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THE RECONSTRUCTION OF A CONTRACTED ABSTRACT
SYNTAX TREE

RÓBERT KITLEI

Abstract. Syntax trees are commonly used by compilers to represent
the structure of the source code of a program, but they are not convenient
enough for other tasks. One such task is refactoring, a technique to improve
program code by changing its structure.

In this paper, we shortly describe a representation of the abstract syntax
tree (AST), which is better suited for the needs of refactoring. This is
achieved by contracting nodes and edges in the tree. The representation
serves as the basis of the back-end of a prototype Erlang refactoring tool,
however, it is adaptable to languages different from Erlang.

In turn, we introduce an algorithm to reconstruct the AST from the
representation. This is required in turn to reproduce the source code, the
ultimate step of refactoring.

1. Introduction

The ASTs constructed using context-free grammars is the representation
most applications choose to describe the syntactic structure of source code of
programming languages. Most applications use standard lexers and parsers
that are designed with the goals of compilers in mind. Compilers – and there-
fore their standard tools – drop inessential infomation such as punctuation and
whitespace after using them to determine token boundaries. Such information
is important if one has to preserve the source code as a whole. Also, ASTs are
not designed to support searching, as this feature is not required in compilers,
the most common users of ASTs.

The above representation does not sufficiently support some applications.
An alternative representation is proposed by the Erlang refactoring group at
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Eötvös Loránd University (Budapest, Hungary), although this representation
has proved useful for purposes other than refactoring as well. The group
proposed this representation after previous experience with refactoring [5, 7].
Details about the representation and the refactoring tool can be found in [4].

Although the new representation is more convenient for many purposes,
e.g. refactoring, there was a trade-off between usability and functionality,
described in detail in section 3.1. Namely, for standard compiler tools, pretty-
printing the source from the constructed AST is straightforward using a depth-
first algorithm. However, since the new representation does not have all child
edges of a node in order, a more elaborate algorithm was needed, which is
described in section 3.

The structure of the paper is as follows. In section 2, the representation
of the graph is described to such depth as is necessary for understanding the
rest of the paper. Section 3.1 poses the central problem of the paper. The
rest of section 3 proposes an algorithm that solves this problem. Sections 3.2
and 3.4 in this section describe the contribution of the paper. Finally, section
4 lists related work.

2. Representation structure

2.1. Node and edge contractions. ASTs built on top of source codes are
typically created by compilers in compilation time. Such syntax trees are
discarded after they have been used, and their construction does not involve
complex traversals: they follow the construction of the tree. There are, how-
ever, applications in which the role of ASTs are augmented. In refactoring,
for example, tree traversals are extensively used, because a lot of information
is required that can be acquired from different locations.

In order to facilitate these traversals, a new representation of the AST was
introduced, which is described in detail in [4]. Here we give an overview of the
relevant parts of the representation.

ASTs inherently involve parts that are unnecessary for information collec-
tion, or are structured so that they make it more tedious. One obvious case
is that of chain rules: the information contained in them could be expressed
as a single node, yet the traversing code has to be different for each node that
occurs on the way.

Another case can be described by their functionality: the edges of the
nodes can be grouped so that one traversal should follow exactly those that are
in one group. To give a concrete example, clauses in Erlang have parameters,
guard expressions and a body, and there are associated tokens: parentheses
and an arrow. Yet the actual appearance of the clauses can be vastly different,
see Figures 1 and 2. When collecting information, often either all parameters
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if
X == 1 -> Y = 2;
true -> Y = 3

end

Figure 1. If clauses.

to_list(Text) when is_atom(Text) -> atom_to_list(Text);
to_list(Text) when is_integer(Text) -> integer_to_list(Text);
to_list(Text) when is_float(Text) -> float_to_list(Text);
to_list(Text) when is_list(Text) -> Text.

Figure 2. Function clauses with guards.

or all guard expressions are required at a time during a traversal pass, but
seldom both at the same time of the traversal. Therefore, it is natural to
partition the edges into groups along their uses. Since the partitions depend
on the traversals used, the programmer has to decide by hand how groups
should be made. This way, only as few groups have to be introduced as
needed in a given application.

Another way to make the representation more compact is to contract rep-
etitions. Repetitions are common constructs in programming languages: they
are repeated uses of a rule with intercalated tokens as separators. Instead
of having a slanted tree as constructed by an AST, it is more convenient for
traversal purposes to represent them by a parent node with all of the repeated
nodes and the intermediate tokens as its children. As a matter of fact, in the
example in the above paragraph the parameters and guard expressions are
already a result of such a contraction. These contractions are similar to the
list formation annotations in Overbey and Johnson [2].

Performing the above contractions has two main advantages. One is that
much fewer cases have to be considered. In the case of Erlang, the gram-
mar contained 69 nonterminals, which was reduced to three contracted node
groups: forms, clauses and expressions.

Since the contraction groups are different for each language (and may even
differ in each application, depending on the needed level of detail), it is impor-
tant that the approach should be adaptable to a wide range of grammars. This
is one of the reasons why an XML representation was chosen. The grammar
rules, the contraction groups and the edge labels are described in this file. The
scanner and parser are automatically generated from this file. The contracted
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Figure 3. Repetition in the expression 1,2,3.

structure is automatically constructed during parse time (not converted from
an AST).

2.2. Representation of the contracted AST. The inner nodes of the con-
tracted AST are the contracted nodes, which also contain the originating non-
terminal as information. The leaf nodes of the contracted AST are the tokens,
which contain the token text and the whitespace before and after the token.
The nodes are connected by labelled edges; the labels determine the contrac-
tion classes they can connect.

Contractions do not fully preserve edge ordering: order is preserved only
between the edges with the same label, not between different labels. This is
why the original AST cannot be restored easily: in Figure 4b, it is not possible
to determine whether the tokens of the clause come before, after or in between
the expressions. To make it possible, more information about the structure of
the contracted nodes is needed.

The lack of order between label groups is the result of using a database
for storage, which is required for fast queries. However, it is expected to be a
good trade-off, since the exact AST order of the nodes is seldom needed (most
importantly, when reprinting the contents of the graph into a file), while it
provides queries in linear time of their length. The order of the links with the
same label, which is important during queries, is retained.
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(a) Part of an automatically printed contracted AST. The
order of the edges between groups in unknown.
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(b) The nodes rearranged in the right order. The order
within the groups is retained. The tokens read:
f(1) -> 1.

Figure 4. A contracted AST node with a body, a pattern, a
name and three clex edges.

3. Reconstruction of the AST

3.1. Problem when reproducing the original token order. In the previ-
ous versions of RefactorErl, the token nodes in a file were linked by edges with
the special label next, with the first token linked from the file by first token.
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This solved the problem of getting the original tokens: they could be acquired
by getting the first token, then iterating on the next edges until there were
none left. Another related question, determining the token at a given position
in the file, was also solved easily by iteration on the next edges, and calculating
the remaining positions. However, these edges have proved to be too difficult
to handle when manipulating the syntax tree: the next edges would have to
be synchronised each time parts of the syntax tree were inserted, removed or
moved. Also, when manipulating repeat constructs such as lists, some tokens
(in the case of lists, the separating commas) would have to be dealt with.

The approach taken in this paper is different. Instead of repairing the
next edge links, they are omitted altogether. This immediately solves the
problem that occurs when manipulating the syntax tree, because the adjacent
tokens are not linked anymore. At the same time, the two other questions are
reopened: how to get the token by position and how to print the file. In the
rest of the chapter, a method is presented to reproduce the AST. This also
yields the original tokens as the front of the tree. Using the original tokens,
both questions are trivially answered.

3.2. Grammar rule constructs. The chosen grammar description is close
to a BNF description. The grammar rules are grouped by what contraction
group their head belongs to. Rules, of course, may have more alternatives.
The right hand sides of rules consist of a sequence of the following:

• tokens, that contain the token node label,
• symbols, that contain the child symbol’s nonterminal and the edge

label,
• optional constructs, sequences that either appear or not in a con-

crete instance and
• repeat constructs that contain a symbol and a token; its instances

are several (at least one) symbols with tokens intercalated.
Since optionals and repeats may contain one another, we shall refer to the
number of contained nestings as the depth of the construct.

As an example that contains both constructs described above, let us exam-
ine the structure of lists. The structure of lists is described as follows. Lists
start with an opening bracket token and end with a closing bracket token.
Between them is an optional construct. The optional part consists of a repeat
construct. The repeat construct uses comma tokens to separate symbols that
are linked using “sub” edges from the parent node. The portion of the actual
Erlang code that shows the above structure is shown in figure 5 in order to
have a more concise overview.

Lists can be empty lists, or lists containing expression symbols separated
by comment tokens. In the first case, the optional part is not present. In
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[{token,"op_bracket"},
{optional,[{repeat,"comma","sub"}]},
{token,"cl_bracket"}];

Figure 5. The structure of lists as an Erlang structure used
in the actual implementation. Slightly abridged.

the second case, the optional is present. If there is one element in the re-
peat construct, there is exactly one symbol element present which denotes the
expression.

[︸︷︷︸
token

︸︷︷︸
empty optional

]︸︷︷︸
token

[︸︷︷︸
token

1︸︷︷︸
repeat in optional

]︸︷︷︸
token

[︸︷︷︸
token

1, 2, 3, 4, 5, 6, 7, 8 + 9, f()︸ ︷︷ ︸
repeat in optional

]︸︷︷︸
token

The grammar description contains the following restrictions. First, no
optionals may start with another optional. Second, two repeats in the same
rule may not contain the same symbols, nor tokens. Third, no constructs
(optionals and repeats) may have a depth of more than two.

The main reason for these restrictions is that they help prevent ambigui-
ties, as seen in the absence and multichoice constructs in the description or
reconstruction.

The third restriction is not necessary for theoretical, but for practical
purposes: it is there to keep the processing algorithm described later at a
manageable size and complexity while not deducing the expressive power of the
constructs too much. Indeed, for a construct at any depth, a new nonterminal
can be introduced to take its place, thereby reducing the depth of the parent
construct. This way, the depth of the constructs could be limited to one;
practice has shown that two is a reasonable limit.

The grammar is expressive enough, as even without the constructs it has
Chomsky class L2.

The first restriction can be enforced by the DTD of the XML. The third
restriction could also be enforced if the inner optionals and repeats would have
different names, at the expense of comfort.



112 RÓBERT KITLEI

3.3. Derived constructs used in reconstruction. The rule descriptions
above are sufficient in most cases to reconstruct the original node order of a
node in the contracted AST by looking at only the nonterminal of the node,
the node’s child links and the rule description. Yet there are two types of rules
where these data are not enough. In these cases, another kinds of constructs
have to be prepared before reconstruction. These structural constructs are
automatically derived from the syntax description like the scanner and the
parser. Both of these constructs require information about the children nodes,
and conglomerate several grammar rules.

The first skeleton construct is called absence multi-rule construct be-
cause it selects the appropriate grammar rule based on the absence or presence
of a token or a symbol. The following example shows a fun-expression that
can either have explicit clauses (in the first case) or can be an implicit fun
expression, just showing the function name and arity (the second case). Here,
the only way to decide which rule to use is to check for the end token: if it is
present, it is the first rule, if it is not, the second.

fun︸︷︷︸
token

(1) → ok; (2) → error︸ ︷︷ ︸
repeat

end︸︷︷︸
token

fun︸︷︷︸
token

another module/2︸ ︷︷ ︸
repeat

Named functions have the name of the function as a subexpression in the
beginning of each clause. The clauses of unnamed functions start immediately
with the parameter list in parentheses. The only way to decide between them
is to search for the symbol at the beginning. (Note that symbols also contain
the link label. Its omission, similar to calling the parameter list a “repeat in
optional,” is a simplification.)

search︸ ︷︷ ︸
symbol

(︸︷︷︸
token

Structure, Pattern︸ ︷︷ ︸
repeat in optional

)︸︷︷︸
token

→︸︷︷︸
token

...︸︷︷︸
repeat

(︸︷︷︸
token

Structure, Pattern︸ ︷︷ ︸
repeat in optional

)︸︷︷︸
token

→︸︷︷︸
token

...︸︷︷︸
repeat

The second skeleton construct the multichoice multi-rule construct.
In it, there is a list of possible present symbols or tokens. The actual rule can
be decided depending on which of the symbols (or tokens) occur. The symbols
(or tokens) listed are mutually exclusive: one and only one occurs, provided
that the source is valid.

Both if and case clauses are branch clauses and they may look identical.
Similarity occurs when the case clause has no guard and the guard of the
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if expression is a single variable. They can be separated only if they make
different links to their first symbol as “guard” and “pattern” respectively.

Infix expressions provide an example for a token-based multichoice con-
struct. Logical operators andalso and orelse (and several other operators)
can function on the same pair of arguments. Here, checking all the possible
token types, exactly one will be present, and this of course determines the
operation as well.

3.4. AST reconstruction. From the XML syntax description, a node struc-
ture skeleton is automatically generated. It assigns to each contracted node
type either a one-rule structure, or an absence or multichoice multi-rule con-
struct.

The syntax tree can be reconstructed using a recursive algorithm. Starting
from the node in the tree that corresponds to the file, we do the following.

(1) We determine the structure of the actual rule which is used. If a one-
rule structure is assigned to the parent node, it is the structure; if a
multi-rule construct describes it, we have to check the children of the
node as well.

(2) The sequence in the structure is processed.
(a) For any token or symbol, take the next fitting one.
(b) For repeats, take all symbols (altogether n) with the appropriate

edge label, and take n− 1 fitting tokens.
(c) For optionals beginning with a token or symbol, use the optional

sequence if a fitting child is present.

Tokens’ edge labels are determined by the type of the parent node. We call
a token node fitting the token in the description if it is linked to the parent
node by such a link. A symbol is called fitting in a similar way, except that
for symbols, the description explicitly contains their expected links.

Using the above algorithm, the original AST can be recovered. Strictly
speaking, this is not the AST, as chain rules are still not expanded; this does
not add significant information, and can easily be done, should the need arise.

The front of the AST contains the token nodes in their original order.
Since all whitespace information is contained in the tokens, and punctuation
tokens are not omitted, the whole original file can be reprinted. Determining
the token at a given position of the file can be done by doing a linear search
on the original tokens in order.

With an additional layer between the lexer and the parser, it is possible to
handle preprocessor constructs such as include files and macros (even ones that
cross-cut the syntax). Additional information relating to such preprocessor
constructs can be stored in the graph as well. During reconstruction, finding
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a node that originates from such a construct does not pose a challenge, as
these constructs mostly involve directly storing all of their relevant tokens.

{absence, "end", token,
[{token, "fun"}, {repeat, ";", "exprcl"}, {token, "end"}],
[{token, "fun"}, {symbol, "sub"}]

}

Figure 6. The skeleton description of a fun expression.
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Figure 7. Graph representation of a function expression with
three clauses. One instance of such a function is the following.
fun
(X) when X > 0 -> ok, X;
(X) when X < 0 -> ok, -X;
(0) -> error
end

3.5. Example. Figure 7 shows a fun expression with three subclauses in the
graph representation. The nodes representing the clauses are not in order,
as ordering exists only within the elex and the exprcl edge classes. Let us
use the algorithm described in Section 3.4 in order to recover the order of the
nodes.

The description of the fun expression in 6 contains a skeleton construct. In
order to eliminate it, we have to check whether the actual structure contains
an end token. It does, therefore the first of the two descriptions is chosen.
This description starts with a token, therefore the first element in the order
is the first token that is connected to the expr parent node. The label of
the connecting edge is determined by class of the parent node, expr: elex.
Thus, the first child node in order is the one connected by elex/1. Next
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in the description is a repeat construct with the exprcl symbol link and
the semicolon. For this, we take all three nodes that are linked by exprcl,
and one less token (linked, as before, by elex/1). The restored order is the
symbols with the tokens intercalated between them. The last element of the
description is another token, for which we take the last remaining token. Since
all the description and the actual nodes are consumed, the representation is
syntactically valid. The restored order can be seen in Figure 8; restoration is
continued for all child nodes.

expr
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fun
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clause

exprcl/1

token

;

elex/2

clause

exprcl/2

token

;

elex/3
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exprcl/3

token

end

elex/4

Figure 8. Graph representation of a function expression with
three clauses.

4. Related work

The design of the representation was shaped through years of experimen-
tation and experience with refactoring functional programs. The first refac-
toring tools produced at Eötvös Loránd University [5, 7] used standard ASTs
for representing the syntax. It became evident that such a representation is
not convenient enough for refactoring purposes, and a new design was needed.
The resulting design [4] used the contracted graph described in section 2 as
representation of the syntax tree, but it relied on superfluous next edges to
maintain the order of tokens. Section 3.1 argues why having these was unde-
sirable, and the whole of section 3 describes the new structures and algorithms
that were necessary to avoid them.

The Java language tools srcML [8], JavaML [3] and JaML [1] use XML to
model Java source code. Since XML naturally outlines a tree structure, these
representations conserve node order, which enables them to easily reprint the
source.

Since the representation outlined in this paper differs so much from the
usual approach taken – using a contracted representation instead of the more
conventional ASTs – the problem of reproducing the original nodes in order
does not appear in other works, as this task is trivial when using an AST.
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