
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 2, 2008

ON SUPERVISED AND SEMI-SUPERVISED k-NEAREST
NEIGHBOR ALGORITHMS

ZALÁN BODÓ AND ZSOLT MINIER

Abstract. The k-nearest neighbor (kNN) is one of the simplest classifi-
cation methods used in machine learning. Since the main component of
kNN is a distance metric, kernelization of kNN is possible. In this pa-
per kNN and semi-supervised kNN algorithms are empirically compared
on two data sets (the USPS data set and a subset of the Reuters-21578
text categorization corpus). We use a soft version of the kNN algorithm
to handle multi-label classification settings. Semi-supervision is performed
by using data-dependent kernels.

1. Introduction

Suppose the training data is given in the form D = {(xi, yi) | i = 1, 2, . . . , `}
∪ {xi | i = 1, 2, . . . , u} where the first set is called the labeled data, while the
second is the unlabeled data set, which contains data drawn from the same
distribution as the labeled points but there is no label information for them.
Usually ` ¿ u. We will denote the size of the whole data set by N = `+u. The
xi ∈ X are called the independent variables, while the yi ∈ Y are the dependent
variables, X ⊆ Rd, Y = {1, 2, . . . , K}, where K denotes the number of classes.
In supervised classification we use only the first data set to “build” a classifier,
while in semi-supervised classification we additionaly use the second data set
that sometimes can improve predictions [11].

Semi-supervised learning (SSL) is a special case of classification; it is
halfway between classification and clustering. The unlabeled data can be used
to reveal important information. For example, suppose that in a text cate-
gorization problem the word “professor” turns out to be a good predictor for
positive examples based on the labeled data. Then, if the unlabeled data shows

Received by the editors: September 15, 2008.
2000 Mathematics Subject Classification. 68T10, 45H05.
1998 CR Categories and Descriptors. I.2.6. [Computing Methodologies]: ARTIFI-

CIAL INTELLIGENCE – Learning .
Key words and phrases. Supervised learning, Semi-supervised learning, k-nearest neigh-

bors, Data-dependent kernels.
This paper has been presented at the 7th Joint Conference on Mathematics and Computer

Science (7th MaCS), Cluj-Napoca, Romania, July 3-6, 2008.

79



80 ZALÁN BODÓ AND ZSOLT MINIER

that the words “professor” and “university” are correlated, then using both
words the accuracy of the classifier is expected to improve. To understand how
can one use the unlabeled data to improve prediction, consider the simplest
semi-supervised learning method, called self-training or bootstrapping: train
the classifier on the labeled examples, make predictions on the unlabeled data,
add the points from the unlabeled set with the highest prediction confidence
to the labeled set along with their predicted labels, and retrain the classifier.
This procedure is usually repeated until convergence.

In order to be able to effectively use the unlabeled data to improve the
system’s performance some assumptions have to be conceived about the data.
These are the smoothness assumption (SA), the cluster assumption (CA) and
the manifold assumption (MA): SA says that points in a high density region
should have similar labels, that is labels should change in low density regions,
CA states that two points from the same cluster should have similar labels,
while MA presumes that the data lies roughly on a low-dimensional manifold
[7].

Most of the semi-supervised methods can be classified in the following
four categories: generative models, low-density separation methods, graph-
based methods and SSL methods based on change of representation. Methods
belonging to the last category attempt to find some structure in the data
which is better emphasized or better observable in the presence of the large
unlabeled data set. These algorithms consist of the following following steps:

(1) Build the new representation – new distance, dot-product or kernel –
of the learning examples.

(2) Use a supervised learning method to obtain the decision function based
on the new representation obtained in the previous step.

Kernels referred in the first step are tools for non-linear extensions of linear
algorithms like perceptron, linear support vector machines, kNN, etc. Kernel
functions, or simply kernels were proposed for learning non-linear decision
boundaries in 1964 in [1], but they became popular after the introduction of
non-linear support vector machines (SVMs) in 1992 [6]. Kernel functions are
symmetric functions of two variables, which return the “similarity” of two
points in a high-dimensional space, without actually mapping the points to
that space. More precisely, kernel functions return the dot product of two
vectors in a so-called “feature” space:

k(x, z) = φ(x)′φ(z)

Any machine learning algorithm in which the input data appears only in the
form of dot products can be extended to learn non-linear decision functions
by simply using a positive semi-definite kernel function instead of the inner
product of the vectors. This is called the “kernel trick”. We call the matrix



ON SUPERVISED AND SEMI-SUPERVISED k-NEAREST NEIGHBOR ALGORITHMS 81

containing the dot products of the data points – i.e. the Gram matrix – the
kernel matrix or simply the kernel. Whether we are referring to the kernel
function or the kernel matrix by the expression “kernel” will be clear from the
context.

Data-dependent kernels are similar to semi-supervised learning machines:
the kernel function does not depend only on the two points in question, but
in some form it makes use of the information contained in the whole learning
data available. That is the value of k(x, z) with data set D1 is not necessarily
equal to the value of k(x, z) with data set D2, however the kernel function –
or more generally the kernel construction method – is the same. This can be
formalized as

k(x, z;D1) m k(x, z; D2)

provided that the additional data sets are different, i.e. D1 6= D2, where
“m” means “not necessarily equal” and “;” stands for conditioning. In SSL
methods with change of representation data-dependent kernels are used.

We will use data-dependent kernels to construct a semi-supervised version
of the kNN classifier. These methods then will be empirically compared to
another semi-supervised kNN method, the label propagation (LP) algorithm.

The paper is structured as follows. Section 2 introduces the kNN and the
“soft” kNN classifier. In Section 3 we present label propagation for binary
and multi-class cases. Label propagation can be viewed as a semi-supervised
kNN technique. Section 4 describes the kernelization of the kNN classifier
and shortly presents three data-dependent kernels, namely the ISOMAP, the
multi-type and hierarchical cluster kernels, used in the experiments. The
experiments and the obtained results are presented in Section 5. The paper
ends with Section 6 discussing the results obtained in the experiments.

2. K-nearest neighbor algorithms

The k-nearest neighbor classification was introduced by Cover and Hart in
[10]. The kNN classifier determines the label of an unseen point x by simple
voting: it finds the k-nearest neighbors of x and assigns to it the winning label
among these.

f̃(x) = argmax
c=1,2,...,K

∑

z∈Nk(x)

sim(z,x) · δ(c, f(z))

where the function f assigns a label to a point, Nk(x) denotes the set of
k-nearest neighbors of x, K is the number of classes, the function sim(·, ·)
returns the similarity of two examples, and δ(a, b) = 1 if a = b, 0 otherwise.
The function sim(·, ·) is used to give different weights for different points.
One choice could be to use some distance metric d(·, ·) with the property of



82 ZALÁN BODÓ AND ZSOLT MINIER

Figure 1. Figure showing the 1NN decision boundaries for
the two-moons data set.

assigning a lower value to nearby points and a higher value to farther points
to x. Then one can choose for example

sim(x, z) =
1

g(d(x, z))

where g(·) is an adequate function. If the constant function sim(x, z) = 1
is chosen, we arrive to simple kNN, where all the neighbors have the same
influence on the predicted label.

In order to work efficiently implement the kNN method, no explicit form
of the inductive classifier is built, since representing and storing the decision
boundaries can become very complex. On Figure 1 the decision boundaries
of a 1NN classifier are shown; we used the popular “two-moons” data set for
this illustration. Here we have two classes: the positive class is represented
by the upper crescent, while the points of the negative class lie in the lower
crescent. The polygons represent the area in which an unseen point gets the
label of the point which “owns” the respective cell. The red curve shows the
decision boundary between the classes.

2.1. Soft kNN. In the soft version of the kNN we average the labels of the
surrounding points. That is the prediction function becomes

f(x) =
1∑

z∈Nk(x) Wzx

∑

z∈Nk(x)

Wzxf(z)

where Wzx denotes the similarity between z and x. In case of binary classifi-
cation, that is Y = {−1, 1} or Y = {0, 1} we use thresholding after computing
the prediction by the above formula, e.g. using the value 0 or 0.5 for the
threshold. Thus we arrive to the same decision function.



ON SUPERVISED AND SEMI-SUPERVISED k-NEAREST NEIGHBOR ALGORITHMS 83

3. Label propagation

Label propagation was introduced in [23] for semi-supervised learning. It is
a transductive graph-based semi-supervised learning technique, i.e. the labels
are determined only in the desired points. We can call LP a semi-supervised
kNN algorithm, because the label of a point is determined considering only the
labels of its neighbors. The only and considerable difference between kNN and
LP is that while in LP the labels propagate through the neighbors, and the
label of an unseen point depends on the labels of the other unseen/unlabeled
points too, the labels are static in kNN and only the labeled points count.

For binary class learning consider the vector f ∈ {−1, 1}N of class labels,
where N = ` + u. Then the energy/cost function to be minimized is the
following

(1) E1(f) =
1
2

N∑

i,j=1

Wij(fi − fj)2

where fi, i = 1, . . . , ` is fixed according to the labeled training points. If f

is divided as
[

fL
fU

]
where fL and fU denote the parts corresponding to the

labeled and unlabeled examples, then the optimization problem can be written
as

min
fU

E1(f)

It is easy to check that

E1(f) =
∑

ij

Wijf
2
i −

∑

ij

Wijfifj

= f ′Df − f ′Wf = f ′Lf

where L = D −W is the graph Laplacian [9] of the similarity matrix of the
points. For the sake of simplicity we divide the matrices into the following
blocks:

W =
[

WLL WLU

WUL WUU

]
; D =

[
DL 0
0 DU

]

L =
[

LLL LLU

LUL LUU

]
; P =

[
PLL PLU

PUL PUU

]

We want to minimize E1(f), therefore we calculate its derivative and set to
zero. Thus we obtain

(2) fU = −L−1
UU · LUL · fL

or equivalently (I−D−1
U WUU )−1D−1

U ·WUL · fL = (I−PUU )−1PUL · fL.



84 ZALÁN BODÓ AND ZSOLT MINIER

The above energy function can be simply modified for the multi-class,
multi-label case:

E2(f) =
1
2

N∑

i,j=1

Wij‖fi· − fj·‖2
2

where now f ∈ {0, 1}N×K . One can observe that E2(f) = tr(f ′Lf). If we
decompose f into column vectors

f =
[

f·1 f·2 · · · f·K
]

then the problem can be rewritten as K independent constrained optimization
problems involving vectors of size N × 1.

f ′Lf =




f·1′

f·2′
...

f·K ′


 · L ·

[
f·1 f·2 · · · f ·K

]

=




f·1′Lf·1 · · · · ·
· f·2′Lf·2 · · · ·
...

...
. . .

...
· · · · · f·K ′Lf·K




from which it follows that

tr(f ′Lf) = tr(f·1′Lf·1) + . . . + tr(f·K ′Lf·K)

that is we can minize now f·i′Lf·i with respect to (fU )·i, i = 1, 2, . . . ,K and
from these solutions the solution of the original problem can be built. In our
notation used above f·i denotes the ith column, while fj· denotes the jth row
of f .

By calculating the derivative of E2(f) with respect to fU , we arrive to the
same formula as (2), but f is now a matrix, not a vector.

The iterative solution for LP is composed of the following steps:
(1) Compute W and D.
(2) i = 0; Initialize f (i)

U .
(3) f (i+1) = D−1Wf (i).
(4) Clamp the labeled data, f (i+1)

L = fL.
(5) i = i + 1; Unless convergence go to step 3.

Convergence means that the difference between the class assignment matrices
f obtained in two consecutive steps drops below a predefined threshold. The
value of the threshold greatly influences the running time of the algorithm.
The difference between consecutive solutions can be measured by the Frobenius
matrix norm. The convergence of the above algorithm is proven in [23]. On



ON SUPERVISED AND SEMI-SUPERVISED k-NEAREST NEIGHBOR ALGORITHMS 85

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

1

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

7

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

10

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

14

Figure 2. The propagation of labels (iteration 1, 7, 10 and
14). At the beginning – step 0, not shown separately here –
only the 2 points put in the black squared frames are labeled.

Figure 2 the propagation of labels is illustrated on the two-moons data set,
starting from only two labeled points.

If we decompose f , we arrive to the simpler formula

f (i+1)
U = D−1

U WULfL + D−1
U WUU f (i)

U

or by using the notation A = PULfL = D−1
U WULfL and PUU = D−1

U WUU ,
we obtain the update formula f (i+1)

U = A + PUU f (i)
U , which can be included

into the algorithm by replacing steps 3 and 4.
Consider now the the case of binary classification. Given the solution f

according to the update formula we can write that

fi = (D−1W)i· · f

=
1∑N

j=1 Wij

·
N∑

j=1

Wijfj

that is the label of a point is equal to the weighted average of the other points’
class labels. When the Gaussian kernel/similarity function is used (which is
one of the most common choices in practice), which assigns an exponentially
decreasing similarity to the more distant points, those weights can be consid-
ered to be equal to zero. Thus we get a kNN-like algorithm, where k changes



86 ZALÁN BODÓ AND ZSOLT MINIER

dynamically, so this is rather an εNN algorithm, where ε denotes a threshold
above which similarity is considered to be 0.

In the multi-class case we can write

f·j = Pf·j
that is

fij = Pi·f·j
which is equivalent to

fij =
1∑N

k=1 Wik

N∑

k=1

Wikfkj

for all i = 1, 2, . . . , N and j = 1, 2, . . . ,K.
Label propagation can be considered as a constrained mincut problem,

which is a very popular clustering technique [3]. Since graph mincut can be
written as (1/4) · f ′Lf , where f ∈ {−1, 1}N , therefore label propagation is
equivalent to searching for a mincut of the data graph, given that the labeled
points are fixed.

4. Semi-supervised kNN

The k-nearest neighbor algorithm determines labels based on the labels
of the nearest points. “Nearest” is defined using some metric, in the origi-
nal formulation taking the Euclidean metric. The Euclidean distance can be
rewritten in form of dot products as

‖x− z‖2
2 = 〈x,x〉+ 〈z, z〉 − 2 · 〈x, z〉

= k(x,x) + k(z, z)− 2 · k(x, z)

where k(·, ·) denotes in this case the linear kernel k(x, z) = 〈x, z〉 = x′z. Using
the kernel trick, this can be replaced by any other positive semi-definite kernel.
Thus the points are implicitly mapped to a – possibly higher dimensional –
space, where their dot product is given by the kernel function k(·, ·).

In multi-label learning let us denote the decision function as f : X →
[0, 1]K . For hard classification we can set a threshold, for example 0.5, but for
soft classification we use the values of the output vector as class membership
probabilities. The decision function is expressed in the same way as in the
case of binary classification,

f(x) =
1∑

z∈Nk(x) Wzx

∑

z∈Nk(x)

Wzxf(z)

with the difference that now the output is a K × 1 vector, instead of a scalar
value.



ON SUPERVISED AND SEMI-SUPERVISED k-NEAREST NEIGHBOR ALGORITHMS 87

4.1. Data-dependent kernels. There are other methods to determine the
nearest neighbors of a point by using the following data-dependent kernels.

4.1.1. The ISOMAP kernel. ISOMAP (ISOmetric feature MAPping) was in-
troduced in [20] for dimensionality reduction using the manifold assumption.
The ISOMAP kernel is defined as

Kisomap = −(1/2)JG(2)J

where G(2) contains the squared graph distances (shortest paths in the graph
whose vertices are the original data points and the edges are among the nearest
neighbors of each point) and J is the centering matrix, J = I− 1

N ·1 ·1′, I is the
identity matrix, and 1 is the N×1 vector of 1’s. G(2) is not necessarily positive
semi-definite so neither is the ISOMAP kernel. But since only the largest
eigenvalues and the corresponding eigenvectors are important, we proceed in
the following way. The kernel matrix can be decomposed into USU′, where U
contains the eigenvectors, while the diagonal matrix S holds the eigenvalues of
the decomposed matrix [15, p. 393]. Then the ISOMAP kernel we will use is
Kisomap = US̃U′, where S̃ is the diagonal matrix of the eigenvalues in which
each negative eigenvalue was set to zero.

Informally, the ISOMAP kernel maps the points to the space, where their
pointwise distances equal to the shortest path distances on the data graph in
the input space. If the points are centered at each dimension, then −(1/2) ·
JG(2)J is equal to the dot products of the vectors mapped to the above-
mentioned space [5, p. 262].

4.1.2. The multi-type cluser kernel. In [8] the authors develop a cluster kernel
which connects several techniques together like spectral clustering, kernel PCA
and random walks. The proposed cluster kernel is built following the steps
described below:

(1) Compute the Gaussian kernel and store in matrix W.
(2) Symmetrically normalize W, that is let L = D−1/2WD−1/2, where

D = diag(W · 1), and compute its eigendecomposition, L = UΣU′.
(3) Determine a transfer function ϕ(·) for transforming the eigenvalues,

λ̃i = ϕ(λi), and construct L̃ = UΣ̃U′, where Σ̃ contains the trans-
formed eigenvalues on the diagonal.

(4) Let D̃ be a diagonal matrix with diagonal elements Dii = 1/L̃ii, and
compute K = D̃1/2L̃D̃1/2.

The kernel type depends on the chosen transfer function. We discuss here
three types of transfer functions as in [8]. In the following let λi represent the
eigenvalues of matrix L defined in step (2).



88 ZALÁN BODÓ AND ZSOLT MINIER

The step transfer function is defined as ϕ(λi) = 1 if λi ≥ λcut and 0
otherwise, where λcut is a predetermined cutting threshold for the eigenvalues.
This results in the dot product matrix of the points in the spectral clustering
representation [17].

The linear step transfer function simply cuts off the eigenvalues which are
smaller that a predetermined threshold, ϕ(λi) = λi if λi ≥ λcut, otherwise
equals 0. Without normalization, that is with D = I and similarly D̃ = I, the
method would be equal to the data representation in KPCA space [18], since
in that case we simply cut off the least significant directions to obtain a low
rank representation of L.

The polynomial transfer function is defined as ϕ(λi) = λt
i, where t ∈ N or

t ∈ R is a parameter. Thus the final kernel can be written as

(3) K̃ = D̃1/2D1/2
(
D−1W

)t D−1/2D̃1/2

where D−1W = P is the probability transition matrix, where Pij is the prob-
ability of going from point i to point j. This is called the random walk kernel,
since (3) can be considered as a symmetrized version of the transition proba-
bility matrix P.

4.1.3. The hierarchical cluster kernel. Hierarchical cluster kernels for super-
vised and semi-supervised learning were introduced in [4]. We used hierarchical
clustering techniques to build ultrametric trees [21]. Then we used the dis-
tances induced by the clustering method to build a kernel for supervised and
semi-supervised methods. The hierarchical cluster kernels are generalizations
of the connectivity kernel [14].

The algorithm has the following steps:

-2. Determine the k nearest neighbors or an ε-neighborhood of each point
and take all the distances to other points equal to zero.

-1. Compute shortest paths for every pair of points – using for example
Dijkstra’s algorithm.

0. Use these distances in clustering for the pointwise distance d(·, ·) in
single, complete and average linkages distances [16, Chapter 3], [13,
Chapter 4].

1. Perform an agglomerative clustering on the labeled and unlabeled data
using one of the above-mentioned linkage distances.

2. Define matrix M with entries Mij = linkage distance in the resulting
ultrametric tree at the lowest common subsumer of i and j; Mii = 0,
∀i.

3. Define the kernel matrix as K = −1
2JMJ.



ON SUPERVISED AND SEMI-SUPERVISED k-NEAREST NEIGHBOR ALGORITHMS 89

method accuracy

kNN (linear, Gaussian) 94.00
(kkNN = 1)

LP (linear, Gaussian) 80.29
(1/(2 · σ2) = 0.05)

kNN + ISOMAP 95.71
(kisomap = 5, kkNN = 5)

kNN + mt. cluster kernel
95.00

(linstep, 1/(2 · σ2) = 0.05,
λcut = 0.1, kkNN = 4)

kNN + h. cluster kernel
96.64

(average linkage,
kisomap = 4, kkNN = 3)

Table 1. Accuracy results obtained for the modified USPS
handwritten digits data set.

The first three steps of the method – numbered with -2, -1 and 0 – are optional;
they can be applied if the semi-supervised manifold assumption is expected to
hold.

5. Experiments

In the experiments we compared the methods of kNN, kNN with data-
dependent kernels and label propagation. We used the data-dependent kernels
presented in the previous section: the ISOMAP, the multi-type and the hierar-
chical clusters kernels. The methods were tested on two data sets: a modified
version of the USPS (United States Postal Service) handwritten digits data
set and a subset of Reuters-21578 [12]. The USPS data set is derived from the
original USPS set of handwritten digits1. The set is imbalanced, since it was
created by putting the digits 2 and 5 into one class, while the rest is in the
second class. 150 images belong to each of the ten digits. Because the set was
used as a benchmark data set for the algorithms presented in the book [7],
it was obscured using a simple algorithm to prevent recognizing the origin of
the data. The set contains 1500 examples and 2× 12 splits of the data, where
the first 12 splits contain 10 labeled, and 1490 unlabeled, while the second
12 splits contain 100 labeled and 1400 unlabeled examples. We used only the
first split with 100 labeled points2.

1http://archive.ics.uci.edu/ml/datasets/
2The modified USPS data set can de downloaded from

http://www.kyb.tuebingen.mpg.de/ssl-book/benchmarks.html



90 ZALÁN BODÓ AND ZSOLT MINIER

method microBEP/macroBEP

kNN (linear) 89.60 / 89.22
(kkNN = 14)

kNN (Gaussian) 90.05 / 90.02
(kkNN = 17)

LP (linear) 88.44 / 88.39

LP (Gaussian) 89.81 / 90.33
(1/(2 · σ2) = 1)

kNN + ISOMAP 88.37 / 87.99
(kisomap = 16, kkNN = 16)

kNN + mt. cluster kernel
91.12 /91.04

(linstep, 1/(2 · σ2) = 1,
λcut = 0.01, kkNN = 16)

kNN + h. cluster kernel
87.46 / 87.42

(average linkage,
kisomap = 3, kkNN = 7)

Table 2. Micro- and macro-averaged precision–recall
breakeven point results for the modified Reuters-21578 text
categorization corpus.

We also modified the Reuters-21578 text categorization corpus in order to
make it smaller and to balance the categories. The original corpus3 contains
12 902 documents – 9603 for training and 3299 for testing – categorized into
90 classes. We kept the following 10 categories: alum, barley, bop, carcass,
cocoa, coffee, copper, cotton, cpi, dlr. Thus we were left with 626 training and
229 test documents. For representing documents we used the bag-of-words
document representation [2, Chapter 2] with tfidf weighting [2, p. 29]. We
stemmed the words of the documents using the Porter stemmer, and selected
500 terms with the χ2 feature selection technique [22, 19].

For evaluation we used accuracy for the USPS data set and precision–recall
breakeven point for the Reuters corpus.

The results are shown on Tables 1 and 2. For each method we searched
for the parameters that result in the best performance on the test data (these
parameters are shown in brackets). The best results for each data set were
formatted with boldface.

3The 90 and 115-categories version of Reuters can be downloaded from the homepage of
Alessandro Moschitti, http://dit.unitn.it/∼moschitt/corpora.htm



ON SUPERVISED AND SEMI-SUPERVISED k-NEAREST NEIGHBOR ALGORITHMS 91

6. Discussion

In this paper we compared kNN and some semi-supervised kNN methods
on two data sets. We saw that semi-supervised kNN methods can outperform
conventional kNN: for the USPS data set we obtained an improvement of
2.64% with the average linkage hierarchical kernel. However label propagation
showed a very low performance on this data set. We considered the values
between 1 and 5 for k, which means that the classes are separated quite well.
For the Reuters corpus we found the multi-type cluster kernel with linear step
function to provide the best performance, but the improvement was not so
significant as for the USPS data set. This also shows that KPCA is able
to remove irrelevant dimensions from the bag-of-words representation of the
Reuters corpus. Label propagation with Gaussian kernel showed only little
performance improvement to linear kNN. We see however that the best values
of k for kNN were between 7 and 17, which could imply the intertanglement
of the documents, that is one should search for a better initial representation
than bag-of-words.

Acknowledgement

We acknowledge the support of the grants CNCSIS/TD-35 and CNCSIS/TD-
77 by the Romanian Ministry of Education and Research.

References

[1] A. Aizerman, E. M. Braverman, and L. I. Rozonoer. Theoretical foundations of the
potential function method in pattern recognition learning. Automation and Remote
Control, 25:821–837, 1964.

[2] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley, 1999.

[3] Tijl De Bie. Semi-Supervised Learning Based On Kernel Methods And Graph Cut Al-
gorithms. PhD thesis, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, 3001
Leuven (Heverlee), 2005.

[4] Zalán Bodó. Hierarchical cluster kernels for supervised and semi-supervised learning. In
Proceedings of the 4nd International Conference on Intelligent Computer Communica-
tion and Processing, pages 9–16. IEEE, August 2008.

[5] Ingwer Borg and Patrick J. F. Groenen. Modern multidimensional scaling, 2nd edition.
Springer-Verlag, New York, 2005.

[6] B. E. Boser, I. Guyon, and V. N. Vapnik. A training algorithm for optimal margin
classifiers. Computational Learning Theory, 5:144–152, 1992.

[7] Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien. Semi-Supervised Learning.
MIT Press, September 2006. Web page: http://www.kyb.tuebingen.mpg.de/ssl-book/.

[8] Olivier Chapelle, Jason Weston, and Bernhard Schölkopf. Cluster kernels for semi-
supervised learning. In Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, edi-
tors, NIPS, pages 585–592. MIT Press, 2002.

[9] Chung. Spectral graph theory (reprinted with corrections). In CBMS: Conference Board
of the Mathematical Sciences, Regional Conference Series, 1997.



92 ZALÁN BODÓ AND ZSOLT MINIER

[10] T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE Transactions
on Information Theory, IT-13, 1967.

[11] Fabio G. Cozman and Ira Cohen. Risks of semi-supervised learning. In Olivier Chapelle,
Bernhard Schölkopf, and Alexander Zien, editors, Semi-Supervised Learning, chapter 4,
pages 55–70. MIT Press, 2006.

[12] Franca Debole and Fabrizio Sebastiani. An analysis of the relative hardness of reuters-
21578 subsets. Journal of the American Society for Information Science and Technology,
56:971–974, 2004.

[13] Richard Duda, Peter Hart, and David Stork. Pattern Classification. John Wiley and
Sons, 2001. 0-471-05669-3.

[14] Bernd Fischer, Volker Roth, and Joachim M. Buhmann. Clustering with the connectivity
kernel. In Sebastian Thrun, Lawrence K. Saul, and Bernhard Schölkopf, editors, NIPS.
MIT Press, 2003.

[15] Gene H. Golub and Charles F. Van Loan. Matrix Computations, 3nd Edition. The Johns
Hopkins University Press, Baltimore, MD, 1996.

[16] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice-Hall, 1988.
[17] Andrew Y. Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and

an algorithm. In T. G. Dietterich, S. Becker, and Zoubin Ghahramani, editors, Advances
in Neural Information Processing Systems 14, Cambridge, MA, 2002. MIT Press.

[18] Bernhard Schölkopf, Alexander J. Smola, and Klaus-Robert Müller. Kernel principal
component analysis. Advances in kernel methods: support vector learning, pages 327–
352, 1999.

[19] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM Comput-
ing Surveys, 34(1):1–47, 2002.

[20] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500):2319–2323, December 2000.

[21] Bang Ye Wu and Kun-Mao Chao. Spanning Trees and Optimization Problems. Chapman
and Hall/CRC, Boca Raton, Florida, 2004.

[22] Yiming Yang and Jan O. Pedersen. A comparative study on feature selection in text
categorization. In International Conference on Machine Learning, pages 412–420, 1997.

[23] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with
label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University,
2002.

Department of Computer Science, Babeş–Bolyai University, Mihail Kogălniceanu
nr. 1, RO-400084 Cluj-Napoca

E-mail address: {zbodo,minier}@cs.ubbcluj.ro


