STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume LIII, Number 2, 2008

SOFTWARE QUALITY ASSESSMENT USING A FUZZY
CLUSTERING APPROACH

CAMELIA SERBAN AND HORIA F. POP

ABSTRACT. Metrics have long been studied as a way to assess the quality
and complexity of software, and recently this has been applied to object-
oriented software as well. However one of their shortcomings is the lack of
relevant result interpretation. Related to this, there is an aspect that has
a decisive influence on the accuracy of the results obtained: the issue of
software metrics threshold values.

In this paper we propose an alternative approach based on fuzzy clus-
tering analysis for the problem of setting up the software metrics threshold
values. Measurements are used to evaluate the conformance of an object
oriented model to well established design heuristics.

1. INTRODUCTION

In time, software systems become very large and complex due to repeated
modifications and updates, needed to meet the ever changing requirements of
the business. The code becomes more complex and drifts away from its original
design. The result is that the system becomes practically unmanageable. A
small change in one part of it may have unforeseen effects in completely other
parts, leading to potential disasters. In order to prevent this, we need proper
quantification means in order to assess the quality of software design during
its development lifecycle.

A good object-oriented design needs design rules, principles and practices
that must be known and used [11]. In this way, software metrics are very
useful being a mean for quantifying these aspects and identifying those design
entities that capture deviations from good design principles and heuristics.

Although a large number of metrics have been proposed by researchers to
assess object-oriented design quality, they pose some problems of their own,
the most important being the ability to give relevant interpretation of the

Received by the editors: October 10, 2008.

2000 Mathematics Subject Classification. 68N19, 68T37.

1998 CR Categories and Descriptors. 1D.2.8 [Software Engineering]: Metrics — Per-
formance measures; 1.5.3 [Pattern recognition|: Clustering — Algorithms.

Key words and phrases. Software quality, Software metrics, Fuzzy clustering.

27

28 CAMELIA SERBAN AND HORIA F. POP

measurement results which in turn is due to the fact that threshold values
for the metrics are difficult to set. This problem is far from being new and
characterizes intrinsically any metrics-based approach. A threshold divides
the space of a metric value into regions. Depending on the region of the
metric value, we may make an informed assessment about the measured entity.
For example, if we measure the reusability of a design entity with possible
values in the [0..1] range and we define 0.7 as being the threshold with good
reusability, then all measured components whose reusability values are above
that threshold may be quantified as being reusable. This simple example
raises a set of questions: how did we come up with a threshold of 0.7 in the
first place? Why not 0.57 And, is a component with a reusability value of
0.68 not reusable compared to a component having a reusability value of 0.77
Would such a threshold still be meaningful in a population where the largest
reusability value is 0.57

As a conclusion, the accuracy of the results obtained is questionable. In
order to overcome this limitation, we propose an alternative approach for
the problem of setting up the software metrics threshold values using fuzzy
clustering analysis. This allows us to place an object in more than one group,
with different membership degrees.

The remainder of this paper is organized as follows. Section 2 describes the
theoretical background for an object-oriented design quality assessment system
while Section 3 presents the fuzzy-clustering approach used in the quality
evaluation of a system design. Section 4 describes in details our proposed
approach for detecting design flaws in an object-oriented system. Section
6 presents and discusses the experimental results obtained by applying the
proposed approach on an open source application, called log/net [3]. Section
7 reviews related works in the area of detection design flaws. Finally, Section
8 summarizes the contributions of this work and outlines directions for further
research.

2. THEORETICAL FRAMEWORK

Object oriented design quality evaluation implies identification of those
design entities that are relevant for the analysis of their properties and of
the relationships that exist between them and the software metrics that best
emphasize the aspects (design principle/heuristics) that we want to quantify.
So, our theoretical framework, consists of three groups of elements:

e a meta-model for the object-oriented systems;
e design principles/heuristics;
e relevant suites of software metrics.

SOFTWARE QUALITY ASSESSMENT USING A FUZZY CLUSTERING APPROACH 29

Thus, our object oriented design quality evaluation system will be associ-
ated with a 3-tuple, ES = (M Model, Aspects, Metrics). In what follows, all
the above mentioned elements will be briefly described.

2.1. A meta-model for object-oriented systems. A meta-model for object-
oriented systems consists of design entities together with their properties and
the relations between them [11]. Thus, a meta-model is a 3-tuple M Model =
(E, P, R) where,

- E={E1, Es, ..., E,}, represents the set of design entities of the software
system, F;, 1 < ¢ < n may be a class, a method from a class, an attribute
from a class, a parameter from a method or a local variable declared in the
implementation of a method. We also will consider that:

Class(E) = {C1,Cy,...,C;}, Class (E) C FE is a set of entities that are
classes;

Each class, C;, 1 < ¢ < [has a set of methods and attributes, i.e.
Ci = {mi1,mi2, ..., Mip;, i1, Qiz, oy iy}, 1 < pp <my 1< <o,
where m;;(Vj,1 < j < p;) are methods and a;, (Vk,1 < j < ;) are
attributes from Cj;

I

Meth(E) = U U mij, Meth(E) C E, is a set of methods from all

i=1j=1
classes of the software system;
Each method m;;, 1 < i <[, 1 < j < p;, has a set of parameters
and local Variables, i.e., mi; = {pijl,pijQ, -y Pigpij Vijl, Vij2, "‘?Uijvij}
1 <pij <n, 1< <n,wherep;p(Vk, 1 <k < p;;) are parameters
and v;j5(Vs, 1 <s < wy;) are local variables;

I r; Dij
Param(E) = U U U pijk, Param(E) C E;
i=1j=1 k=1
I ry Yij
LocVar(E) = U U U vijs, LocVar(E) C E;
i=1j=1s=1
I r
Attr(E) = U U a4, Attr(E) C E, is the set of attributes from all
i=1j=1

classes of the software system.

- P represents the set of properties of the aforementioned design entities,
P = ClassP|J MethP | AttrP\J ParamP |J LocVarP. Where,

ClassP represents the properties of all classes in E (e.g. abstraction,
visibility, reusability);

MethP represents the properties of all methods in E (e.g. visibility,
kind, instantiation, reuse, abstraction, binding);

AttrP represents the properties of all attributes in E (e.g. visibility);

30 CAMELIA SERBAN AND HORIA F. POP

e ParamP represents the properties of all parameters in E (e.g. type,
aggregation);
e LocVarP represents the properties of all local variables in E (e.g. type,
aggregation);
- R represents the set of relations between the entities of the set E. These
relations are described in detail in [11].

2.2. Design principles and heuristics. The main purpose of our evalu-
ation is to identify those design entities that capture deviations from good
design principles and heuristics. Object-oriented design principles are mostly
extensions of general design principles in software systems (e.g., abstraction,
modularity, information hiding). Samples of principles for good design in soft-
ware systems are: high coupling, low cohesion, manageable complexity, proper
data abstraction. Design heuristics [17] are stated as the rules of thumb or
guidelines for good design. These rules are based on design principles and
their ultimate goal is to improve quality factors of the system and avoid oc-
currence of design flaws. These rules recommend designers and developers to
“do” or “do not” specific actions or designs. A sample of such heuristics is
“minimize the number of messages in a class”.

A literature survey showed a constant and important preoccupation for this
issue: several authors were concerned with identifying and formulating design
principles [14, 12] and heuristics [17, 9]. Riel [17] presents a set of heuristic
design guidelines and discusses some of the flawed structures that result if
these guidelines are violated. In the recent years, we found various forms
of descriptions for bad or flawed design in the literature such as bad-smells
[7]. In the same manner, Martin [12] discusses the main design principles of
object-orientation and shows that their violation leads to a rotting design.

2.3. A catalog of design metrics. As we mentioned earlier, the quantifica-
tion of object-oriented design principle needs a relevant metrics catalog. Thus,
the third element of the proposed framework is the set of design metrics. These
metrics have to be selected based on the definitions and classification rules of
each design principle/heuristics. We do not intend to offer an exhaustive list of
design metrics in this section, but to emphasize their relevance in quantifying
some rules related to good object oriented design.

Thus, in the following we make a short survey of the most important
object-oriented metrics defined in the literature. These metrics capture char-
acteristics that are essential to object-orientation including coupling, complex-
ity and cohesion.

Coupling Metrics. We selected Coupling Between Objects(CBO) [6]
as the primitive metric for coupling. CBO provides the number of classes to

SOFTWARE QUALITY ASSESSMENT USING A FUZZY CLUSTERING APPROACH 31

which a given class is coupled by using their member functions and/or in-
stance variables. Other metrics related with CBO are Fan - Out [19], Data
Abstraction Coupling(DAC) [1] and Access To Foreign Data(ATFD) [11]. A
second way of measuring coupling is: when two classes collaborate, count the
number of distinct services accessed (the number of distinct remote methods
invoked). One measure that counts the number of remote methods is RFC
(Response For A Class)[6]. Another important aspect that has to be taken
into account when measuring coupling is the access of a remote method from
different parts of the client class, each access being counted once. This is
the approach taken by Li and Henry in defining the Message Passing Cou-
pling(MPC) metric, which is the number of send statements defined in a class
[1] (also proposed in [10]). A similar type of definition is used by Rajaraman
and Lyu in defining coupling at the method level. Their method coupling MC
measure [16] is defined as the number of non-local references in a method.

Cohesion Metric. LCOM (Lack of Cohesion in Methods) [6] is not a
significant cohesion indicator as discussed in [8, 5]. In [5] the authors propose
two cohesion measures that are sensitive to small changes in order to evaluate
the relationship between cohesion and reuse. The two measures are TCC
(Tight Class Cohesion) and LCC (Loose Class Cohesion) TCC is defined as
the relative number of directly connected methods. Two methods are directly
connected if they access a common instance variable of the class. TCC refers
the relative number of directly connected methods in a given class. LCC is the
relative number of directly or indirectly connected methods. Two methods are
considered to be indirectly connected if they access a common instance variable
through the invocation of other methods.

Complexity Metric. In order to measure the structural complexity for a
class, instead of counting the number of methods, the complexities of all meth-
ods must be added together. This is measured by WMC (Weighted Method
per Class) metric [6]. WMC is the sum of the complexity of all methods for
a class, where each method is weighted by its cyclomatic complexity. The
number of methods and the complexity of the methods involved is a predictor
of how much time and effort is required to develop and maintain the class.

Several studies have been conducted to validate these metrics and have
shown that they are useful quality indicators [20].

After computing the metrics values, the next step is to give a relevant
interpretation of the obtained measurements results. Following a classical
approach we have to set threshholds values for metrics that we use. As we
mentioned before, the problem of setting up the threshholds is not simple and
the accuracy of the results obtained is questionable. In order to overcome this
limitation, we propose an alternative approach based on fuzzy clustering anal-
ysis for the problem of setting up the software metrics threshold values. Thus,

32 CAMELIA SERBAN AND HORIA F. POP

an object may be placed in more that one group, having different membership
degree.

3. Fuzzy CLUSTERING ANALYSIS

Clustering is the division of data set into subsets (clusters) such that,
similar objects belong to the same cluster and dissimilar objects to different
clusters. Many concepts found in real world do not have a precise membership
criterion, and thus there is no obvious boundary between clusters. In this case
fuzzy clustering is often better, as objects belong to more that one cluster with
different membership degrees.

Fuzzy clustering algorithms are based on the notion of fuzzy set that was
introduced in 1965 by Lotfi A. Zadeh [21] as a natural generalization of the
classical set concept. Let X be a data set composed of n data items. A
fuzzy set on X is a mapping A : X — [0,1]. The value A(z) represents the
membership degree of the data item x € X to the class A. Fuzzy clustering
algorithms partition the data set into overlapping groups based on similarity
amongst patterns.

3.1. Fuzzy Clustering Analysis — formalization. Let X = {O;,0,...,0,}
be the set of n objects to be clustered. Using the vector space model, each
object is measured with respect to a set of m initial attributes Ay, Ao, ..., A;m
(a set of relevant characteristics of the analyzed objects) and is therefore de-
scribed by a m-dimensional vector O; = (O;1, Os2, ..., Oimm), O € R, 1 < i < m;
1<k <m;

Our aim is to find a fuzzy partition matrix U = (Cy,Cq,...,C.), C; =
(Uit, W2, -y Uin), 1 < @ < ¢, that best represents the cluster substructure of
the data set X., i.e. objects of the same class should be as similar as possible,
and objects of different classes should be as dissimilar as possible. The fuzzy
partition matrix, U has to satify the following constraints:

e membership degree: u;, € [0..1], 1 <i < ¢, 1 <k < n, u;, represents

the membership degree of the data object Oy to cluster ¢;
e total membership: the sum of each column of U is constrained to the

C
value 1(> uy = 1).
i=1

The fuzzy clustering generic algorithm, named Fuzzy c-means clustering, is
described in [4]. This algorithm has the drawback that the optimal number of
classes corresponding to the cluster substructure of the data set, is a data entry.
As a result in this direction, hierarchical clustering algorithms, produce not
only the optimal number of classes (based on the needed granularity), but also
a binary hierarchy that show the existing relationships between the classes. In

SOFTWARE QUALITY ASSESSMENT USING A FUZZY CLUSTERING APPROACH 33

this paper we use the Fuzzy Divisive Hierarchic Clustering algorithm (FDHC)
[22].

4. OUR APPROACH

The main objective of this paper is to use fuzzy clustering technique in
order to offer an alternative solution to the problem of setting up the software
metrics thresholds values, metrics applied for object-oriented design quality
investigation. In other words, we aim at identification of those design entities
that violate a specified design principle, heuristics or rule. These entities are
affected by some design flaw. Thus, our problem can be reduced at identifica-
tion of those design flaws that violate a specified design principle or heuristic.
In fact, design flaws are violations of these heuristics/principles.

Let us consider the theoretical framework proposed in Section 3. In addi-
tion, we adopt the following notations:

e DP denotes the set of design principles, heuristics or rules that we
want to quantify;

e DF denotes the set of design flaws that violate the entitites from DP;

e RC DP x DF, the associations set between DP and DF'

Definition 1. The 3-tuple GPF = (DP,DF,R) is a bipartite graph, called
principles-design flaws.

For each element from the DP or DF set we have to identify a set of
relevant metrics. The set of all these metrics will be denoted by M. Let
also consider R; to be the set of associations between the entities from DP
and their corresponding metrics from M and Rz to be the set of associations
between the entities from DF and their coresponding metrics from M.

Definition 2. The 3-tuple GPM = (DP, M, Ry) is a bipartite graph, called
principle metrics.

Definition 3. The 3-tuple GFM = (DF, M, Ry) is a bipartite graph, called
flaw metrics.

With these considerations our problem stated in Section 2 can be rephrased
as follows: given an element, p, from DP or DF set, its associated metrics
set M, and a subset of design entities from E, we have to identify (using a
fuzzy clustering approach) those design entities that capture deviations from
a specified principle/heuristic or are affected by a specified design flaw. In
this way, for each entity implied in the evaluation, we obtain a set of metrics
values.

We may apply now the FDHC algorithm referred in Section 3. The de-
sign entities implied in the evaluation correspond to objects from the fuzzy
clustering algorithm and the metrics values to the attributes of these objects.

34 CAMELIA SERBAN AND HORIA F. POP

After applying this algorithm each assessed entity is placed into a cluster
having a membership degree. This approach offers a better interpretation of
measurements results than the thresholds values-based interpretation.

5. CASE STUDY

In order to validate our approach we have used the following case study.
The object oriented system proposed for evaluation is log/net [3], an open
source application. It consists of 214 classes. The elements of the meta-
model defined in Section 2.1 (design entities, their properties and the relations
between them) ware identified using our own dveloped tool.

The objective of this case-study is to identify those entities affected by
“God Class” [17] design flaws. So, the objects considered for fuzzy clustering
algorithm are classes from the analyzed system.

The first step in this evaluation is to construct (from the graph principles-
design flaws defined in Section 5) the subgraph that contains the node “God
Class” and its related “heuristics/rules”. As it is known, an instance of a god-
class performs most of the work, delegating only minor details to a set of trivial
classes and using the data from other classes. This has a negative impact on
the reusability and the understandability of that part of the system. This
design problem may be partially assimilated with Fowlers Large Class bad-
smell. In this case we will start from a set of two heuristics found in Riels
book [17]:

e Distribute system intelligence horizontally as uniformly as possible;
e Beware of classes with much non-communicative behavior.

The second step is to select proper metrics that best quantify each of the
identified heuristics/rules. This means identifying the subgraph obtained by
keeping the nodes corresponding with these heuristics and their corresponding
metrics that we want to take into account.

In our case the first rule refers to a uniform distribution of intelligence
among classes, and thus it refers to high class complexity. The second rule
speaks about the level of intraclass communication; thus it refers to the low
cohesion of classes. Therefore, we chose the following metrics:

e Weighted Method per Class (WMC) is the sum of the statical complex-
ity of all methods in a class [6]. We considered the McCabes cyclomatic
complexity as a complexity measure [13].

e Tight Class Cohesion (TCC) is the relative number of directly con-
nected methods [5].

e Access to Foreign Data (ATFD) represents the number of external
classes from which a given class accesses attributes, directly or via
accessor-methods [11]. The higher the ATFD value for a class, the

SOFTWARE QUALITY ASSESSMENT USING A FUZZY CLUSTERING APPROACH 35

higher the probability that the class is or is about to become a god-
class.

As a remark, a possible suspect of “God Class” will have high values for the
WMC and ATFD metrics and low values for the TCC metric.

Taking into account the metrics mentioned above each class from our sys-
tem, ¢;, will be identified by a vector of three elements, ¢; = (m1, ma, ms3),
corresponding to the metrics values applied for class ¢;.

The next step is to apply the FDHC algorithm described in Section 3.
The objects from the algorithm are classes from our system and the features
are the computed values of the metrics corresponding to these classes. The
classification tree and the final binary partition produced by FDHC algorithm
are represented in Figure 1. By interpreting the results obtained we may
conclude that the algorithm has identified a list of suspects, those from class
1 and a list of the objects that do not need further investigation, class 2 of
objects. The list of suspects from class 1 are further partitioned according to
the values of the three metrics. For example, in class 1.1.1.1.1.1. the list of
suspects have the value 0 of the TCC and ATFD metrics and low value for
the WMC metric.

Due to space restrictions, we include in this paper only a subset of objects,
containing a list of suspects. These objects are described in Figure 2. All other
numerical data are available from the authors by request.

6. RELATED WORK

During the past years, various approaches have been developed to address
the problem of detecting and correcting design flaws in an object-oriented
software system using metrics. Marinescu [11] defined a list of metric-based
detection strategies for capturing around ten flaws of object-oriented design
at method, class and subsystem levels as well as patterns. However, how to
choose proper threshold values for metrics and propose design alternatives to
correct the detected flaws are not addressed in his research.

Mihancea et al. [15] presented an approach to establish proper threshold
values for metrics-based design flaw detection mechanism. This approach,
called tuning machine, is based on inferring the threshold values based on
a set of reference examples, manually classified in flawed, respectively good
design entities.

Trifu [18] introduced correction strategies based on the existing flaw de-
tection and transformation techniques. This approach serves as reference de-
scriptions that enable a human-assisted tool to plan and perform all necessary
steps for the removal of detected flaws. Consequently, it is a methodology that
can be fully supported.

36 CAMELIA SERBAN AND HORIA F. POP

] Class H Members

1.1.1.1.1.1. 151524 3546 137 155 183 198
1.1.1.1.1.2.1. || 43 140 151

1.1.1.1.1.2.2. | 41 96 102 103 105 106 207

1.1.1.1.2.1. 2597 133 173

1.1.1.1.2.2.1. || 69 86 91 93 152

1.1.1.1.2.2.2.| 42 52 116 124

1.1.1.2.1.1. 6 26 27 57 71 83 84 115 129 144 166 170 199
1.1.1.2.1.2.1.]| 61 95 104 108

1.1.1.2.1.2.2.{ 98 110 191

1.1.1.2.2. 21 44 58 89 111 122 128 164 171

1.1.2. 214 28 45 47 48 49 66 88 113 120 121 123 136 146
160 161 162 178 187 192 193 194 197 201 206 208 213

1.2.1. 3111216 38 55 63 72 94 99 107 109 112 138 142 172
179 186 209 211

1.2.2. 1819 37 77 87 114 1 26 132 134 135 139 163 167 168
169 180 190 210

2. 478910131720 22 2329 30 31 32 33 4 36 39 40

50 51 53 54 56 59 60 62 64 65 67 68 70 73 74 75 76
78 79 80 81 82 85 90 92 100 101 117 118 119 125 127
130 131 141 143 145 147 148 149 150 153 154 156 157
158 159 165 174 175 176 177 181 182 184 185 188 189
195 196 200 202 203 204 205 212 214

FIGURE 1. Classification tree and final partition for the set of
214 objects

M. Frentiu and H.F.Pop [2] presented an approach based on fuzzy clus-
tering to study dependencies between software attributes, using the projects
written by second year students as a requirement in their curriculum. They
have observed that there is a strong dependency between almost all considered
attributes.

7. CONCLUSIONS AND FUTURE WORK

We have presented in this paper a new approach that address the issue
of setting up the software metrics threshold values, approach based on fuzzy
clustering techniques. In order to validate our approach we have used a case
study, presented in Section 5. Further work can be done in the following
directions:

SOFTWARE QUALITY ASSESSMENT USING A FUZZY CLUSTERING APPROACH 37

No. Object Name TCC |WMC |ATFD Class
5|logdnet. Config. AliasDomainAttribute 0 3 0 1.1.1.1.1.1.
137 [logdnet. Util. TypeConverters. PatternLayout Corverter 0 2 0 1.1.1.1.1.1.
43 |logdnet. Config. DOMConfiguratorAttribute i) 7 o 1111121,
140 {logdnet. Util. TypeConverters. PatternStringConverter 0 5] ol 1111121,
96 |logdnet. Repository. Hierarchy. LoggerCreationEventHandler 0 5 o 1111122
102 [logdnet. Repository. LoggerRepositoryConfigurationChangedEventH 0 5 ol 1111122
25 |logdnet. Util. TypeConverters. ConwersionMotSupportedException 0 12 0 111121,
133 [logdnet. Appender. DQutputDebugStringAppender a] 11 0 1.1.1.1.2.1.
59 [logdnet. Layout. LayoutSkeleton 0 9 O 1111221,
93 |logdnet. Core.LogException i) 9 O 1111221,
42 |logdnet. Config. DOMConfigurator 0 10 O 1111222
116]logdnet. Filter. MdcFilter 0 10 0] 111222
B |logdnet. Config. AliasRepositoryAttribute 0 3 1 1.11.21.1.
144 [logdnet. Plugin. PluginsSkeleton 0 4 1 1.1.1.21.1.
61 [logdnet. GlobalContext i) 1 1 1112121,
104 [logdnet. Core. LoggerRepositoryCreationEventArgs 0 1 1 1112121,
98 |logdnet. Repository. Hierarchy. Loggerkey 0 2 11112122
110|logdnet. LogicalThreadContext 0 2 1 1112122
21 |logdnet. Config. ConfiguratorAttribute 0 5] 1 T.1.1.22
111 [logdnet. Util. LogicalThreadContextProperties a] 9 1 1.1.1.22
2|logdnet. DateFormatter.AbsoluteTimeDateF ormatter 0 5 2 1.1.2
48 [logdnet. Core.LevelCollection+Enumerator 0.333 o] 2 1.1.2
3|logdnet Appender. AdoMetAppender 0.389 77 B 1.2.1.
211 |logdnet. Repository Hierarchy XmiHierarchy Configurator 0.11 110 17 1.2.1.
18|logdnet. Appender. ColoredConsaleAppender 0.143 26 B 122
210|logdnet. Config. ¥miConfiguratorAttribute 0.333 34 4 122

FIGURE 2. A list of “God Class” design flaw suspects

(1) To apply this approach for more case studies;

(2) Comparison with others approaches regarding the issue of threshold
values;

(3) To develop a tool that emphasizes the approach presented in this paper.

8. ACKNOWLEDGEMENT

This research has been supported by CNCSIS - the Romanian National

University Research Council, through the PNII-IDEI research grant ID_550,/2007.

(1]

REFERENCES

W. Li and S. Henry. Maintenance Metrics for the Object Oriented Paradigm. IEEE
Proc. First International Software Metrics Symp., pages 5260, may 1993.

M. Frentiu and H.F. Pop. A study of dependence of software attributes using data
analisys techniques. Studia Univ. Babes-Bolyai, Series Informatica, 2 (2002), 53-66.
Project log4net.: http://logging.apache.org/log4dnet.

Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum
Press, New York, 1981.

Bieman, J. and Kang, B.: Cohesion and reuse in an object-oriented system. Proc.
ACM Symposium on Software Reusability, apr (1995).

Chidamber, S. and Kemerer, C.: A metric suite for object- oriented design. IEEE
Transactions on Software Engineering, 20(6):476-493, June (1994).

38
(7]
(8]
[9]

[10]

[11]

[12]
(13]
[14]

[15]

[16]

[17]
18]

[19]

[20]

21]
22]

SCIE

CAMELIA SERBAN AND HORIA F. POP

Fowler, M. Beck, K. Brant, J. Opdyke, W. and Roberts, D.: Refactoring: Improving
the Design of Existing Code. Addison-Wesley, (1999).

Henderson-Sellers, B.: Object-Oriented Metrics: Measures of Complexity. Prentice-
Hall, (1996).

Johnson, R. and Foote, B.: Designing reuseable classes. Journal of Object-Oriented
Programming, 1(2):22-35, June (1988).

Lorenz, M. and Kidd, J.: Object-Oriented Software Metrics. Prentice-Hall Object-
Oriented Series, Englewood Cliffs, NY, (1994).

R. Marinescu, Measurement and quality in object-oriented design. Ph.D. thesis in
the Faculty of Automatics and Computer Science of the Politehnica University of
Timisoara, 2003.

R. Martin, Design Principles and Patterns. Object Men-
tor,http: //www.objectmentor.com, 2000

McCabe, T.: A complexity measure. IEEE Transactions on Software Engineering,
2(4):308-320, dec (1976).

Meyer, B.: Object-Oriented Software Construction. International Series in Computer
Science. Prentice Hall, Englewood Cliffs, (1988).

P.F. Mihancea and R.Marinescu. Towards the optimization of automatic detection of
design flaws in object-oriented software systems. In Proc. of the 9th European Conf.
on Software Maintenance and Reengineering (CSMR), 92-101, (2005).

Rajaraman, C. and Lyu, M.: Some coupling measures for c4++ programs. Prentice-Hall
Object-Oriented Series, In Proceedings of TOOLS USA92, Prentice-Hall, Englewood
Cliffs, NJ, (1992).

Riel, A.J.: Object-Oriented Design Heuristics. Addison-Wesley, (1996).

Tahvildari, L. and Kontogiannis, K.: Improving design quality using meta-pattern
transformations : A metric-based approach. Journal of Software Maintenance and
Evolution : Research and Practice, 4-5(16):331-361, October (2004).

D.Tegarden and S.Sheetz: Object-oriented system complexity: an integrated model of
structure and perceptions. In OOPSLA92 Workshop on Metrics for Object-Oriented
Software Development(Washington DC), (1992).

Basili, V., Briand, L., and Melo, W.: A validation of object-oriented design metrics as
quality indicators. IEEE Transactions on Software Engineering 22(10), 751-761, (1996).
Zadeh L. A.: Fuzzy sets, Inf. Control, 8, 338-353, (1965).

Dumitrescu, D.: Hierarchical pattern classification, Fuzzy Sets and Systems 28, 145—
162, (1988).

DEPARTMENT OF COMPUTER SCIENCE, FACULTY OF MATHEMATICS AND COMPUTER
NCE, BABES-BoLyal UNIVERSITY, CLUJ-NAPOCA, ROMANIA
E-mail address: camelia@cs.ubbcluj.ro, hfpop@cs.ubbcluj.ro

