
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 2, 2008

RECURSIVE AND DYNAMIC STRUCTURES IN GENERIC
PROGRAMMING

ÁBEL SINKOVICS AND ZOLTÁN PORKOLÁB

Abstract. Generic programming – an emerging new programming para-
digm – best known from Standard Template Library as an essential part
of C++ provides an opportunity to extend libraries in an efficient way.
Both containers (abstract data structures) and algorithms working on them
could be independently designed and implemented at O(1) cost. Unfortu-
nately, smoothless cooperation of generic programming and object orien-
tation is still an open problem. In this paper we will focus on reducing
development and maintenance costs of systems using generative program-
ming with recursive data structures to avoid multiple implementations of
the components. For cases when separate implementation of algorithms
can’t be avoided we provide a system protecting us against changing exist-
ing code during extension. Providing such a design is not a trivial problem
using currently available tools. We will show a possible solution using a
graphic library to demonstrate the problem and our solution with.

1. Introduction

In software development, working with recursive data structures is an ubiq-
uitous problem. Graphic editors, web browsers, office software, etc. have to
work with complex systems with sets of different (including recursive) com-
ponent types. These software have to deal with algorithms operating on the
components. The longest and most time and money consuming part of a soft-
ware system’s life is maintenance, and with poor design it is hard to maintain
and extension is always expensive. Extending the system with new compo-
nents, all algorithms have to be implemented for them. Extending the system

Received by the editors: September 14, 2008.
2000 Mathematics Subject Classification. 68N15, 68N19.
1998 CR Categories and Descriptors. D.2 [Software Engineering]: D.2.3 Coding

tools and techniques – Object-oriented and generative programming D.3 [Programming
Languages]: D.3.2 Language Classification – C++;

Key words and phrases. Generic programming, Software engineering, Expression problem,
C++.

This paper has been presented at the 7th Joint Conference on Mathematics and Computer
Science (7th MaCS), Cluj-Napoca, Romania, July 3-6, 2008.

93



94 ÁBEL SINKOVICS AND ZOLTÁN PORKOLÁB

with new algorithms, they have to be implemented for every component. In-
dependent extension could make development and maintenance faster, more
flexible, and cheaper. In this paper we will examine commonly used design
patterns and will introduce a new one supporting independent development
and extension in several cases.

The rest of the paper is organized as follows: In this section we present
a practical example of the problem after which we analyse currently existing
solutions in section 2. We present our solution in section 3 and use it to solve
the practical example in section 3.3. We analyse runtime performance of our
solution in section 3.4 and finally we summarize our results in section 4.

As a motivating example we chose a graphic application since it has every
feature required to demonstrate the problem. Our sample graphic application
supports different shapes and transformations. It is not uncommon to define
such a system with at least 20 different shapes and 50 transformations. One
of the suggested design methods [3] [10] [12] is using the Interpreter design
pattern [15], which indicates to create an abstract base class called Shape,
inherit all shapes from it and implement the transformations using virtual
functions. The other suggested method [3] [10] [12] is using the Visitor design
pattern [15], which indicates to create an abstract base class called Visitor
for transformations with a virtual function for every shape type. For example
if the system has Oval shape, Visitor should have a virtual function called
visitOval accepting Oval shapes. Every transformation should be imple-
mented in a different class inherited from Visitor and implement the virtual
functions.

The example above refers to a well-known scaling problem of object-
oriented library design. Philip Wadler called it the expression problem on
the Java-Genericity mailing list for the first time in 1998 [13]. Given a set of
recursive data structures and a set of operations operating on the data struc-
tures and a design is required which supports extension of both data types
and operations independently. Extension (or modification) of one set should
not affect the other and should not imply changes in existing code.

Zenger and Odersky presented a list of requirements [3] for a solution
which we have extended with an extra item. Our main goal is to find a design
which (1) is extensible with algorithms (transformations in the example)
and data types (shapes in the example). (2) is independently extensible.
Extensions shouldn’t imply changes to previously written code. None of the
data types should be changed because of writing a new operation and none of
the operations should be changed because of creating a new data type. (3)
is type safe. Validity of the operations are check at compile time eliminating
runtime errors which can remain untested in practice causing embarrassing
and commonly expensive issues in production. (4) is effective. When types



RECURSIVE AND DYNAMIC STRUCTURES IN GENERIC PROGRAMMING 95

are available at compile-time, the efficiency of the compiled code should be
similar to hand-written code allowing automatic optimalisation of the code.
(5) supports separate compilation. Different components of the system (dif-
ferent data types and algorithms) can be compiled independently from each
other. (6) supports the reduction of the number of implementations where
possible by using generic algorithms to describe similar implementations. This
is our extension to Zenger’s and Odersky’s list. Generic algorithms – first in-
troduced in Ada – can support data types which are written independently of
the algorithm, maybe later after the creation of the algorithm.

2. Existing solutions

Matthias Zenger and Martin Odersky collected a set of (partial) solutions
for the problem in [3]. We will go through them and see their benefits and
drawbacks. Structural and functional decomposition are the two most impor-
tant ones since the rest of the approaches are extensions or improvements of
them.

2.1. Structural decomposition. Structural decomposition uses the Inter-
preter design pattern [15]. It requires a base class from which every data type
is inherited, and the base class has a pure virtual function for every algorithm.
Every data type implements it’s own version of the algorithm.

Extension with a new data type is easy, a new class implementing the data
type need to be created. One of the disadvantages is that every algorithm has
to be implemented for it, but the main problem with this solution is that every
class has to be changed during extension with a new algorithm: a new virtual
function has to be created in the base class, and it has to be implemented in
every class inherited from the base class.

2.2. Functional decomposition. Functional decomposition uses the Visitor
desing pattern [15]. There are no restrictions for data types. Each algorithm
is implemented by a class with multiple member functions – one for every
data type. The objects of these classes are called visitors, and the classes
are inherited from a base class which has a pure virtual function for every
data type. These pure virtual functions are overridden in the visitor classes to
implement the algorithm for the data types. To run an algorithm for a data
object a visitor object needs to be created and it’s member function for the
data object needs to be called.

Extension with a new algorithm is easy, a new class has to be created for
the new algorithm. It has the same problem as structural decomposition: ev-
ery algorithm has to be implemented for every data type. The main problem
with this solution is that extension with a new data type is difficult: every
visitor has to be extended with a new member function.



96 ÁBEL SINKOVICS AND ZOLTÁN PORKOLÁB

(1) Extensible visitors Krishnamurti, Felleisen and Friedman [2] extended
the Visitor pattern [15] to be more flexible. They refined the way to introduce
new data types: visitors don’t need to be changed, the set of member functions
can be extended by subclassing. The main problem with this solution is that
it is still not type safe – it requires casting. Zenger and Odersky advanced the
approach [17] by adding default cases to types and visitors to handle future
extensions, but was still not satisfactory because of allowing application of
visitors to data variants they were not designed for.
(2) External extension of classes Some programming languages [16] sup-
port external extensions of classes making possible extension of a class without
changing it’s code. Defining functions externally requires default implementa-
tions making separate compilation impossible.
(3) Reflection based approach Palsberg and Jay advanced the Visitor
pattern [15] to Walkabouts [11] which use reflection to iterate over attributes
of unsupported objects, but their solution has no static type safety because of
using reflection.
(4) Self types Kim B. Bruce presented a way [10] of using a type construct
called ThisType to advance the Interpreter design pattern [15]. ThisType
changes in subclasses and the signature of inherited methods using ThisType
ensure better static type safety, but the dynamic type of an object has to
be available at compile time when calling a method expecting an object with
ThisType as it’s static type.
(5) Generics based approaches Mads Torgersen used generic classes [12].
He presented an approach based on structural decomposition (which he called
data-centered) and one on functional decomposition (he called operation-
centered). They were both difficult to use for programmers and did not support
independent extensibility.

3. Our solution

We approached the problem with generic programming but in a different
way Mads Torgersen did [12]: we rely on the term concept defined in [4]. A
concept is a set of requirements for a class, and a class models the concept if it
meets the requirements. These requirements can be syntactic, semantic, etc.
Syntactic requirements will be supported in the upcoming standard of C++
called C++0x [19] [20] [21]. We assume the existence of a concept every data
type (including recursive ones) models. A data type can be any class model
the concept and an operation can be any function relying only on the concept.

An example for this in the C++ Standard Template Library [9]: a class
models the forward iterator concept if it can read through a sequence of objects
in one direction. A container is forward iterable if it provides a subclass
modelling the forward iterator concept and reading through the elements of



RECURSIVE AND DYNAMIC STRUCTURES IN GENERIC PROGRAMMING 97

the container. Algorithms use these iterators to access the containers (which
they know nothing more about), they rely only on the concept.

These systems can be extended in non-intrusive way: new data types can
be introduced by creating a new class modelling the concept, new operations
can be introduced by writing new generic functions relying only on the concept.
This solution is also efficient, since in most cases the compiler knows every type
at compile time and can heavily optimise the program.

3.1. Recursive data types. We examine creation of recursive data types for
this design. Recursive data types contain one or more data objects (modelling
the concept) and are data objects themselves, so recursive data types model
the concept as well. When the type of the child objects are known at compile
time the interface of the children can be used directly: all types are known at
compile time. When the types of the child objects are unknown at compile
time the only thing the recursive object can assume is that they model the
concept. Not only their dynamic but also their static type is unknown at
compile time (there is no common base class for data types).

Mat Marcus, Jaakko Järvi and Sean Parent use the Bridge design pattern
in [4]. The goal of this pattern is separation of abstraction (in our case the
concept) and implementation (classes modelling the concept). They connect
static and dynamic polymorphism by creating an abstract base class for every
class modelling the concept and a generic wrapper class which is a subclass of
the base class and can be instantiated by any class modelling the concept. The
abstract base class provides pure virtual functions for every operation required
by the concept and wrappers implement these virtual functions by using the
wrapped object’s interface since every wrapper knows the static type of the
wrapped class at compile time.

Inheritance between the base class and wrappers implement dynamic, in-
stantiation of the generic wrapper for each data type implements static poly-
morphism. Using this idea recursive data types could be implemented when
static type of children is unknown at compile time using smart reference ob-
jects which could be special objects containing a pointer to wrapper objects
and model the concept themselves by calling virtual functions of the wrappers.

Concepts requiring the existence of subtypes modelling another concept
(e.g. STL containers need to have an iterator type [9]) make creation of the
abstract base class more difficult: since the static type of the wrapped object
is not known at compile time, neither does the compiler know the static type
of the subtype. The open question is what type should the common base class
provide as the subtype. Our answer to this question is repetition of the idea
of Marcus, Järvi and Parent [4] for the subtype: the base class could provide
the smart reference class to the real subtype as the subtype. For example
the base class for STL containers could provide the smart reference class for



98 ÁBEL SINKOVICS AND ZOLTÁN PORKOLÁB

iterators as it’s iterator type and instances of STL algorithms not knowing
the static type of the container at compile time could access the iterators
through smart reference objects. For example a container could be created
accepting any random access STL container [9] using this solution. First
iterators of these containers need to be wrapped, so a base class is required
for random access iterators. The codes here are not complete classes, just
examples demonstrating the logic of the solution, and to keep examples simple
we assume that the container’s elements are ints.

class RandomAccessIteratorBase {
public:

virtual int operator*() const = 0;
virtual int& operator*() = 0;

};

The wrapper template needs to be implemented for iterators:

template <typename T>
class RandomAccessIteratorWrapper :

public RandomAccessIteratorBase {
public:

RandomAccessIteratorWrapper(const T& t) : _wrappedObject(t) {}
virtual int operator*() const { return *_wrappedObject; }
virtual int& operator*() { return *_wrappedObject; }

private:
T _wrappedObject;

};

Finally a smart reference class needs to be created simulating a random
access iterator and calling a wrapper in the background. (We use shared ptr
from Boost [18] as an underlying smart pointer implementation). We fo-
cus on the core idea here and skip other parts (e.g. copy constructor for
RandomAccessIterator) which a real implementation has to deal with.

class RandomAccessIterator {
public:

template <typename T> RandomAccessIterator(const T& t) :
_wrapped(new RandomAccessIteratorWrapper<T>(t)) {}

int operator*() { return _wrapped->operator*(); }
int& operator*() const { return _wrapped->operator*(); }

private:
boost::shared_ptr<RandomAccessIteratorBase> _wrapped;

};

Now since iterators have been wrapped the wrapper for containers can be
created using the iterator wrapper:



RECURSIVE AND DYNAMIC STRUCTURES IN GENERIC PROGRAMMING 99

class RandomAccessContainerBase {
public:

virtual RandomAccessIterator begin() = 0;
virtual RandomAccessIterator end() = 0;

};
template <typename T> class RandomAccessContainerWrapper :

public RandomAccessContainerBase {
public:

RandomAccessContainerWrapper(const T& t) : _wrapped(t) {}
virtual RandomAccessIterator begin()
{ return _wrapped.begin(); }
virtual RandomAccessIterator end() { return _wrapped.end(); }

private:
T _wrapped;

};
class RandomAccessContainer {
public:

template <typename T> RandomAccessContainer(const T& t) :
_wrapped(new RandomAccessContainerWrapper<T>(t)) {}

RandomAccessIterator begin() { return _wrapped->begin(); }
RandomAccessIterator end() { return _wrapped->end(); }

private:
boost::shared_ptr<RandomAccessContainerBase> _wrapped;

};

Every STL algorithm [9] for random access containers could work with
these wrappers and accept any random access container – without recompiling
the algorithm itself. It has a runtime cost but it still acceptable (we have
implemented the motivating example using this and measured the runtime
cost – see table 1 and table 2).

3.2. Evaluation of our solution against the requirements. We have a
set of requirements (Zenger’s and Odersky’s list with an extension in section
3.3): (1) Extensibility with algorithms and data types. Algorithms
can be added by implementing new generic functions, data types can be added
by creating new classes modelling the concept. (2) Independent exten-
sion. Extension with a new generic function or a new class has no effect on
data types or other functions. (3) Static type safety. Validity of call-
ing a generic function on a data type is checked when the code calling the
function is compiled. Data types have to model the concept and algorithms
have to rely only on the concept. In case algorithms rely on a refinement of
the original concept data types they are called with have to model that as
well. When using unrestricted containers the type of the objects is checked



100 ÁBEL SINKOVICS AND ZOLTÁN PORKOLÁB

when the objects are placed in the container, therefore algorithms operating
on the elements of the container can assume that every element models the
concept. (4) Efficiency. When runtime type of data objects is known at
compile time the compiler can optimise the code. (5) Separate compila-
tion. When using unrestricted containers (or references to objects modelling
the concept) algorithms can be compiled separately from data types they use.
(6) Reduction of the number of implementations Generic algorithms
do this.

3.3. Using this idea for the motivating example. We are going to use
this solution for the motivating example and check how effectively can this
approach solve the problem compared to the commonly used design patterns.
[3] [10] [12] In the motivating example a set of shapes and a set of transfor-
mations operating on the shapes are given. Groups of shapes can be created
which groups are shapes themselves, operations need to support them either.
Shapes are the data types of the expression problem, groups of shapes make
them recursive. Transformations are operations operating on the data types.

Since our solution requires a generic concept for data types, the first step
of applying the approach to a practical problem is finding one. This concept
needs to be generic enough to avoid restriction of the data types since changes
in the concept are likely to indicate changes in every data type and operation.
In our example data types are shapes, a concept has to be generic enough to
describe all kinds of shapes. There are multiple approaches to find one, we
use one we found generic enough here for demonstration.

First we define a concept for vectors: we expect a vector type to have a
scalar type associated with it, the scalar values form a field and the vectors
form a vector space over this field. For example the vector space of two
(or three) dimensional vectors over the field of real numbers satisfy these
requirements. A generic concept for shapes can be defined based on the generic
concept for vectors. Commonly used shapes can be described by a set of
vectors. Here are the shapes of the well-known vector graphics standard the
Scalable Vector Graphics (SVG) format [27]: (1) line can be represented by
it’s two endpoints. (2) triangle can be represented by it’s three vertices.
(3) Rectangles can be represented by two or three vectors (depending on
if their edges are always parallel to the axis of the coordinate system or they
can be rotated by any angle). (4) Ellipses can be represented by their
bounding rectangle, which indicates that they can be represented by two or
three vectors. (5) Circles can be represented by the origin and one point on
the edge. (6) Paths and shapes described by them (polylines, polygons,
bezier curves, splines) can be represented by their control points. As we
can see there are shapes which support extension and reduction of the set of



RECURSIVE AND DYNAMIC STRUCTURES IN GENERIC PROGRAMMING 101

their points (polylines, curves, etc.) and there are shapes where the number
of points are fixed (rectangles, lines, etc.).

Figure 1. Example shapes and vectors describing them

A generic concept for shapes could be defined based on this idea: a shape
is represented by a set of vectors completely describing it’s shape, location,
orientation and size. Each type of shape has a forward iterator type and has
begin() and end() methods similarly to STL containers which can be used
to iterate over the vectors representing the shape. Transformations could be
implemented similarly to algorithms of the Standard Template Library: they
are generic functions using iterators to access the shapes. Here is an example
implementation of translation:
template <typename Shape>
void translate(Shape& shape, typename Shape::Vector d) {

for (typename Shape::iterator i = shape.begin();
i != shape.end(); ++i)

*i += d;
}

Basic shapes like lines, curves, etc. could be implemented by containers of
vectors. For example a rectangle or a line could be implemented by an array
of vectors to provide O(1) random access to the vectors, a polyline could be
implemented by a list of vectors to provide O(1) vector insertion and deletion.
Groups of shapes could be implemented by containers of shapes, but they
have to be shapes themselves. The union of sets representing the contained
shapes could be the set of shapes representing the group itself as a shape
since this is the set of shapes which satisfies the expectations of the abstract
concept for shapes (completely describes the whole group). This indicates
the creation of a special iterator iterating over the elements of the contained
shapes. Unrestricted containers could be implemented by creating generic
wrappers for shapes. Since the type of iterators is not fixed, generic wrappers
have to be created for iterators either.



102 ÁBEL SINKOVICS AND ZOLTÁN PORKOLÁB

3.4. Runtime performance. We implemented the motivating example to
measure the runtime performance of the solution. The test environment was a
Linux box with the GNU C++ compiler version 4.1.2, and the code was com-
piled with level 6 optimalisation. We measured the speed of the translation
of two dimensional points and polylines in homogeneous and in unrestricted
containers. Using homogeneous containers dynamic type of the shapes are
known at compile time making optimalisation possible but restricting flexibil-
ity while unrestricted containers accept any type of shapes but have runtime
costs because of using dynamic polymorphism.

Table 1. Measurements with point shapes

Unrestricted Homogeneous
container (s) container (s)

1 000 shapes
1 000 times 0.373 0.056

10 000 shapes
1 000 times 3.497 0.365

1 000 shapes
10 000 times 3.546 0.950

Table 2. Measurements with polylines

Unrestricted Homogeneous
container (s) container (s)

100 shapes
100 times 0.092 0.059
100 control points

1 000 shapes
100 times 0.675 0.367
100 control points
100 shapes

1 000 times 0.940 0.903
100 control points
100 shapes
100 times 0.901 0.884

1 000 control points

The results are what we expected – runtime polymorphism has a strong
impact on runtime speed (unrestricted containers were 3 - 6 times slower than
homogeneous ones).



RECURSIVE AND DYNAMIC STRUCTURES IN GENERIC PROGRAMMING 103

4. Summary

A large class of software is working on recursive data types. Web browsers,
office software, graphic editors, etc. have different components containing
other components, and perform operations on them. These software need to
be designed carefully, since by applying commonly used design patterns, the
possibility of independent development and extension of these components
and operations could be lost. In this paper we analysed common patterns
and found that they supported independent extension of one of data types or
operations, but not both of them. We analysed other existing approaches as
well to see their benefits and drawbacks. We proposed a new approach using
generic programming in C++ and a solution when a concept is available for
data types. In our approach data types are required to model the concept and
algorithms required to rely only on the concept when accessing data objects.

A drawback of generic programming in C++ is the lack of support for
runtime polymorphism which is required to create unrestricted containers for
data objects supporting any data type. We used the technique described by
Mat Marcus, Jaakko Järvi and Sean Parent in [4] to connect compile time and
runtime polymorphism. We extended the idea with support to unrestricted
containers. After measuring the runtime cost of unrestricted containers we
found that although they were 3-6 times slower than homogeneous ones, but
they are more advantegous in means of flexibility, type safety, and quality of
source code.

References

[1] Thomas Becker, Type Erasure in C++: The Glue between Object-Oriented and Generic
Programming, ECOOP MPOOL workshop, pp.4-8, Berlin, 2007.

[2] Shriram Krishnamurthi, Matthias Felleisen, Daniel P. Friedman, Synthesizing Object-
Oriented and Functional Design to Promote Re-Use, LNCS Vol.1445, p..91-111, 1998.

[3] Matthias Zenger, Martin Odersky, Independently Extensible Solutions to the Expression
Problem, Technical Report IC/2004/33 EPFL, Lausanne, 2004.

[4] Mat Marcus, Jaakko Järvi, Sean Parent, Runtime Polymorphic Generic Programming
- Mixing Objects and Concepts in ConceptC++, ECOOP MPOOL workshop, Berlin,
2007.

[5] Ronald Gracia, Jaakko Järvi, Andrew Lumsdaine, Jeremy Siek, Jeremiah Willcock, A
Comparative Study of Language Support for Generic Programming, ACM SIGPLAN
Notices, Vol.38, Issue 11, OOPSLA conference paper, pp.115-134, Anaheim, 2003.

[6] Scott Meyers, Effective C++, Addison-Wesley, 2005, [220], ISBN: 0321334876
[7] Scott Meyers, More Effective C++, Addison-Wesley, 1996, [336], ISBN: 020163371X
[8] Scott Meyers, Effective STL, Addison-Wesley, 2001, [288], ISBN: 0201749629
[9] Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley, 1997, [1040],

ISBN: 0201327554
[10] Kim B. Bruce, Some challenging typing issues in object-oriented languages. In Proceed-

ings of Workshop on Object-Oriented Development (WOOD’03), volume 82 of Elec-
tronic Notes in Theoretical Computer Science, 2003.



104 ÁBEL SINKOVICS AND ZOLTÁN PORKOLÁB

[11] Jens Palsberg, C. Barry Jay, The Essence of the Visitor Pattern, Proceedings of the
22nd International Computer Software and Applications Conference, p.9-15, August
19-21, 1998

[12] Mads Torgersen, ”The Expression Problem Revisited. Four New Solutions Using Gener-
ics.” In: M. Odersky (ed.): ECOOP 2004 - Object-Oriented Programming (18th Euro-
pean Conference; Oslo, Norway, June 2004; Proceedings). Lecture Notes in Computer
Science 3086, Springer-Verlag, Berlin, 2004, 123-143.

[13] Philip Wadler, The expression problem, Message to Java-genericity electronic mail list,
November 12, 1998.

[14] Philip Wadler, The expression problem: A retraction, Message to Java-genericity elec-
tronic mail list, February 11, 1999.

[15] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Abstraction and reuse
of object-oriented designs, Addison-Wesley, 1994, [416], ISBN: 0201633612

[16] C. Clifton, G. T. Leavens, C. Chambers, T. Millstein, MultiJava: Modular open classes
and symmetric multiple dispatch for Java, Proceedings of the Conference on Object-
Oriented Programming: Systems, Languages, and Applications, pp.130-145, ACM
Press, 2000.

[17] Matthias Zenger, Martin Odersky, Extensible algebraic datatypes with defaults, Proceed-
ings of the International Conference on Functional Programming, Firenze, 2001.

[18] B. Karlsson, Beyond the C++ Standard Library, An Introduction to Boost, Addison-
Wesley, 2005.

[19] Bjarne Stroustrup, The Design of C++0x, C/C++ Users Journal, May, 2005
[20] Douglas Gregor, Bjarne Stroustrup, Concept Checking, Technical Report, N2081,

ISO/IEC SC22/STC1/WG21, Sept, 2006
[21] G. Dos Reis, B. Stroustrup, Specifying C++ concepts, Proceedings of the 33rd ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
2006, pp. 295-308.

[22] ANSI/ISO C++ Committee, Programming Languages – C++, ISO/IEC 14882:1998(E),
American National Standards Institute, 1998.

[23] K. Czarnecki, U. W. Eisenecker, Generative Programming: Methods, Tools and Appli-
cations, Addison-Wesley, 2000.

[24] J. Siek, A. Lumsdaine, Essential Language Support for Generic Programming, Pro-
ceedings of the ACM SIGPLAN 2005 conference on Programming language design and
implementation, New York, USA, pp 73-84.

[25] Bjarne Stroustrup, The Design and Evolution of C++, Addison-Wesley, 1994
[26] D. Vandevoorde, N. M. Josuttis, C++ Templates: The Complete Guide, Addison-

Wesley, 2003.
[27] Scalable Vector Graphics (SVG) 1.1 Specification, W3C Recommendation 14 January

2003.
http://www.w3.org/TR/2003/REC-SVG11-20030114

Eötvös Loránd University, Faculty of Informatics, Dept. of Programming
Languages, Pázmány Péter sétány 1/C H-1117 Budapest, Hungary

E-mail address: abel@sinkovics.hu, gsd@elte.hu


