copies of B. Composing with ∇B removes the difference between the
two copies. A choice can be made between p and q at the first step, but
then the behaviour continues as behaviour of p or behaviour of q. Thus we
obtain the natural representation of the non-deterministic sum in terms of
synchronisation trees in CCS.

122 ANITA VERBOVÁ AND RÓBERT HUŽVÁR

4.3. Categorical structure of asynchronous processes. Category of pro-
cesses Buf with a similar structure as interaction categories is defined in [14].
Morphisms are given by labelled transition systems representing processes in
a language like CCS. These processes are asynchronous in the sense that a
sender does not wait for the message delivering as in handshake mechanism of
CCS. In the category Buf

• Objects are sets (names of channels).
• Morphisms A → B are labelled transition systems with input actions

from A and output actions from B, illustrated according to weak bisi-
mulation.

• Composition of morphisms is interaction in the form of parallel com-
position and restriction.

• Identities are asynchronous buffers, i.e. processes, which simply for-
ward the messages, which they deliver and they do not necessarily
preserve order.

We can define products as parallel composition without interaction, and
Buf is a traced monoidal category [6], thus it provides a feedback operation,
and we are able to build cycles of processes.

The category Buf is obtained by restricting the sets of morphisms to
those processes that are buffered. In [13], axioms are given to classify those
processes that behave the same when composed with a buffer, for the case
when the buffer does not preserve the order of messages (as in Buf), and
for first-in-first-out buffers. These axioms are quite strong. They require, for
example, that a process can at every state do an input transition on each input
channel. For first-in-first-out buffers, they require that from each state there
is at most one output transition.

5. Comparison of paradigms for the description of concurrent

systems

In this section we summarize the point of view of the designed paradigms.
Still is widely appreciated that the functional computation is only one, re-

latively restricted part of computational universe, where distributed systems,
real-time systems and reactive systems do not really fit. Success of denota-
tional semantics out of the area of functional computation is very limited.

Partly because of the absence of a good type theory, in process algebras
has been a considerably systematic chaos between specifications and processes.
Names in process calculi are used as corresponding names, which distinguish

ON METODS OF DESCRIBING CONCURRENT SYSTEMS 123

these calculi syntactically and strongly from the others. For example, process
algebra tend to be more abstract and specification-oriented than Petri nets,
while the latter describe concurrency at a more intricate structural level.

The π-calculus is not higher order, unlike the λ-calculus where λ expre-
ssions (interpreted as agents) can be passed as arguments to functions and
bound to variables. In the π-calculus we cannot pass processes themselves in
communications or substitute them for names. We can construct implemen-
tations of functional and higher order programming languages on the basis of
passing simple data items between registers and carrying out simple opera-
tions on them, where these data items function either as pointers to the code
of functions or other complex data structures, or as values, instead of pass-
ing the functions and complex data structures themselves. Perhaps the most
valuable aspect of the π-calculus is that it gives us an abstract, mathematical
way to model this kind of computing, and so allows us to reason about such
implementations in a formal way.

It is debatable whether the π-calculus can be extended in such a way as
to make representations of complex constructions easier. Summation and τ -
actions produce semantic difficulties, and so it might be worth investigating
some other external choice operator. Even with summation and conditional
guards we could not build the infinite functions and operators. The question
of how best to extend the calculus in order to make it more useful therefore
remains open. Similar open problem is the extension of π-calculus to include
some notions of type.

Method of formal calculus [1] stems from the set of combinators forming
a syntax. The weakness of these methods is already in the use of this set of
combinators rather then another.

In the category Sproc a synchronous product is choosen to represent the
interaction of processes for the following reasons:

• Buffers are taken as the identity morphisms. This is in accordance
both with synchronous processes, where buffers are without delay –
they behave like hardware wires, also in the case where are buffered
processes, in which they are insensitive to delay. Also it satisfies asyn-
chronous case, where identity morphisms are also synchronous buffers.

• Milner‘s synchronous calculus SCCS is very expressive. Asynchronous
calculi such as CCS and CSP can be derived from SCCS. Therefore we
can take synchronous interaction as a basic notion.

124 ANITA VERBOVÁ AND RÓBERT HUŽVÁR

Instead of considering labels to be appropriate names, a typed framework
[12] is used to take a more structural view of concurrent processes. Interpre-
tations of type constructors in interaction categories require set-theoretic
constructions on the set of labels (sorts) associated with each type. A carte-
sian product of sorts (pairing of labels) is used to express the concurrent exe-
cution of some distributed actions. Coproduct is used to tag actions to allow
controlled choices. Multisets of actions are used to support replication of pro-
cesses. Product, coproduct and multisets represent in the notions of linear
types [16] multiplicatives, additives and exponentials respectively. In that
way we can generate such a set of categorical combinators for process algebra,
which is free of labels. Therefore we should use categorical combinators for
the translation of functional programs in a variable-free fashion.

Interaction categories clearly distinguish processes (computational enti-
ties) and specifications (logical entities).

Hoare in CSP considers processes with one input and one output, designed
to be connected in a pipeline – this is very close to the view indicated in
interaction categories. The same divergence problem arises in the case of
interaction categories as in CSP. Two conditions are defined to avoid this si-
tuation. For the process p; q must hold that p have to be left-guarded and q

right-guarded. In that case p cannot perform an infinite sequence of actions in
its right port without doing some actions in its left port; process q is defined
symmetrically. These conditions ensure that the process p; q does not diverge.
Therefore if we adjust this idea to interaction categories, then we require
all morphisms to be left- and right-guarded, so that all composites are non-
divergent.

Here we would like to compare categories SProc and Buf. In contrast
to the category SProc, processes A → B in the category Buf are oriented –
channels in A are input channels, these in B are output channels.

In SProc the identity process is a process that continually offers to do
the same action on both sides of its interface — it can be seen as a buffer
that immediately sends on any message it receives. Because it is synchronous,
the receive and the send actions happen at the same time, and so it cannot
be distinguished whether a message was sent through the buffer or not. In
an asynchronous setting a buffer will not generally work as an identity for
composition.

ON METODS OF DESCRIBING CONCURRENT SYSTEMS 125

Acknowledgement

This work was supported by VEGA Grant No.1/0175/08: Behavioral cat-
egorical models for complex program systems.

References

[1] Abramsky, S. What are the fundamental structures of concurrency? we still don’t

know! In Electronic Notes in Theoretical Computer Science, 162 (2006), pp. 37–41.

[2] Abramsky, S., Gay, S., and Nagarajan, R. Interaction categories and the founda-

tions of typed concurrent programming. In Proceedings of the NATO Advanced Study

Institute on Deductive program design (Secaucus, NJ, USA, 1996), Springer-Verlag New

York, Inc., pp. 35–113.

[3] Baeten, J. C. M. A brief history of process algebra. Theor. Comput. Sci. 335, 2-3

(2005), 131–146.

[4] Brauer, W., Reisig, W., and Rozenberg, G., Eds. Petri Nets: Central Models and

Their Properties, Advances in Petri Nets 1986, Part II, Proceedings of an Advanced

Course, Bad Honnef, 8.-19. September 1986 (1987), vol. 255 of Lecture Notes in Com-

puter Science, Springer.

[5] Hoare, C. A. R. Communicating Sequential Processes. Prentice Hall, 1985.

[6] Joyal, A., Street, R., and Verity, D. Traced monoidal categories. Math. Proc.

Cambridge Philos. Soc. 119, 3 (1996), 447–468.

[7] Milner, R. A Calculus of Communicating Systems, vol. 92 of Lecture Notes in Com-

puter Science. Springer-Verlag, Berlin, 1980.

[8] Milner, R. Communication and Concurrency. 1989.

[9] Milner, R. Functions as processes. In ICALP (1990), pp. 167–180.

[10] Parrow, J. An Introduction to the π-Calculus, in The Handbook of Process Algebra.

Elsevier, Amsterdam, 2001, p. 479.

[11] Ross, B. J. Mwsccs: A stochastic concurrent music language. In In: Proc. II Brazilian

Symposium on Computer Music (1995).

[12] Schweimeier, R. A categorical framework for typing ccs-style process communication.

Electr. Notes Theor. Comput. Sci. 68, 1 (2002).

[13] Selinger, P. First-order axioms for asynchrony. In International Conference on Con-

currency Theory (1997), pp. 376–390.

[14] Selinger, P. Categorical structure of asynchrony. Electr. Notes Theor. Comput. Sci.

20 (1999).

[15] Verbová, A., Hužvár, R., and Slodičák, V. On describing asynchronous processes

by traced monoidal categories. In Proceedings of CSE 2008 International Scientific Con-

ference on Computer Science and Engineering (2008), elfa, s.r.o. Košice, pp. 99–106.

[16] Verbová, A., Novitzká, V., and Slodičák, V. From linear sequent calculus to

proof nets. In Informatics 2007, Proceedings of the Ninth International Conference on

Informatics (2007), Slovak Society for Applied Cybernetics and Informatics Bratislava,

pp. 100–107.

126 ANITA VERBOVÁ AND RÓBERT HUŽVÁR

[17] Winskel, G., and Nielsen, M. Models for concurrency. In Handbook of Logic in Com-

puter Science, S. Abramsky, D. Gabbay, and T. S. E. Maibaum, Eds. Oxford University

Press, 1995.

Department of Computers and Informatics, Technical University of Košice,

Slovakia

E-mail address: anita.verbova@tuke.sk

Department of Computers and Informatics, Technical University of Košice,

Slovakia

E-mail address: robert.huzvar@tuke.sk

