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CONSTRAINT OPTIMIZATION-BASED
COMPONENT SELECTION PROBLEM

ANDREEA VESCAN AND HORIA F. POP

Abstract. Component-Based Software Engineering (CBSE) is concerned
with the assembly of pre-existing software components that leads to a soft-
ware system that responds to client-specific requirements. Component se-
lection and component assembly have become two of the key issues involved
in this process.

We aim at a selection approach that guarantees the optimality of the
generated component-based systems, an approach that considers at each
step the cost of the selected component and the set of requirements remain-
ing to be satisfied. The dependencies between requirements are also consid-
ered. We have modeled the Component Selection Problem as a Constraint
Satisfaction Optimization Problem and applied the Branch and Bound al-
gorithm. The experiments and comparisons with the Greedy algorithm
show the effectiveness of the proposed approach.

1. Introduction

Since the late 90’s Component Based Development (CBD) is a very active
area of research and development. CBSE [5] covers both component develop-
ment and system development with components. There is a slight difference in
the requirements and business ideas in the two cases and different approaches
are necessary. Of course, when developing components, other components may
be (and often must be) incorporated and the main emphasis is on reusabil-
ity. Components-based software development is focused on the identification
of reusable entities and relations between them, starting from the system re-
quirements.

Building software applications using components significantly reduces de-
velopment and maintenance costs. Because existing components can often be
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reused to build new applications, it is less expensive to finance their develop-
ment.

In this paper we address the problem of automatic component selection.
Generally, different alternative components may be selected, each coming with
their own set of offered functionalities (in terms of system requirements). We
aim at a selection approach that guarantees the optimality of the generated
component-based system, an approach that considers at each step the com-
ponent with the maximum set of offered functionalities needed by the final
system. In our previous research, disseminated in [14], the dependencies be-
tween requirements were not taken into account. The current paper considers
also the requirements dependencies during the selection process. The compat-
ibility of components is not discussed here, as it will be dealt with in a future
development.

We discuss the proposed approach as follows. Related work on Compo-
nent Selection Problem is discussed in Section 6. Section 2 introduces our
approach for Component Selection Problem: Subsection 2.1 presents a for-
mal statement of the Component Selection Problem (CSP), the necessity of
normalization in Subsection 2.3 and the modeling of the CSP as Constraint
Optimization Problems (COP) in Subsection 2.4. A Greedy and a Branch
and Bound approaches are considered. Section 3 presents the elements of the
Greedy algorithm and the chosen selection function. The Branch and Bound
algorithm is presented in Section 4. Using the example in Section 5 we discuss
the two proposed approaches: Greedy and Branch and Bound. We conclude
our paper and discuss future work in Section 7.

2. Constructing component-based systems by automatic
component selection

In Component-Based Software Engineering, the construction of cost-optimal
component systems is a nontrivial task. It requires not only to optimally select
the components but also to take their interplay into account.

We assume the following situation: Given a repository of components and
a specification of the component-based system that we want to construct (set
of final requirements), we need to choose components and to connect them such
that the target component-based system fulfills the specification. Informally,
our problem is to select a set of components from an available set which may
satisfy a given set of requirements while minimizing the number of selected
components and minimizing the sum of the costs of the selected components.
To achieve this goal, we should assign to each component a set of requirements
it satisfies.

2.1. Formal Statement of the Component Selection Problem. Com-
ponent Selection Problem (CSP) is the problem of choosing the minimum
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number of components from an available set such that their composition sat-
isfies a set of objectives (variation of CSP, the cost of each component is not
considered). The notation used for formally defining CSP (as laid out in [6]
with a few minor changes to improve appearance) is described in what follows.

Problem statement. Denote by SR the set of final system requirements
(target requirements) SR = {r1, r2, ..., rn}, and by SC the set of components
available for selection SC = {c1, c2, ..., cm}. Each component ci may satisfy
a subset of the requirements from SR, SRci = {ri1 , ri2 , ..., rik}. In addition
cost(ci) is the cost of component ci. The goal is to find a set of components
Sol in such a way that every requirement rj (j = 1, n) from the set SR may
have assigned a component ci from Sol where rj is in SRci, while minimizing∑

ci∈SSol cost(ci) and having a minimum number of used components.

2.2. Requirement dependencies. In [13] we have introduced the matrix
for the requirements dependencies.

In Table 1 the dependencies between the requirements r1, r2, r3 are spec-
ified: the second requirement depends on the third requirement, the third
requirement depends on the first and the second requirement.

Dependencies r1 r2 r3

r1
√ √

r2
√

r3
√ √

Table 1. Dependencies specification table

Some particular cases are required to be checked: no self dependency (the
first requirement depends on itself), no reciprocal dependency (the second
requirement depends on the third and the third depends on the second re-
quirements) and no circular dependencies (the second requirement depends
on the third, the first depends on the second and the third depends on the
first). All the above situations are presented in Table 1.

2.3. Data normalization. Normalization is an essential procedure in the
analysis to compare data having different domain values. It is necessary to
make sure that the data being compared is actually comparable. Normaliza-
tion will always make data look increasingly similar. An attribute is normal-
ized by scaling its values so that they fall within a small-specified range, such
as 0.0 to 1.0.

As we have stated above we would like to obtain a system by compos-
ing components, a system that will have a minimum final cost and all the
requirements are satisfied. The cost of each available component is between
0 and 100. At each step of the construction the number of requirements not
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yet satisfied is considered as a criterion to proceed with the search. We must
normalize the cost of the components and also the number of requirements yet
to be satisfied.

We have used two methods to normalize the data: decimal scaling for the
cost of the components and min-max normalization for the requirements not
yet satisfied.

Decimal scaling. The decimal scaling normalizes by moving the decimal
point of values of feature X. The number of decimal points moved depends
on the maximum absolute value of X. A modified value new v corresponding
to v is obtained using:

new v =
v

10n
,

where n is the smallest integer such that max(|new v|) < 1.
Min-max normalization. The min-max normalization performs a lin-

ear transformation on the original data values. Suppose that minX and maxX
are the minimum and maximum of feature X. We would like to map interval
[minX,maxX] into a new interval [new minX, new maxX]. Consequently,
every value v from the original interval will be mapped into value new v using
the following formula:

new v =
v −minX

maxX −minX
.

Min-max normalization preserves the relationships among the original data
values.

2.4. Constraint Optimization-based Component Selection Problem.
Constraint Satisfaction Problems (CSPs) are mathematical problems where
one must find objects that satisfy a number of constraints or criteria. CSPs
are the subject of intense research in both artificial intelligence and operations
research. Many CSPs require a combination of heuristics and combinatorial
search methods to be solved in a reasonable time.

In many real-life applications, we do not want to find any solution but a
good solution. The quality of solution is usually measured by an application
dependent function called objective function. The goal is to find such solu-
tion that satisfies all the constraints and minimize or maximize the objective
function respectively. Such problems are referred to as Constraint Satisfaction
Optimization Problems (CSOP).

A Constraint Optimization Problem can be defined as a regular Constraint
Satisfaction Problem in which constraints are weighted and the goal is to find a
solution maximizing the weight of satisfied constraints. A Constraint Satisfac-
tion Optimization Problem consists [4] of a standard Constraint Satisfaction
Problem and an optimization function that maps every solution to a numerical
value. The most widely used algorithm for finding optimal solutions is Branch
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and Bound and it can be applied to CSOP as well. The Branch and Bound
algorithm was first proposed by A. H. Land and A. G. Doig in 1960 for linear
programming. In Section 4 a more detail description is given.

3. Greedy Algorithm

Greedy techniques are used to find optimum components and use some
heuristic or common sense knowledge to generate a sequence of sub-optimums
that hopefully converge to the optimum value. Once a sub-optimum is picked,
it is never changed nor is it re-examined.

The Pseudocode of the Greedy algorithm is illustrated in Algorithm 1.

Algorithm 1 Greedy algorithm

Require: SR; {set of requirements}
SC. { set of components }

Ensure: Sol. { obtained solution }
1: Sol := ∅; RSR := SR;{RSR=Remaining Set of Requirements}
2: while (RSR <> ∅) do
3: Choose a ci from SC, not yet processed;
4: @ Mark ci as processed.
5: if Sol

⋃ { ci } is feasible then
6: Sol := Sol

⋃ { ci };
7: RSR := RSR - SRci;
8: end if
9: end while

The selection function is usually based on the objective function. Our
selection function considers the sum of number of requirements to be satisfied
(function f) and the cost of the already selected components plus the cost of
the new selected component (function g) to be minimal ((g + h) is minimal)
and all the dependencies are satisfied.

4. Branch and Bound Algorithm

Branch and Bound algorithms are backtracking algorithms storing the cost
of the best solution found during execution and use it for avoiding part of the
search. More precisely, whenever the algorithm encounters a partial solution
that cannot be extended to form a solution of better cost than the stored best
cost, the algorithm backtracks, instead of trying to extend this solution.

The term Branch and Bound refers to search methods which have two
characteristics that makes them different from other searching techniques:

(1) The method expands nodes from the search tree (this expansion is
called branching) in a particular manner, trying to optimize the search.
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(2) The search technique uses a bounding mechanism in order to elimi-
nate (not expand) certain branches (paths) that does not bring any
improvements.

The problem solving using B&B technique is based on the idea of building
a search tree during the problem solving process. By a successor of a node
n we mean a configuration that can be reached from n by applying one of
the allowed operations. By expansion of a node we mean to determine all the
possible successors of the node.

The selection of the successors of a node must also take into consideration
the dependencies between requirements. The list of successors of a node is
thus reduced.

Because by expanding the initial configuration some configurations can be
repeatedly generated, and because the number of nodes can be large, we will
not store the entire tree, but only a list with the nodes (configurations) that
have to be processed (denoted SOLUTION LIST ). At a given time a node
from SOLUTION LIST can have one of the following states: expanded or
unexpanded.

The main problem is what node for the list should be selected at a given
moment in order to obtain the shortest solution of the problem. Each node n
from the list has an associated value (cost function),

f(n) = g(n) + h(n),

where:
• g(n) represents the cost of the components that were used until now

(from the root node to node n) to construct the solution;
• h(n) represents the number of remaining requirements that need to be

satisfied (to reach the final solution starting from the current node n).
The function h is called heuristic function.

The B&B [7] algorithm is described using Pseudocode in Algorithm 2.

5. Case study

In order to validate our approach the following case study is used.
Starting for a set of six requirements and having a set of ten available com-

ponents, the dependencies between the requirements of the components, the
goal is to find a subset of the given components such that all the requirements
are satisfied.

The set of requirements SR = {r0, r1, r2, r3, r4, r5} and the set of compo-
nents SC = {c0, c1, c2, c3, c4, c5, c6, c7, c8, c9} are given.

In Table 2 the cost of each component from the set of components SC is
presented. We have used decimal scaling to normalize the cost of the compo-
nents.
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Algorithm 2 Branch and Bound algorithm

Require: SR; {set of requirements}
SC. { set of components }

Ensure: Sol. { obtained solution }
1: Select a component (node) from the set of available components SC. The

component (node) is added into the list SOLUTION LIST , initially as-
sumed empty (hereby called “the list”). This component has the cost as
the value of the function g and the total number of requirements in the
set SR, yet to be satisfied, as the value of the function h.

2: while (unexpanded nodes still exist in the list) do
3: Select from the list the unexpanded node n having the minimum value

for the function f = g + h.
4: Expand node n and generate a list of successors SUCC.
5: for (each successor succ from SUCC) do
6: Compute the function g associated to succ.
7: Compute the function h associated to succ, i.e. the number of re-

maining requirements from the set SR that need to be satisfied to
reach the final solution (with all the requirements satisfied) starting
from the node succ.

8: if (the value of h is 0 (a solution is found)) then
9: Sol will memorize the best solution between the previously obtained

solution (if exists) and the current obtained solution.
10: else
11: if (component succ does not appear in the list) then
12: Add succ into the list with its corresponding cost value f(succ) =

g(succ) + h(succ) and mark as unexpanded;
13: else
14: if (the value g(succ) is < the g value of the node found in the

list) then
15: The node found in the list is directed to the actual parent of

succ (i.e. n) and is associated with the new value of g. If the
node was marked as unexpanded, its mark is changed.

16: end if
17: end if
18: end if
19: end for
20: end while

Table 3 contains for each component the provided services (in terms of
requirements of the final system).

Table 4 contains the dependencies between each requirement from the set
of requirements.
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Component c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

Cost 12 7 3 9 6 14 8 14 7 6
Cost Normaliza-
tion

0.12 0.07 0.03 0.09 0.06 0.14 0.08 0.14 0.07 0.06

Table 2. Cost values for each component in the SC

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

r0
√ √ √ √

r1
√ √

r2
√ √ √

r3
√ √

r4
√ √ √ √

r5
√ √ √ √

Table 3. Requirements elements of the components in SC

Dependencies r0 r1 r2 r3 r4 r5

r0
√

r1

r2
√ √

r3
√

r4
√

r5
√

Table 4. Specification Table of the Requirements Dependencies

Table 5 contains the normalization of the number of remain requirements
to be satisfied.

5.1. Results obtained by Greedy algorithm. In the current section we
discuss the application of the Greedy algorithm (presented in Subsection 3) to
our problem instance.

The first step of the selection function is the computation of the functions
g and h: g is the cost of the used components and h is the number of re-
quirements yet to be satisfied. The component with the minimum value of the
function f = g + h is chosen to be a part of the solution. The ties are broken
randomly. The dependencies must be also satisfied.

In the first iteration of the algorithm the c4 component has the minimum
value for the function f , i.e. 0.89 and has no dependencies. The set of require-
ments that are satisfied by choosing the c4 component is: {r1}. Next, only
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No. of requirements to be
satisified

Normalization Value

0 0/6 0
1 1/6 0.16
2 2/6 0.33
3 3/6 0.50
4 4/6 0.66
5 5/6 0.83
6 6/6 1

Table 5. Normalization of the number of requirements to be satisfied.

the components that may improve the solution (by satisfying new require-
ments) are considered: {c0, c1, c2, c3, c5, c6, c7, c8, c9} but only three of them
have all the dependencies satisfied, i. e. {c0, c2, c3}. The c0 component has
the smallest value of the f function (0.68) and this component is selected to
be considered into the solution.

The set of requirements that must still be fulfilled is {r2, r4, r5}. Only three
components may provide some of the remaining requirements and at the same
time having all the dependencies satisfied: {c6, c7, c9}. The c9 component has
the smallest value of the f function (0.40) and this component is the next to
be considered for selection.

There is only one requirement to be satisfied, i. e. {r2}. Only three com-
ponents may provide this functionality and all of them have the dependencies
satisfied: {c1, c5, c8}. The component with the minimum value for the g (0.31)
function is the c8 component.

The set of the requirements to be satisfied RSR is empty and we have
reached a solution with all the requirements satisfied by the selected compo-
nents: c4, c0, c9 and c8. The cost of the final solution 0.31 is the sum of the cost
of the selected components. Still, we will see in the next Section 5.2 that there
are better solutions with the final cost 0.24: {c4, c2, c6, c1} or {c4, c2, c6, c8}.

5.2. Results obtained by Branch and Bound algorithm. The Branch
and Bound algorithm initialize the first used component in the solution list
with the component c4 (the only component with no dependencies). The
set of satisfied requirements is: {r1}. The first iteration of the Algorithm 2
adds the {c0, c2, c3} components (ordered by the value of the function f) to
the list SOLUTION LIST (n represents not expanded node and e represents
expanded node).

SOLUTION LIST =
〈 c0 c2 c3 c4

n n n e

〉
.
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The next step of the algorithm expands the first unexpanded node from
the list, i.e. c0. The components that may provide some functionalities from
the set of requirements to be satisfied are: {c1, c5, c6, c7, c8, c9}. Only three
components have the dependencies satisfied. The list of successors is reduced
to: {c6, c7, c9}. The new list of nodes is: {c9, c6, c7, c0, c2, c3, c4} with two
expanded nodes, components c4 and c0.

The next node to be expanded is c9. Three solutions are found but only the
best one is memorized: {c4, c0, c9, c8} with cost 0.31. Next expanded nodes are
c6 and c7 but the obtained solutions have the cost greater that the previously
best obtained solution.

The expansion of the c2 node modifies the list of nodes. From the list of
components that may provide new needed functionalities only four of seven
components have the dependencies satisfied: {c0, c6, c7, c9}. All the successor
are already part of the list but, except the c0 node, the value of the g function
is smaller than the value from the list. The list of nodes is updated according
to the new values of f functions.

SOLUTION LIST =
〈 c6 c9 c7 c0 c2 c3 c4

n n n e e n e

〉
.

The next node that is expanded is the node c6. The successors are:
{c1, c5, c8}. The new obtained solution considering the c1 component is better
then the current best solution: the cost is 0.24 < 0.31. The other two obtained
solutions (with components c5 and c8) have the cost greater or equal that the
cost of the new solution, i.e. 0.31 and 0.24.

By expanding next the node c9 four components may provide the needed
functionalities (r2 or r3) and all have the dependencies satisfied. For the
components c0 and c6 the new values for g are greater than those from the
list. Therefore the values for the stated components is not going to be changed.
The other components will be included into the final list:

SOLUTION LIST =
〈 c6 c1 c9 c5 c7 c0 c2 c3 c4

e n e n n e e n e

〉
.

With the next expanded node two solutions are found but with the cost
greater than the best found solution, i.e. 0.34 and 0.30. By expanding the
other nodes no new solution may be found and no new nodes mat be added
to the solution list.

The solution obtained with the Branch and Bound algorithm (considering
the g function as the sum of the cost of the used components and the h function
as the number of requirements to be satisfied) consists of the components:
{c4, c2, c6, c1} having the cost 0.24.
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6. Related work

Component selection methods are traditionally done in an architecture-
centric manner. An approach was proposed in [12], where the authors present a
method for simultaneously defining software architecture and selecting off-the-
shelf components. They have identified three architectural decisions: object
abstraction, object communication and presentation format. Three type of
matrix are used when computing feasible implementation approaches. Existing
methods include OTSO [10] and BAREMO [11].

Another type of component selection approaches is built around the rela-
tionship between requirements and components available for use. In [8] the
authors have presented a framework for the construction of optimal compo-
nent systems based on term rewriting strategies. By taking these techniques
from compiler construction they have developed an algorithm that builds a
cost-optimal component-based system. In PORE [2] and CRE [1] the same
relation between requirements and available components is used. The goal
here is to recognize the mutual influence between requirements and compo-
nents in order to obtain a set of requirements that is consistent with what the
market has to offer. The [6] approach considers selecting the component with
the maximal number of provided operations. The algorithm in [3] considers all
the components to be previously sorted according to their weight value. Then
all components with the highest weight are included in the solution until the
budget bound has been reached.

Paper [9] proposes a comparison between a Greedy algorithm and a Ge-
netic Algorithm. The discussed problem considers a realistic case in which
cost of components may be different.

7. Conclusion and future work

CBSE is the emerging discipline of the development of software compo-
nents and the development of systems incorporating such components. A
challenge in component-based software development is how to assemble com-
ponents effectively and efficiently.

A proposal for the Component Selection Problem as a Constraint Op-
timization Problem is given. Two considered approaches are: Greedy and
Branch and Bound. Further work will investigate different criteria for compo-
nent selection: dependencies, different non-functional qualities. A real world
system application will be considered next to (better) validate our approach.
We have discussed the case when only the dependencies between the require-
ments from the set of requirements SR. A more real case should be also
considered: a component could have other requirements that need to be sat-
isfied before some of its provided services are used.
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