
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 2, 2008

EXTENSION OF AN OCL-BASED EXECUTABLE UML
COMPONENTS ACTION LANGUAGE

S. MOTOGNA, B. PÂRV, I. LAZĂR, I. CZIBULA, L. LAZĂR

Abstract. Executable models allow precise description of software sys-
tems at a higher level of abstraction and independently of a platform or a
programming language. In this paper we explore the use of a Procedural
Action Language based on OCL to specify executable UML components
and we propose an extension that will include array types and correspond-
ing operations.

1. Introduction

Model Driven Architecture (MDA) development represent a pertinent so-
lution to design and control of large software systems, while UML establihed
itself as a standard for software models. UML2 and its Action Semantics [6]
provide the foundation to construct executable models. In order to make a
model executable, the model must contain a complete and precise behavior
description. But, creating a model that has a complete and precise behav-
ior description is a tedious task or an impossible one because of many UML
semantic variation points.

We have introduced COMDEVALCO a framework aimed to support def-
inition, validation, and composition of software components, that allows the
construction and execution of UML structured activities [3]. The framework
refers only to UML structured activities because our first objective was to
allow model transformation from PIM (Platform Independent Model) to pro-
cedural constructs of imperative languages. It includes a modeling language,
a component repository and a set of tools. The object-oriented modeling lan-
guage contains finegrained constructions, aimed to give a precise description
of software components. Component repository is storing valid components,

Received by the editors: October 12, 2008.
2000 Mathematics Subject Classification. 68N30.
1998 CR Categories and Descriptors. D.2.4 [SOFTWARE ENGINEER-

ING]: Software/Program Verification – Formal methods, Model checking, Validation;
D.2.13 [SOFTWARE ENGINEERING]: Reusable Software – Reuse models; I.6.5
[SIMULATION AND MODELING]: Model Development – Modeling methodologies .

Key words and phrases. Software components, Executable models, OCL.

15

16 S. MOTOGNA, B. PÂRV, I. LAZĂR, I. CZIBULA, L. LAZĂR

ready to be composed in order to build more complex components or systems.
The toolset contains tools dedicated to component definition, validation, and
composition, as well as the management of component repository.

Our approach uses Procedural Action Language (PAL) that is a concrete
syntax for UML structured activities and defines graphical notations for some
UML structured activity actions [7]. PAL simplifies the process of constructing
executable models by simplifying the construction of UML structured activi-
ties.

The execution of the model is performed without any transformation, and
by using this approach the time delay between the model changes and the
model execution is minimized.

The repository should contain executable models, ready to be used in any
further development. One aspect that can guarantee this principle is to use
some extra conditions, such as preconditions, postconditions and invariants to
the model definition that would describe in a formal way, the behavior of the
model.

Object Constraint Language - OCL - has been extensively used for mod-
els of UML [6], representing a well suited specification language for defining
constraints and requirements in form of invariants, pre- and post- conditions.

So, we add pre- and post-conditions to the model in the form of OCL
expressions. In such a way, we obtain the desired descriptions in terms of
OCL expressions, we then could use them in searching queries, and the layout
of the repository can be standardized.

The repository will store different types of models, and in the initial phase,
we have designed it for simple arithmetical and array problems. The OCL
specification [5] doesn’t contain array types, which are necessary in our ap-
proach. So, we have two options to tackle this problem: to express arrays
using the existing constructions or to extend OCL Expressions.

The first approach has two main disadvantages: it restricts the type of
the elements of the arrays and array specific operations should be re-written
any time they are needed. We would prefer to work with a more generic
construction, and do not worry about operations’ implementations each time
they are used. Array operations are defined once, and then called any time
they are needed.

The rest of the paper is organized as follows: the next section presents some
related works in the domain and compare them with our approach. Section 3
describes the action language defined as part of ComDeValCo framework and
then section 4 presents the extension of PAL with array types and associated
operations, and an example of an executable model that benefits from the use
of our extension. The next section draws some conclusions and suggests some
future development directions.

EXTENTION OF AN OCL-BASED ACTION LANGUAGE 17

2. Related work

The xUML [8] process involves the creation of platform independent, exe-
cutable UML models with the UML diagrams being supported by the action
semantics-compliant Action Specification Language (ASL). The resulting mod-
els can be independently executed, debugged, viewed and tested. The action
semantics extension to UML defines the underlying semantics of Actions, but
does not define any particular surface language. The semantics of the ASL
are defined but the syntax of the language varies. ComDeValCo is compliant
with UML 2.0 and uses structured activities for models [3].

According to several domain experts, a precise Action Semantics Language
(ASL) and a specified syntax are required. Unfortunately, actions defined in
UML do not have a concrete syntax and OMG does not recommend a specific
language, so there is not a standard ASL. Object Constraint Language (OCL)
is a formal language used to describe expressions on UML models. The great
overlap between ASL and OCL (large parts of the Action Semantics specifi-
cation duplicates functionality that is already covered by the OCL) suggests
that OCL can be used partly for ASL. OCL for Execution (OCL4X) [2] is
defined based on OCL to implement operations that have side effects and pro-
vide the ability for model execution. By mapping from ASL to OCL, OCL
is used to express some actions in ASL. This approach has identified some
open problems when using OCL in specification of the executable models, and
offered solutions based on extending OCL to include actions with side effects
in order to model behavior. Our approach is, in many ways, similar to this
one. We are also proposing some extensions of OCL, but based on identifying
some other problems and suggesting more efficient approaches of executable
model specification.

According to Stefan Haustein and Jorg Pleumann, since the OCL is a sub-
set of the ASL, there are two options for building an action surface language
based on OCL [1]: map all OCL constructs to actions, then add new syn-
tax constructs for actions that are required, but not covered, or embed OCL
expressions in new syntax constructs for actions.

The first option requires a complete mapping of the abstract OCL syntax
to actions. This would mean to give up declarative semantics in OCL, or to
have two flavours of OCL with different specifications that would need to be
aligned carefully.

The second option can be implemented by referring to the existing OCL
surface language, without modifying it, maintaining a clean syntactical sepa-
ration between plain queries and actions that may influence the system state.

ComDeValCo is oriented on this second approach.

18 S. MOTOGNA, B. PÂRV, I. LAZĂR, I. CZIBULA, L. LAZĂR

3. Procedural Action Language - description and features

As part of ComDeValCo framework we have defined a procedural action
language (PAL), that is a concrete syntax for UML structured activities, and
graphical notations for some UML structured activity actions [7].

The framework also includes an Agile MDA approach for constructing, run-
ning and testing models. Debugging and testing techniques are also included
according to the new released standards. In order to be able to exchange ex-
ecutable models with other tools, a UML profile is also defined. The profile
defines the mapping between PAL and UML constructs and is similar to the
profile defined for AOP executable models.

In order to develop a program we construct a UML model that contains
functional model elements and test case model elements. Functional model
elements correspond to the program and its operations and are represented as
UML activities. Test case model elements are also UML activities and they
represent automated tests written for some selected functional model elements.

The Procedural Action Language (PAL) is introduced to simplify the con-
struction of UML structured activities. PAL defines a concrete syntax for rep-
resenting UML structured activity nodes for loops, sequences of actions and
conditionals. The PAL syntax is also used for writing assignment statements
and expressions in structured activity nodes. PAL also includes assertion
based constructs that are expressed using OCL expressions.

The syntax of the language is given in Appendix A.
The framework accepts user-defined models described in UML-style or us-

ing PAL, validates them according to UML metamodel and construct the ab-
stract syntax tree, which is then used to simulate execution. For each syntac-
tical construction of PAL there exists a rule corresponding to the construction
of the abstract syntax tree.

4. Extending PAL with array type

The intention is to store different types of models in the repository, but,
in the initial phase, we have considered small models for simple arithmetical
problems, and we face the problem of dealing with arrays. As mentioned
before PAL uses OCL-based expressions, but the OCL specification language
does not allow arrays.

There are two things that should be taken into consideration when design-
ing types for models [9]:

• Languages that manipulate and explore models need to be able to
reason about the types of the objects and properties that they are
regarding within the models.

EXTENTION OF AN OCL-BASED ACTION LANGUAGE 19

• There is also a need to reason about the types of artifacts handled by
the transformations, programs, repositories and other model-related
services, and to reason about the construction of coherent systems
from the services available to us. While it is possible to define the
models handled by these services in terms of the types of the objects
that they accept, we argue that this is not a natural approach, since
these services intuitively accept models as input, and not objects.

At the first attempt, it would have looked simpler to add a new type array
that could create arrays with elements of any existing type in the system,
but taking a deeper look, creating an array of integers is totally different
from creating an array of components. Consequently, we have though at the
approach that is also taken in different strongly typed programming language
(Java, .NET), and that will guarantee an easy extension of the type system.

Figure 1. Type metaclasses

We have started from the type hierarchy from OCL [5] and refined it to
integrate ArrayType, as depicted in Figure 1. A Classifier may be a DataType,
a Class or an Interface. ArrayType and PrimitiveType are specializations of
DataType. The most important feature of DataType is that a variable of this
type can hold a reference to any object, whether it is an integer, a real or an
array, or any other type.

We highlight only the modifications of the grammar such that our models
will be able to handle arrays and records. Types can be arrays whose elements
can be of any type. Records will be structures that will group together a

20 S. MOTOGNA, B. PÂRV, I. LAZĂR, I. CZIBULA, L. LAZĂR

Figure 2. Assignment statements

number of fields, such that a field is similar to a variable declaration.

TY PE : DataType|Class|Interface

DataType : PrimitiveType|ArrayType

PrimitiveType : Integer|Boolean|String|Real|
ArrayType : TY PE[DOMAIN]
DOMAIN : INT..INT |INT.. ∗

In the specification of the domain, first case describes an array of known
size at declaration, and the second case specifies an array whose size is not
known when declared.

Consequently, we will allow expressions to contain values of the newly
introduced types, namely the value of an element of the array, and the value
of a field from a record:

atom : ID|INT |STRINGLITERAL|
ID′(′(expr)?(′,′ expr) ∗ endN =′)′|e = TRUE|

e = FALSE|condition|ID′[INT ′]′

EXTENTION OF AN OCL-BASED ACTION LANGUAGE 21

The statements that involve expressions need also to be revised. Figure 2
shows part of the syntax, without specifying all the statements. The complete
syntax is presented in the Appendix. The dashed components are the ones
defined in UML and the white-box components are the ones introduced in
ComDeValCo. Assignment statement is further specialized in two categories,
depending on its left-value: for variables or for properties. According to UML
2.1 Property can be associated to a Class or to a DataType.

The syntactical rules corresponding to these statements are:

AssigmentStatement : V arAssignStatement|PropAssignStatement

V arAssignStatement : IDASSIGNexpr

PropAssignStatement : Classname.PropASSIGNexpr|
ID[ID]ASSIGNexpr

We adopt the same approach as the OMG Specification of OCL: we con-
sider that there is a signature Σ = (T,Ω) with T being a set of type names,
and Ω being a set of operations over types in T . The set T includes the basic
types int, real, bool and String. These are the predefined basic types of OCL.
All type domains include an undefined value that allows to operate with un-
known or null values. Array types are introduced to describe vectors of any
kind of elements, together with corresponding operations. All the types and
operations are defined as in OCL.

DataType: is the root datatype of PAL and represents anything. There-
fore, its methods apply to all primitive types, array type and record type.
It is defined to allow defining generic operations that can be invoked by any
object or simple value. It is similar to AnyType defined in OCL, but we have
preffered this approach since AnyType is not compliant with all types in OCL,
namely Collection types and implicitely its descendants. Defining DataType
and its operation new we can create uniformly any new value as a reference
to its starting address.

Operations on the type:
isType(element : DataType) : Boolean Checks if the argument is of the

specified type,
new() :DataType Creates a new instance of the type.
Operations on instances of the type:
isTypeOf(type) : Boolean Checks if the instance is of the specified type
isDefined() : Boolean Checks if the instance is defined (not null).
Array Type inherits from DataType.
Operations:
size() : Integer Returns the size of the array

22 S. MOTOGNA, B. PÂRV, I. LAZĂR, I. CZIBULA, L. LAZĂR

isEmpty() : Boolean Checks if the array has no items.
Operation [] takes an integer i as argument and returns the i-th element

of the array.
The operations regarding the variable declarations are implemented in the

DataType. In such a way, we may create new instances of array type, and we
may check if the instance is not null.

A type is assigned to every expression and typing rules determine which
expressions are well-formed. There are a number of predefined OCL types
and operations available for use with any UML model, which we considered as
given. For the newly introduced type constructions and its associated opera-
tions we will give typing rules. The semantics of types in T and operations in
Ω is defined by a mapping that assigns each type a domain and each operation
a function.

The following rule states that we may create arrays of any existing type
in the system:

G|−A:T
G|−Array(A):T

An array M is defined with elements of a type and an integer as index:
G|−N :Int,G|−M :A

G|−array(M,N):Array(A)

If i is an index of an array then i is of type Integer.
G|−M :Array(A)

G|−indexM :Integer

The following rule specifies the way we can infer the type of an element of
an array knowing the type of the array:

G|−N :Int,G|−M :Array(A)
G|−M [N]:A

The last rule states the constraints imposed on assignment to an element
of an array:

G|−N :Int,G|−M :Array(A),G|−P :A
G|−M [N]:=P :array(A)

In order to illustrate our workbench support for defining and executing
platform-independent components we consider a simple case study that prints
a given product catalog. The class diagram presented in Figure 3 shows an
extract of an executable UML model developed using COMDEVALCO Work-
bench [7]. The Product entity represents descriptive information about prod-
ucts and the ProductCatalog interface have operations that can be used to
obtain product descriptions as well as the product prices. The CatalogPrinter
component is designed to print the catalog, so it requires a reference to a
ProductCatalog. The model contains a SimpleProductCatalog implementation
that has an array of products and an array of prices.

The model defined in Figure 3 uses the stereotypes defined by the iCOM-
PONENT UML profile for dynamic execution environments [4]. According to
the iCOMPONENT component model, these model elements can be deployed

EXTENTION OF AN OCL-BASED ACTION LANGUAGE 23

Figure 3. Executable iComponents

as three modules (units of deployments): a module that contains the Product
class and the ProductCatalog interface, another one that contains the Catalog-
Printer component, and finally a module containing the SimpleProductCatalog
component. After deployment, the dynamic execution environment applies the
dependency inversion principle in order to inject the ProductCatalog reference
required by the CatalogPrinter component.

Using the validate stereotype the CatalogPrinter component register the
print method as a callback method that is executed when the component
acquire the required interface. The execution starts with this method.

The init method of the SimpleProductCatalog component is executed im-
mediately after an instance of the component is created. The updatePri-
cePercentage property is a configuration property that specifies that the up-
datePrices operation will be executed when a running component instance is
reconfigured.

Figure 4 and 5 show the code written using the proposed extended OCL-
based action language.

5. Conclusion and future work

We have presented an Action Language based on procedural paradigm
and defined an extension with arrays, that can be succesfully used in specify-
ing executable UML components. The approach taken in extending the PAL,

24 S. MOTOGNA, B. PÂRV, I. LAZĂR, I. CZIBULA, L. LAZĂR

operation print() {
Integer productCount = productCatalog.size();
for(int index = 0; index < productCount; index++) {
Product product = productCatalog.getProduct(index);
write(product.code);
write(product.description);
write(productCatalog.getPrice(product));

}
}

Figure 4. CatalogPrinter operation

operation size(): Integer {
return products.size();

}
operation getProduct(index: Integer): Product {
assert (0 <= index) and (index < products.size());
return products[index];

}
operation getPrice(product: Product): Real {
return prices[product.code];

}
operation init() {
products = new Product[] {
new Product(0, "A"), new Product(1, "B")

};
prices = new Real[] {5, 7};

}
operation updatePrices(percentage: Real) {
for(int index = 0; index < prices.size(); index++)
prices[index] = (1 + percentage) * prices[index];

}

Figure 5. SimpleProductCatalog operation

can be used in adding new features to it, and integrating them in the frame-
work. The main application of such specifications is to completely describe
executable components for storing in a repository, as suggested in [4].

As future developments we intend to add, when necessary, further exten-
sions to the PAL and integrate them in ComDeValCo workbench, and to use
information from these specifications to validate the components.

EXTENTION OF AN OCL-BASED ACTION LANGUAGE 25

6. ACKNOWLEDGEMENTS

This work was supported by the grant ID 546, sponsored by NURC -
Romanian National University Research Council (CNCSIS).

7. References

[1] S. Haustein and J. Pleumann. OCL as Expression Language in an Action
Semantics Surface Language. OCL and Model Driven Engineering, UML 2004 Con-
ference Workshop, 2004.

[2] K. Jiang, L. Zhang, and S. Miyake. OCL4X: An Action Semantics Language
for UML Model Execution. Proc. of COMPSAC, pages 633-636, 2007.

[3] I. Lazar, B. Parv, S. Motogna, I. Czibula, and C. Lazar. An Agile MDA
Approach for Executable UML Structured Activities. Studia Univ. Babes-Bolyai In-
formatica, 2:101-114, 2007.

[4] I. Lazar, B. Parv, S. Motogna, I.-G. Czibula, and C.-L. Lazar. iCOMPO-
NENT: A platform-independent component model for dynamic execution environ-
ments. In 10th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing. submitted, 2008.

[5] Object Management Group. Object Constraint Language Specification, version
2.0. http://www.omg.org/cgibin/ apps/doc?formal/06-05-01.pdf, 2006.

[6] Object Management Group. UML 2.1.1 Superstructure Specification.
http://www.omg.org/cgi-bin/doc?ptc/07-02-03/, 2007.

[7] B. Parv, I. Lazar, and S. Motogna. COMDEVALCO Framework - the Model-
ing Language for Procedural Paradigm. Int. J. of Computers, Communications and
Control, 3(2):183- 195, 2008.

[8] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie. Model Driven
Architecture with Executable UMl. Cambridge University Press, 2004.

[9] J. Steel and J.-M. Jezequel. On model typing. International Journal of Soft-
ware and System Modeling (SoSyM), 2008.

8. Appendix A - PAL grammar

prog: program (operation)* | (operation)+
program: PROGRAM ID pre post conditions statement block
operation : OPERATION ID operation parameter list

(’:’ TYPE)? pre post conditions statement block
operation parameter list : aux=’(’ (operation parameter)?

(’,’operation parameter)* ’)’
operation parameter : (PARAM TYPE)? aux=ID ’:’ TYPE
pre post condition:(precondstatement)?(postcondstatement)?
statement block : startN=’{’ statement* endN=’}’
statement: asignstatementstandalone | callstatement | ifstatement |

declstatement | whilestatement | forstatement | assertstatement |
readstatement | writestatement | returnstatement

callstatement : CALL expr endN=’;’

26 S. MOTOGNA, B. PÂRV, I. LAZĂR, I. CZIBULA, L. LAZĂR

readstatement : READ ID endN=’;’
writestatement : WRITE expr endN=’;’
asignstatement : ID ASSIGN expr
asignstatementstandalone : ID ASSIGN expr endN=’;’
declstatement :VARDECLR ID’:’TYPE(’:=’expr)?endN=’;’
ifstatement : IF ’(’ expr ’)’ b1=statement block

(ELSE b2=statement block)?
whilestatement : WHILE ’(’ expr ’)’ loop statement block
forstatement : FOR ’(’ e1=asignstatement ’;’ e2=expr ’;’

e3=asignstatement ’)’ loop statement block
assertstatement : ASSERT ’:’ expr endN=’;’
returnstatement : RETURN expr? endN=’;’
precondstatement : PRECOND ’:’ oclexpr endN=’;’
postcondstatement : POSTCOND (’(’ ID ’)’)? ’:’ oclexpr endN=’;’
loopinvariant : LOOPInv ’:’ expr endN=’;’
loopvariant : LOOPVa ’:’ expr endN=’;’
loop statement block : startN=’{’ (loopinvariant)?

(loopvariant)? statement* endN=’}’
condition : ’(’ expr ’)’
oclexpr : expr
expr: sumexpr
sumexpr : (conditionalExpr) (OP PRI0 =conditionalExpr)
conditionalExpr : (multExpr) (OP PRI1 e=multExpr)
multExpr : (atom) (OP PRI2 e=atom)*
atom: ID | INT |STRINGLITERAL | ID ’(’ (expr)? (’,’ expr)* endN=’)’|

e=TRUE | e=FALSE | condition
PARAM TYPE: ’in’| ’out’ | ’inout’
TYPE : ’Integer’ |’Boolean’ | ’String’ | ’Real’| DataType |

TYPE[DOMAIN]
DOMAIN : INT..INT | INT.. *
OP PRI0 :(’and’ | ’or’ | ’not’ |′ <′ |′ >′ |′ <=′ |′ >=′ |

′ ==′ |′ <>′)
OP PRI1 : (’+’ |’-’)
OP PRI2 : (’*’ |’/’ | ’div’)
ID : (’a’..’z’ |’A’..’Z’) (’a’..’z’|’A’..’Z’ | ’0’..’9’)*
INT : ’0’..’9’ +
STRINGLITERAL : ’ ” ’ (options {greedy=false;} : .)* ’ ” ’
BOOLEAN CONST : ’true’ | ’false’

Department of Computer Science, Faculty of Mathematics and Computer
Science, Babeş-Bolyai University, 1, M. Kogălniceanu, Cluj-Napoca 400084, Ro-
mania

E-mail address: bparv,motogna,ilazar,czibula@cs.ubbcluj.ro

