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META<FUN> – TOWARDS A FUNCTIONAL-STYLE
INTERFACE FOR C++ TEMPLATE METAPROGRAMS

ÁDÁM SIPOS, ZOLTÁN PORKOLÁB, AND VIKTÓRIA ZSÓK

Abstract. Template metaprogramming is an emerging new direction in
C++ programming for executing algorithms at compilation time. Despite
that template metaprogramming has a strong relationship with functional
programming, existing template metaprogram libraries do not follow the
requirements of the functional paradigm. In this paper we discuss the
possibility to enhance the syntactical expressivity of template metapro-
grams using an embedded functional language. For this purpose we define
EClean, a subset of Clean, a purely functional lazy programming language.
A parser, and a graph-rewriting engine for EClean have been implemented.
The engine itself is a compile-time template metaprogram library using
standard C++ language features. To demonstrate the feasibility of the
approach lazy evaluation of infinite data structures is implemented.

1. Introduction

Template metaprogramming is an emerging new direction in C++ pro-
gramming for executing algorithms at compilation time. The relationship
between C++ template metaprograms and functional programming is well-
known: most properties of template metaprograms are closely related to the
principles of the functional programming paradigm. On the other hand, C++
has a strong heritage of imperative programming (namely from C and Algol68)
influenced by object-orientation (Simula67). Furthermore the syntax of the
C++ templates is especially ugly. As a result, C++ template metaprograms
are often hard to read, and hopeless to maintain.

Ideally, the programming language interface has to match the paradigm
the program is written in. The subject of the Meta<Fun> project is writing
template metaprograms in a functional language and embedding them into
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C++ programs. This code is translated into classical template metaprograms
by a translator. The result is a native C++ program that complies with the
ANSI standard [3].

Clean is a general purpose, purely functional, lazy language [8]. In our
approach we explore Clean’s main features including uniqueness types, higher
order functions, and the powerful constructor-based syntax for generating data
structures. Clean also supports infinite data structures via delayed evaluation.
We defined EClean as a subset of the Clean language. EClean is used as an
embedded language for expressing template metaprogramming.

In this article we overview the most important properties of the func-
tional paradigm, and evaluate their possible translation techniques into C++
metaprograms. The graph-rewriting system of Clean has been implemented as
a C++ template metaprogram library. With the help of the engine, EClean
programs can be translated into C++ template metaprograms as clients of
this library and can be evaluated in a semantically equivalent way. Delayed
evaluation of infinite data structures are also implemented and presented by
examples.

The rest of the paper is organized as follows: In section 2 we give a technical
overview of C++ template metaprograms (TMP), and discuss the relationship
between TMP and functional programming. Lazy data structures, evaluation,
and the template metaprogram implementation of the graph rewriting system
of Clean is described in section 3. Section 4 discusses future work, and related
work is presented in section 5. The paper is concluded in section 6.

2. Metaprogramming and Functional Programming

Templates are key elements of C++ programming language [13]. They en-
able data structures and algorithms be parameterized by types thus capturing
commonalities of abstractions at compilation time without performance penal-
ties at runtime [17]. Generic programming [12, 11, 9], is a recently emerged
programming paradigm, which enables the developer to implement reusable
codes easily. Reusable components – in most cases data structures and algo-
rithms – are implemented in C++ with the heavy use of templates.

In C++, in order to use a template with some specific type, an instantia-
tion is required. This process can be initiated either implicitly by the compiler
when a template with a new type argument is referred, or explicitly by the
programmer. During instantiation the template parameters are substituted
with the concrete arguments, and the generated new code is compiled. The
instantiation mechanism enables us to write smart template codes that execute
algorithms at compilation time [16, 18]. This paradigm, Template Metapro-
gramming (TMP) is used for numerous purposes. These include transferring
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calculations to compile-time, thus speeding up the execution of the program;
implementing concept checking [22, 14, 21] (testing for certain properties of
types at compilation); implementing active libraries [5], and others.

Conditional statements, like the stopping of recursions, are implemented
with the help of specializations. Subprograms in ordinary C++ programs can
be used as data via function pointers or functor classes. Metaprograms are first
class citizens in template metaprograms, as they can be passed as parameters
for other metaprograms [6]. Data and computation results are expressed at
runtime programs as constant values or literals. In metaprograms we use
static const and enumeration values to store quantitative information.

Complex data structures are also available for metaprograms. Recursive
templates are able to store information in various forms, most frequently as
tree structures, or sequences. Tree structures are the favorite implementation
forms of expression templates [19]. The canonical examples for sequential
data structures are typelist [2] and the elements of the boost::mpl library
[22, 7, 1].

By enabling the compile-time code adaptation, C++ template metapro-
grams (TMP) is a style within the generative programming paradigm [6]. Tem-
plate metaprogramming is Turing-complete [20], in theory its expressive power
is equivalent to that of a Turing machine (and thus most programming lan-
guages).

Despite all of its advantages TMP is not yet widely used in the software
industry due to the lack of coding standards, and software tools. A com-
mon problem with TMP is the tedious syntax, and long code. Libraries like
boost::mpl help the programmers by hiding implementation details of cer-
tain algorithms and containers, but still a big part of coding is left to the
user. Due to the lack of a standardized interface for TMP, naming and coding
conventions vary from programmer to programmer.

Template metaprogramming is many times regarded as a pure functional
programming style. The common properties of metaprogramming and func-
tional languages include referential transparency and the lack of variables,
loops, and assignments. One of the most important functional properties of
TMP is that if a certain entity (the aforementioned constants, enumeration
values, types) has been defined, it will be immutable. A metaprogram does
not contain assignments. That is the reason why we use recursion and special-
ization to implement loops: we are not able to change the value of any loop
variable. Immutability – as in functional languages – has a positive effect too:
unwanted side effects do not occur.

In our opinion, the similarities require a more thorough examination, as
the metaprogramming realm could benefit from the introduction and library
implementation of more functional techniques.
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Two methods are possible for integrating a functional interface into C++:
modifying the compiler to extend the language itself, or creating a library-level
solution and using a preprocessor or macros. The first approach is probably
quicker, easier, and more flexible, but at the same time a language extension
is undesirable in the case of a standardized, widely used language like C++.

Our approach is to re-implement the graph-rewriting engine of the Clean
language as a compile-time metaprogram library using only ANSI standard
compliant C++ language elements. Thus our solution has numerous ad-
vantages. As the user written embedded code is separated from the graph-
rewriting engine, the embedded Clean code fragments can be translated into
C++ template metaprograms independently. Since the engine follows the
graph-rewriting rules of the Clean language as it is defined in [4], the seman-
tics of the translated code is as close to the intentions of the programmer as
possible. As our solution uses only standard C++ elements, the library is
highly portable.

3. Lazy Evaluation and Implementation of the Graph-rewriting
Engine

As lazy evaluation is one of the most characteristic features of the Clean
language [10], our research centers around lazy evaluation and its application
in C++ template metaprograms. A lazy evaluation strategy means that ”a
redex is only evaluated when it is needed to compute the final result”. This
enables us to specify lists that contain an infinite number of elements, e.g. the
list of natural numbers: [1..]. Our running example for the usage of lazy
lists is the Eratosthenes sieve algorithm producing the first arbitrarily many
primes. (The symbols R1..R6 are line numberings)
(R1) take 0 xs = []
(R2) take n [x,xs] = [x, take n-1 xs]
(R3) sieve [prime:rest] = [prime : sieve (filter prime rest)]
(R4) filter p [h:tl] | h rem p == 0 = filter p tl

= [h : filter p tl]
(R5) filter p [] = []
(R6) Start = take 10 (sieve ([2..]))

The Clean graph rewriting engine carries out the following evaluation.
(F1) take 10 (sieve [2..])
(F2) take 10 (sieve [2, [3..]])
(F3) take 10 ([2, sieve (filter 2 [3..])])
(F4) [2, take 9 (sieve (filter 2 [3..]))]
(F5) [2, take 9 (sieve [3, filter 2 [4..])]
(F6) [2, take 9 [3, sieve (filter 3 (filter 2 [4..]))]]
(F7) [2, 3, take 8 (sieve (filter 3 (filter 2 [4..])))]
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...

In the following we present via examples the transformation method of
an EClean program into C++ templates. Our EClean system consists of
two main parts: the parser – responsible for transforming EClean code into
metaprograms–, and the engine – doing the actual execution of the functional
code.
The compilation of a C++ program using EClean code parts is done in the
following steps:

• The C++ preprocessor is invoked in the execution of the necessary
header file inclusions and macro substitutions. The EClean library
containing the engine and supporting metaprograms is also imported
at this point.

• The source code is divided into C++ parts and EClean parts.
• The EClean parts are transformed by the parser of EClean into C++

metaprogram code snippets.
• This transformed source code is handed to the C++ compiler.
• The C++ compiler invokes the instantiation chain at code parts where

the Start expression is used, thus activating the EClean engine.
• The engine emulates Clean’s graph rewriting, and thus executes the

EClean program.
• When no further rewriting can be done, the finished expression’s value

is calculated, if necessary.

eclean.h

ECLEAN

ECLEAN

C++

ECLEAN

in TMP

ECLEAN code
translated

in TMP
compiled

C++
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ECLEAN 

include

engine
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Figure 1. EClean transformation and compilation process

3.1. The sieve program. In Section 2 we have described the various lan-
guage constructs available in metaprogramming. We now use typedefs, and
types created from templates to represent the EClean expressions. In this
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approach our example Start expression has the form take<mpl::int <10>,
sieve<EnumFrom<mpl::int <2> > > >. Here take, sieve, and EnumFrom are
all struct templates having the corresponding signatures.

The graph rewriting process can be emulated with the C++ compiler’s
instantiation process. When a template with certain arguments has to be
instantiated, the C++ compiler chooses the narrowest matching template of
that name from the specializations. Therefore the rules can be implemented
with template partial specializations. Each partial specialization has an inner
typedef called right which represents the right side of a pattern matching
rule. At the same time the template’s name and parameter list represent the
left side of a pattern matching rule, and the compiler will choose the most
suitable of the specializations of the same name. Let us consider the following
example, which describes the sieve rule (sieve [prime:rest] = [prime :
sieve (filter prime rest)]).
template <class prime, class ys>
struct sieve<Cons<prime,ys> > {

typedef Cons<prime,sieve<filter<prime,ys> > > right;
};

The sieve template has two parameters, prime and ys. This template
describes the workings of (R3) in our Clean example. In case a subexpres-
sion has the form sieve<Cons<N,T> > where N and T are arbitrary types, the
previously defined sieve specialization will be chosen by the compiler as a
substitute for the subexpression. Note that even though N and T are gen-
eral types, the sieve template expects N to be a mpl::int , and T a list of
mpl::int types.

However, in order to be able to apply this rewriting rule, an exact match
is needed during the rewriting process. For example in (F1) during the eval-
uation process the previous sieve rule will be considered as applicable when
rewriting the subexpression sieve [2..]. The problem is that the argu-
ment [2..] (EnumFrom 2) does not match the sieve partial specialization
parameter list which is expecting an expression in the form Cons<N,T> with
types N and T. During the compilation the C++ compiler will instantiate the
type sieve<EnumFrom<mpl::int <2> > >. However this is a pattern match-
ing failure which has to be detected. Therefore each function must implement
a partial specialization for the general case, when none of the rules with the
same name can be applied. The symbol NoMatch is introduced, which signs
that even though this template has been instantiated with some parameter
xs, there is no applicable rule for this argument. NoMatch is a simple empty
class.
template <class xs>
struct sieve {
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typedef NoMatch right;
};

The previously introduced filter function’s case distinction is used to
determine at compilation time whether x is divisible by p, and depending on
that decision either of the two alternatives can be chosen as the substitution.
The C++ transformation of filter utilizes mpl::if for making a compile-
time decision:
template <int p, class x, class xs >
struct filter<boost::mpl::int_<p>, Cons<x,xs> > {

typedef typename boost::mpl::if_
<

typename equal_to
<

typename modulus<x,p>::type,
boost::mpl::int_<0>

>::type,
filter<p,xs>,
Cons<x,filter<p,xs> >

>::type right;
};

The mpl::if construct makes a decision at compilation time. The first
type parameter is the if condition, which in our case is an equal to template,
whose inner type typedef is a mpl::bool . Depending on this bool ’s value,
either the first, or the second parameter is chosen.

The working of the transformed EnumFrom is similar to the one in Clean:
if a rewriting is needed with EnumFrom, a new list is created consisting of the
list’s head number, and an EnumFrom and the next number.
template <class r>
struct EnumFrom {

typedef
Cons<r,EnumFrom<boost::mpl::int_<r::value+1> > > right;

};

All other functions can also be translated into templates using analogies
with the previous examples.

In the following we present the parser recognizing EClean expressions, and
transforming them to the previous form.

3.2. The parser. The parser was written in Java, using the ANTLR LL(k)
parser generator. The parser recognizes a subset of the Clean language, as
our aim was to create an embedded language aiding programmers in writing
metaprograms, and not the implementation of a fully capable Clean compiler.
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The parser’s workings are as follows. The first stage in transforming an
embedded clean code into a template metaprogram is parsing the EClean code.
The notation for distinguishing between regular C++ code and EClean code
is the two apostrophes: ‘‘

3.2.1. Function transformation. Each function’s signature is recorded when
the function’s declaration is parsed. At the same time, the declaration is
transformed into a general template definition with the NoMatch tag, support-
ing the non-matching cases of the graph rewriting.
Let us consider the following example:
take :: Int [Int] -> [Int]

This function declaration is transformed into the following template:
template <class,class>
struct take {

typedef NoMatch right;
};

The two function alternatives of take are transformed as follows:
template <int n, class x, class xs>
struct take<mpl::int_<n>, Cons<x,xs> > {

typedef Cons<x,take<mpl::int_<n - 1>,xs> > right;
};

template <class xs>
struct take<mpl::int_<0>, xs> {

typedef NullType right;
};

The first alternative accepts three parameters, an int n representing the
first Int parameter (how many elements we want to take), and two arbitrary
types x and xs representing the head and tail of a list. On the other hand it is
guaranteed that when this function is invoked, x will always be a mpl::int ,
and xs will either be a list of mpl::int types, or the NullType (Nil). The
working mechanism of the parser’s code transformation is the guarantee for
this.

3.3. The graph-rewriting engine. Until now we have translated the Clean
rewriting rules into C++ templates, by defining their names, parameter lists
(the rule’s partial specialization), and their right sides. These templates will
be used to create types representing expressions thus storing information at
compilation time. This is the first abstraction layer. In the following we
present the next abstraction level, that uses this stored information. This
is done by the library’s core, the partial specializations of the Eval struct
template, which evaluate a given EClean expression.
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Since the specialization’s parameter is a template itself (representing an
expression), its own parameter list has to be defined too. Because of this con-
straint separate implementations are needed for the evaluation of expressions
with different arities. In the following we present one version of Eval that
evaluates expressions with exactly one parameter:

1 template <class T1, template <class> class Expr>
2 struct Eval<Expr<T1> >
3 {
4 typedef typename
5 if_c<is_same<typename Expr<T1>::right,
6 NoMatch>::value,
7 typename
8 if_c<!Eval<T1>::second,
9 Expr<T1>,

10 Expr<typename Eval<T1>::result>
11 >::type,
12 typename Expr<T1>::right
13 >::type result;
14
15 static const bool second =
16 !(is_same<typename Expr<T1>::right,NoMatch>::value &&
17 !Eval<T1>::second);
18 };

The working mechanism of Eval is as follows. Eval takes one argument,
an expression Expr with one parameter T1. The type variable T1 can be any
type, e.g. int, a list of ints, or a further subexpression. This way Eval
handles other templates. The return type result defined in line 13 contains
the newly rewritten subexpression, or the same input expression if no rule can
be applied to the expression and its parameters.

When the template Expr has no partial specialization for the parameter
T1, the compiler chooses the general template as described in Section 3.1. The
compile-time if c in line 5 is used to determine if this is the case, and the
Expr<T1>::right is equal to NoMatch.

• If this is the case, another if c is invoked. In line 8 T1, the first
(and only) argument is evaluated, with a recursive call to Eval. The
boolean second determines whether T1 or any of its parameters could
be rewritten. If no rewriting has been done among these children,
Eval’s return type will be the original input expression. Otherwise the
return type is the input expression with its T1 argument substituted
with Eval<T1>::result, which means that either T1 itself, or one of
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its parameters has been rewritten. This mechanism is similar to type
inference.

• On the other hand, if a match has been found (the if c conditional
statement returned with a false value), the whole expression is rewrit-
ten, and Eval returns with the transformed expression (line 12).

The aforementioned boolean value second is defined by each Eval special-
ization (line 15). It is the logical value signaling whether the expression itself,
or one of its subexpressions has been rewritten.

The implementation of Eval for more parameters is very similar to the
previous example, the difference being that these parameters also have to be
recursively checked for rewriting.

As our expressions are stored as types, during the transformation process
the expression’s changes are represented by the introduction of new types.
The course of the transformation is the very same as with the Clean example.
The following types are created as right typedefs:

take<10,sieve<EnumFrom<2> > >
take<10,sieve<Cons<2,EnumFrom<3> > > >
take<10,Cons<2,sieve<filter<2,EnumFrom<3> > > > >
Cons<2,take<9,sieve<filter<2>,EnumFrom<3> > > >
Cons<2,take<9,sieve<3,filter<2,EnumFrom<4> > > > >
Cons<2,take<9,Cons<3,sieve<filter<3,EnumFrom<4> > > > > >
Cons<2,3,take<8,filter<3,filter<2,EnumFrom<4> > > > >
...

(Note that in the example all mpl::int prefixes are omitted from the int
values for readibility’s sake.)

We have demonstrated the evaluation engine’s implementation, and its
working mechanism.

4. Future work

One of the most interesting questions in our hybrid approach is to distin-
guish between problems that can be dealt with by EClean alone, and those that
do require template metaprogramming and compiler support. The EClean
parser could choose function calls that can be run separately and their result
computed without the transformation procedure and the invocation of the
C++ compiler. On the other hand, references to C++ constants and types
could be placed within the EClean code, and used by the EClean function in a
callback-style. This would result in much greater flexibility and interactivity
between EClean and C++.

In the future we will include support for more scalar types (bool, long,
etc) besides the implemented Int, and the list construct. Another interesting
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direction is the introduction of special EClean types like Type representing a
C++ type, Func representing a C++ function or even a function pointer.

5. Related Work

Functional language-like behavior in C++ has already been studied. Func-
tional C++ (FC++) [15] is a library introducing functional programming
tools to C++, including currying, higher-order functions, and lazy data types.
FC++, however, is a runtime library, and our aim was to utilize functional
programming techniques at compilation time.

The boost::mpl library is a mature library for C++ template metapro-
gramming. Boost::mpl contains a number of compile-time data structures,
algorithms, and functional-style features, like Partial Metafunction Applica-
tion and Higher-order metafunctions. However, boost::mpl were designed
mainly to follow the interface of the C++ Standard Template Library. There
is no explicit support for lazy infinite data structures either.

6. Conclusion

In this paper we discussed the Meta<Fun> project which enhances the
syntactical expressivity of C++ template metaprograms. EClean, a subset
of the general-purpose functional programming language Clean is introduced
as an embedded language to write metaprogram code in a C++ host envi-
ronment. The graph-rewriting system of the Clean language has been im-
plemented as a template metaprogram library. Functional code fragments
are translated into classical C++ template metaprograms with the help of
a parser. The rewritten metaprogram fragments are passed to the rewriting
library. Lazy evaluation of infinite data structures is implemented to demon-
strate the feasibility of the approach. Since the graph-rewriting library uses
only standard C++ language features, our solution requires no language ex-
tension and is highly portable.
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