
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 2, 2008

A SOFTWARE TOOL FOR DATA ANALYSIS BASED ON
FORMAL CONCEPT ANALYSIS

KATALIN TUNDE JANOSI RANCZ, VIORICA VARGA, AND JANOS PUSKAS

Abstract. Formal Concept Analysis is a useful tool to represent logi-

cal implications in datasets, to analyze the underground knowledge that

lies behind large amounts of data. A database relation can be seen as a

many-valued context [3]. J. Hereth in [4] introduces the formal context of

functional dependencies. In this context, implications hold for functional

dependencies. We develop a software application that analyzes an existing

relational data table and detect functional dependencies in it. The user

can choose to analyze a table from a MS SQL Server, Oracle or MySQL

database and the software will build the formal context of functional depen-

dencies. We use Conexp [6] to build the concept lattice and implications

in this context. These implications will be the functional dependencies

for the analyzed table. Having the functional dependencies, we can detect

candidate keys and we can decide if the table is in 2NF or 3NF or BCNF.

To our knowledge, this method was not implemented yet.

1. Introduction

Formal Concept Analysis (FCA) appeared in 1980s ([7]) as a mathematical
theory which formalises the notion of concept and is nowadays considered as
an AI theory. It is used as a technique for data analysis, information retrieval
and knowledge representation with various successful applications ([3]).

Functional dependencies (FDs shortly) are the most common integrity
constraints encountered in databases. FDs are very important in relational
database design to avoid data redundancy. Extracting FDs from a relational

Received by the editors: August 9, 2008.

2000 Mathematics Subject Classification. 68P15 Database theory, 03G10 Lattices and

related structures.

1998 CR Categories and Descriptors. H2 Database Management [Topic]: Subtopic –

H2.1 Logical design Normal forms.

Key words and phrases. Formal concept analysis, Normal forms.

This paper has been presented at the 7th Joint Conference on Mathematics and Computer

Science (7th MaCS), Cluj-Napoca, Romania, July 3-6, 2008.

67



68 KATALIN TUNDE JANOSI RANCZ, VIORICA VARGA, AND JANOS PUSKAS

table is a crucial task to understand data semantics useful in many database
applications. Priss in [5] presents the visualization of normal forms using
concept lattices, where the notion of functional dependencies is life-line.

The subject of detecting functional dependencies in relational tables was
studied for a long time and recently addressed with a data mining viewpoint.
Baixeries in [2] gives an interesting framework to mine functional dependencies
using Formal Context Analysis. Detecting functional dependencies seems to
be an actual theme, [5].

Hereth [4] presents how some basic concepts from database theory trans-
late into the language of Formal Concept Analysis. The definition of the
formal context of functional dependencies for a relational table can also be
found in [4]. Regarding to this definition the context’s attributes are the
columns (named attributes) of the table, the tuple pairs of the table will be
the objects of the context. [4] gives the proposition which asserts that in the
formal context of functional dependencies for a relational table, implications
are essentially functional dependencies between the columns of the relational
database table.

Proposition 1. Let D be a relational database and m a k-ary table in D.
For two sets X, Y ⊆ { 1, ..., k} we have the following assertion: The columns
Y are functionally dependent from the columns X if and only if X → Y is
an implication in the formal context of functional dependencies for table m,
which is notated FD

(
m,
−→
K (D)

)
.

Informally, normal forms are defined in traditional database theory as a
means of reducing redundancy and avoiding update anomalies in relational
databases. Functional dependency means that some attributes’ values can be
reconstructed unambiguously by the others [1].

In this paper we intend to extend a previous research presented in [8]. We
implemented the method presented in [8] for database design and completed it
with a software tool, which analyzes an existing relational database table. Our
software named FCAFuncDepMine constructs the formal context of functional
dependencies. It uses Conexp [10] to build the concept lattice and to determine
the implications in this context. The implications obtained correspond to
functional dependencies in the analyzed table. The software can be used in
relational database design and for detecting functional dependencies in existing
tables, respectively.



DATA ANALYSIS BASED ON FORMAL CONCEPT ANALYSIS 69

2. Software description

This section presents how our software constructs the context of functional
dependencies of an existing relational database table. The method used in
relational database design was described in [8].

The aim of our software tool is to connect to an existing database by
giving the type and the name of the database, a login name and password,
then the software offers a list of identified table names which can be selected
for possible functional dependency examination.

The formal context of functional dependencies for the selected table has
to be constructed. The attributes of the context will be the attributes of the
studied table and the context’s objects will be the tuple pairs of the table. A
table may have a lot of tuples and much more tuple pairs. We optimize the
construction of the context in both approaches.

The top of the concept lattice corresponds to tuple pairs in which there are
no common values of the corresponding table attributes. Pairs of form (t, t),
where t is a tuple of the table, have all attributes in common, these objects
will arrive in the bottom of the lattice.

An existing table may have a very large number of tuples. In this version
of our software we use Conexp, which is not able to handle very large context
tables. An input set for Conexp that consists of 15 000 selected tuple pairs is
processed in a reasonable time (some seconds), but if the size of the input set
is larger than 20 000, Conexp will fail. In order to omit this failure, the user
can set a limit for the number of the selected tuples.

Let T be this table having attributes A1, . . . , An. The top of the concept
lattice corresponds to tuple pairs in which there are no common values of the
corresponding attributes. A lot of pairs of this kind may be present. Pairs
which have all attributes in common, will arrive in the bottom of the lattice.

We tested concept lattices omitting tuple pairs in the top and the bottom of
the lattice. During this test we did not find the same lattice as that obtained
with these special tuple pairs. In order not to alter the implications, we
generate only a few (but not all) of these pairs. On the other hand, we need
pairs of tuples of table T, where at least one (but not all) of the attributes
have the same value.

The connection being established and table T selected to analyze the ex-
isting functional dependencies, the program has to execute the next SELECT
- SQL statement:



70 KATALIN TUNDE JANOSI RANCZ, VIORICA VARGA, AND JANOS PUSKAS

SELECT T1.A1,...,T1.An,T2.A1,...,T2.An

FROM T T1, T T2

WHERE (T1.A1=T2.A1 OR ... OR T1.An=T2.An)

AND NOT (T1.A1=T2.A1 AND ... AND T1.An=T2.An)

This statement leads to a Cartesian-product of table T with itself, which is a
very time consuming operation. The statement is transformed by eliminated
NOT from it.

SELECT T1.A1,...,T1.An,T2.A1,...,T2.An

FROM T T1, T T2

WHERE (T1.A1=T2.A1 OR ... OR T1.An=T2.An)

AND (T1.A1<>T2.A1 OR ... OR T1.An<>T2.An)

Both (s, u) and (u, s) pairs of tuples will appear in the result, but we
need only one of these. Let P1, P2, ..., Pk(k ≥ 1) be the primary key of table
T . The definition of a relational table’s primary key can be found in [6]. In
order to include only one of these pairs, we complete the statement’s WHERE
condition in case of k = 1 with:

AND (T1.P1 < T2.P1)

or if k > 1 with

AND (T1.P1k < T2.P1k)

where P1k denotes the string concatenation of the primary key’s component
attributes, respectively.

Constructing a clustered index on one of the attributes can speed up the
execution of the SELECT statement. The advantage of using this SELECT
statement is that every Database Management System will generate an opti-
mized execution plan.

With Selected Columns button the user can choose a list of attributes
of the selected table, otherwise all attributes will be selected. In order to
create the cex file for Conexp the Select Tuple Pairs button have to be
pressed, which selects tuple pairs which have at least one of its attribute value
in common. Tuple pairs in the top and in the bottom of the concept lattice
can be generated optionally, checking the Add Extra Tuple Pairs option in
the File menu. Tuple pairs being generated we have to save the cex file, then
it can be used as input for Conexp, which will build the concept lattice and
implications. In the following we will examine the concept lattice of the context
of functional dependencies which was constructed for a relational table.



DATA ANALYSIS BASED ON FORMAL CONCEPT ANALYSIS 71

3. The structure of the application

Figure 1. The class diagram of the application

The application was developed in Java programming language conforming
to object-oriented programming paradigms. The class diagram of the appli-
cation can be seen in Figure 1.

The class DBFuncDepView is the main class of the application. This class
executes the graphical interface and also has a reference to the other classes,
this means that every functionality can be reached trough this class.



72 KATALIN TUNDE JANOSI RANCZ, VIORICA VARGA, AND JANOS PUSKAS

In the interface DatabaseInterface are defined those functionalities with
which we can execute the SELECT statement described in previous section
against different Database Management Systems. It contains functionalities
for selecting the list of the existing tables in the studied database and methods
for selecting the rows and columns of the tables.

The class DBConnectorBaseClass implements the functions described in
the earlier presented interface which can be implemented for each of the three
DBMS.

The classes MySQLConnector, MSSqlServerConnector, OracleConnector
contain the specific functions and drivers needed for the connection to the dif-
ferent databases.

The role of the CexWriter class is to export the tuple pairs of the context
table in .cex format which is in fact in XML format. An example is in Figure
2.

4. Data Analysis

FD lattices can be used to visualise the normalforms [5]. The lattice
visualizations can help to convey an understanding of what the different nor-
malforms mean. All attributes of a database table must depend functionally
on the table’s key, by definition. Therefore for each set of formal concepts of a
formal context there exists always a unique greatest subconcept (meet) which
must be equal the bottom node of the FD lattice.

Let us begin with a simple example.

Example 1. Let be the next relational database table scheme:

Students [StudID,StudName,GroupID,Email]

We have analyzed this table with our software. The FD lattice and func-
tional dependencies obtained for this table are shown in the Figure 3. The FD
lattice interpretation is: the concept StudID, StudName, Email is a subcon-
cept of concept GroupID. This means there is an implication from the concept
StudID, StudName, Email to the concept GroupID. Accordingly, in every tu-
ple pair where the StudID field has the same value, the value of the GroupID

will remain the same.
Because all keys meet in the bottom node, for a determinant to be a

candidate key means that the unique greatest subconcept of its attributes
equals the bottom node. Consequently every attribute depends on StudID,

therefore it is a candidate key. The same case is for StudName and Email.



DATA ANALYSIS BASED ON FORMAL CONCEPT ANALYSIS 73

Figure 2. Cex file example for Students table

These attributes appear in the bottom of the FD lattice. StudName appears as
candidate key, because all student name values were different in the analyzed
table. We know that students may have the same name, but not the same ID,
not the same Email address.

In Figure 4 we can see the results when in every group all students has
different names than the GroupID and the StudName together form a composite
key.

Figure 5 shows the FD lattice and functional dependencies obtained in
case when we have same value for some student names in the same group and



74 KATALIN TUNDE JANOSI RANCZ, VIORICA VARGA, AND JANOS PUSKAS

Figure 3. FD lattice and implications for the Students table
with different values for student names

Figure 4. FD lattice and implications for the Students table
when in every group all students has different names, but there
are some students with same value for name

Figure 5. FD lattice and implications for the Students table
with same value for some student names in the same group and
in different groups too



DATA ANALYSIS BASED ON FORMAL CONCEPT ANALYSIS 75

in different groups too. This is the real case. We can see, that StudName

doesn’t appear in the bottom of the lattice, it isn’t in the left hand side of any
functional dependency, therefore it can’t be a candidate key.

For determining whether an FD lattice is in BCNF, all non-trivial impli-
cations other than the ones whose left-hand side meets in the bottom node
need to be checked. We can see, that every nontrivial functional dependency
in the Students table has in its left hand side a superkey, therefore the table
is in BCNF.

Example 2. Let StudAdvisor be a wrongly designed database table of a
university database.

StudAdvisor [StudID,StudName,GroupID,StudEmail,SpecID,SpecName,

Language,AdvisorId,TeacherName,TeacherEmail,TeacherPhone]

Figure 6. FD lattice for the StudAdvisor table

The FD lattice obtained for this table with software FCAFuncDepMine
is in the Figure 6 and functional dependencies are in Figure 7. The con-
cept StudID, StudName, Email is a subconcept of the concept GroupID,

AdvisorID, TeacherID, TeacherName, TeacherEmail,TeacherPhone, which
is the subconcept of the concept SpecID, SpecName and so on. The analysed
data is not enough diversified, because every advisor has different name, every
student has different name. The candidate keys of the table StudAdvisor are
in the bottom of the FD lattice. But there are other functional dependencies,



76 KATALIN TUNDE JANOSI RANCZ, VIORICA VARGA, AND JANOS PUSKAS

that has in its left hand side attributes, that are not in the bottom of the
lattice: SpecID, SpecName,TeacherPhone,etc., therefore the table is not in
BCNF.

Figure 7. Functional dependencies in the StudAdvisor table

Introducing more varied data we get the FD lattice from the Figure 8 and
functional dependencies from Figure 9.

Figure 8. FD lattice for the StudAdvisor table with varied data

Having the functional dependencies, the candidate keys of the table can be
seen and we can propose a decomposition of the table. From the last two FD’s
results, that every attribute is functionally dependent on StudID, as well as
on StudEmail, therefore these two attributes are candidate keys. From the
first two functional dependencies we can propose the next table:



DATA ANALYSIS BASED ON FORMAL CONCEPT ANALYSIS 77

Figure 9. Functional dependencies in the StudAdvisor table
with varied data

Specializations [SpecId,SpecName,Language]

The FD’s with number between 3 and 7 suggest the next table:

Advisors [GroupID,SpecId,AdvisorId,TeacherName,TeacherEmail,

TeacherPhone]

The remaining attributes form the studied relation forms the next table:

Students [StudID,StudName,GroupID,StudEmail]

5. Conclusions and further research

We have proposed a software tool to detect functional dependencies in re-
lational database tables. Our software constructs the power context family of
the functional dependencies for a table, then Conexp gives the conceptual lat-
tice and implications. Further we tend to analyze the functional dependencies
obtained, to construct the closure of these implications and to give a cor-
rect database scheme by using an upgraded version of the proposed software,
respectively.

References

[1] Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases. Addison-Wesley, Reading

- Menlo - New York (1995)

[2] Baixeries, J.: A formal concept analysis framework to mine functional dependencies,

Proceedings of Mathematical Methods for Learning, (2004).

[3] Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer,

Berlin-Heidelberg-New York. (1999)

[4] Hereth, J.: Relational Scaling and Databases. Proceedings of the 10th International

Conference on Conceptual Structures: Integration and Interfaces LNCS 2393, Springer

Verlag (2002) 62–76



78 KATALIN TUNDE JANOSI RANCZ, VIORICA VARGA, AND JANOS PUSKAS

[5] Priss, U.: Establishing connections between Formal Concept Analysis and Relational

Databases. Dau; Mugnier; Stumme (eds.), Common Semantics for Sharing Knowledge:

Contributions to ICCS, (2005) 132–145

[6] Silberschatz, A., Korth, H. F.,Sudarshan, S.: Database System Concepts, McGraw-Hill,

Fifth Edition, (2005)

[7] Wille, R. : Restructuring lattice theory: an approach based on hierarchies of concepts.

In: I.Rival (ed.): Ordered sets. Reidel, Dordrecht-Boston, (1982) 445–470

[8] Janosi Rancz, K. T., Varga, V.: A method for mining functional dependencies in re-

lational database design using FCA. Studia Universitatis ”Babes-Bolyai” Cluj-Napoca,

Informatica, vol. LIII, No. 1, (2008) 17–28.

[9] Yao, H., Hamilton, H. J.: Mining functional dependencies from data, Data Mining and

Knowledge Discovery, Springer Netherlands, (2007)

[10] Serhiy A. Yevtushenko: System of data analysis ”Concept Explorer”. (In Russian).

Proceedings of the 7th National Conference on Artificial Intelligence KII-2000, p. 127-

134, Russia, 2000.

Sapientia University, Tg-Mures, Romania

E-mail address: tsuto@ms.sapientia.ro

Babes-Bolyai University, Cluj, Romania

E-mail address: ivarga@cs.ubbcluj.ro

Tg-Mures, Romania

E-mail address: puskasj@gmail.com


