
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 1, 2008

SOFTWARE PROCESS IMPROVEMENT AT SYSGENIC

DUMITRU RĂDOIU AND MILITON FRENŢIU

Abstract. The Capability Maturity Model (CMM) was defined by Soft-
ware Engineering Institute as a mean to improve the state of Software
Engineering process. Going from CMM level i to the next level i+1 is seen
as a major improvement. How such an improvement was obtained at Sys-
genic is presented in this paper. Also, some consequences on the teaching
process are presented.

Keywords: Software Process Improvement, CMM, education

1. Introduction

The term “software crisis” was introduced by the participants at two
NATO conferences held in 1968 and 1970. It was observed that for a large
number of software development projects deadlines are frequently missed, cost
overruns are a rule not an exception, and it is increasingly difficult to mea-
sure the project progress. It was estimated [18] that more than 50% of the
development project time is spent on testing and debugging. And the final
product is not error-free; on average there still can be three to five errors for
every hundred statements. We all expect the results given by our programs are
correct, but 71% of software products have errors during their usage [16]. It
is well known that some errors are not detected by testing, and some of them
are never detected. Moreover, there are projects that have never been finished
[4]. It is estimated that one from three large projects was never finished [7,
16].

There is a growing requirement of new programs. But our ability to build
new programs hardly keeps pace with the demand for new programs. We
have all observed the permanent and rapid growth of computer usage in all
fields of human activity. The need for new programs is immense and their
complexity is continuously growing. There are known today programs with
millions of lines of code written by hundreds of people. These more complex
programs cannot be developed like the old small ones. It has become necessary

Received by the editors: May 15, 2008.
2000 Mathematics Subject Classification. 68N30.
1998 CR Categories and Descriptors. D.2.9 [Software Engineering]: Management –

Software process models.
107

108 DUMITRU RĂDOIU AND MILITON FRENŢIU

to analyze software costs over the entire life cycle of the system. It is known
today that the major errors are due to errors in specifications, or poor design
of the system, not to bad coding. After all, the fraction of time needed for
programming is about 20% of the entire development process.

Among the factors that make software difficult four of them are inherently
difficult [1, 14]. They are well known: the complexity of software, the confor-
mity of the software product with the real world, the changeability and the
invisibility of the product. The complexity of the problem affects the entire
development process. It is difficult to understand the problem, to analyze it,
to design and to implement the software product. And the real world cannot
be changed to make the software product simpler.

The maintenance activity is a fundamental aspect of software engineering.
It is a significant portion (exceeding 50%) of the total development process.
But poor design and inadequacies resources threaten our ability to maintain
existing programs.

To improve the state of programming activity the Software Engineering
Institute approved a project to study this activity and to suggest ways of
improving it. One of the project outcomes is a report [12,13] that contains the
conclusions of that study and – based on the findings – suggests a number of
steps considered to improve the software processes. According to this study
the software companies are classified in 5 levels, defined by their performances.
Key process areas specific to each level are also given.

Going from CMM level i to the next level i+1 is seen as a major improve-
ment of the software processes of a company. In this respect CMM is seen as
a guide for a continuous improvement.

Software Process Improvement (SPI) may be simply characterized by three
main outcomes:

• respecting the cost and schedule of projects specified in the contracts;
• increasing the productivity;
• improving the quality of software products.

Reducing the rework is one possibility to increase software productivity,
and to respect the schedule. We must build correct programs from the be-
ginning [9, 11, 3]. As Gilb said: “Prevention is more effective than cure” [8].
Also, removing errors earlier permits to reduce the rework, and it is known
today the importance of inspections (peer reviews) in this direction [6].

Building correct programs from the beginning is not a dream, today it
becomes a reality. At IBM Mills introduced such a methodology, known as
Cleanroom [10]. It has been successfully used for 20 years.

SOFTWARE PROCESS IMPROVEMENT AT SYSGENIC 109

2. Reaching CMMi level 3 at Sysgenic

Sysgenic is a Romanian software development company with expertise in
projects for financial and capital markets supplying customers in Europe and
USA. The company software process improvement (SIP) started with docu-
menting and institutionalizing ISO 9001:2000 requirements and this quality
management system was certified in august 2005. The decision to implement
a more professional quality management system (CMMi Level 3) was based
on the need of more control over the projects based on more structured and
practical project management principles. The outcomes were expected to be
reflected in work performance, project visibility and control and in the end
higher quality.

The Process Areas involved in CMMi Level 3 implementation are: Re-
quirements Management (REQM), Project Planning (PP), Project Monitoring
and Control (PMC), Measurements and Analysis (MA), Process and Product
Quality Assurance (PPQA), Configuration Management (CM), Requirements
Development (RD), Technical Solution (TS), Product Integration (PI), Veri-
fication (VER), Validation (VAL), Organizational Process Focus (OPF), Or-
ganizational Process Definitions (OPD), Organizational Training (OT), Inte-
grated Project Management (IPM), Risk Management (RSKM), and Decision
Analysis and Resolution (DAR).

First step was to set up the project team, also known as the Process
Improvement Group (PIG), consisting of process oriented practitioners, with
extensive experience in process design, software development and project man-
agement.

Second step was to provide them professional training (in CMMi) and doc-
umentation. PIG initial training started with an “Introduction to CMMI” SEI
course, plus recent and extensive documentation on the capability maturity
model integration (CMMi).

Third step consisted in initiating a “gap analysis” to document the dif-
ferences (in the above mentioned areas) between what was implemented in
the company and what are CMMi requirements. Based on these findings PIG
initiated the design of the new internal process and started to implement
them. Within the space of one year, these set of standard processes (OSSP)
were institutionalized in the organization. Processes started to follow the new
standards and to be documented accordingly.

After the processes were institutionalized and appeared to comply with
the new requirements, the fourth step was an internal evaluation, also known
as SCAMPI B. The differences between SCAMPI B findings and CMMi Level
3 required compliance were were smoothed up.

110 DUMITRU RĂDOIU AND MILITON FRENŢIU

The following step is called “running in production mode”: release internal
process assets library, OSSP in organizational and software projects.

The on-site assessment, also called SCAMPI A, consists of
• pre-onsite period (consisting in collection and evaluation of project

evidence), and
• on-site evaluation.

Following the on-site evaluation, Sysgenic achievement was recognized by
Software Engineering Institute [15] in August 2007.

Now, one year later after being certified CMMi level 3, Sysgenic is fol-
lowing an internal QA audit on processes followed by a process improvement
analysis and implementation on evaluation results. It is worth mentioning
the constraints under which Sysgenic went into this SPI. Here are the most
“visible” ones:

(1) making use of the already defined processes, known and largely used
by employees;

(2) analyzing and deciding on the best usage of the existing tools (not
always the best choice under CMMi level 3 exigency);

(3) a limited number of human resources who could be allocated to the
SPI.

A first remark, following the above presented constraints, is that the
newly CMMi Level 3 defined and institutionalized processes were sometimes
time consuming and some even redundant. As projects are usually allocated
small teams (8-10 people), any overhead generated by excessive documentation
and/or training is “visible” in planning and cost and will lower the company
competitiveness.

Following the first observation is that SPI never ends and the processes
should be continuously reviewed and improved in successive iterations, focused
mostly on:

(1) process and documentation simplification, maintaining compatibility
with CMMi Level 3 and 4 requirements;

(2) identifying the most suitable tools which automate certain activities;
(3) processes institutionalization and periodic training (and re-training).

3. Conclusions

There are a significant number of lessons learned; here are some mistakes
which we could have avoided.

• Make sure you have really experienced PIG team members, with a
positive attitude, knowledgeable in their respective areas or expertise.
During the process the PIG is usually overloaded, in a small company

SOFTWARE PROCESS IMPROVEMENT AT SYSGENIC 111

they have to play multiple roles and therefore more likely to make
errors. Their expertise and attitude, plus good planning as well as
monitoring and control are essential in the success of the project.

• Simplify your processes to be more close to what we do, more natural
to perform, to really help you in improving your organization perfor-
mance.

• Develop your own simple and goal oriented metrics to document and
track performance.

Software critical systems [2] require error-free programming and high qual-
ity software development processes. Obviously this requires also better edu-
cated work force, able to do this. It was a pleasant finding to learn that CMMi
is taught at Petru Maior University (based in Tirgu Mures where Sysgenic HQ
is located) as part of the Software Engineering course.

Attaining level 4 is, certainly, the next goal of Sysgenic. Quantitative
process management and Software quality management are the Key Process
Areas for this level. Continuous improvement, training and learning from our
experience will help. A Software Metrics Program must be introduced to offer
a quantitative feedback for improvement.

Nevertheless, we need more and more educated people as Software Engi-
neers. And these people need a serious background from universities. Knowl-
edge on Process Management, Verification and Validation (and consequences
from the theory), Software Metrics must be present in their curricula [17].

There is a contradiction between the desire to obtain a system as quickly as
possible, and to have a correct system. We need confidence in the quality of our
software products. We need to educate the future software developers in the
spirit of producing correct, reliable systems. For this we must teach students
to develop correct programs. We are aware that usually programmers do not
prove the correctness of their programs. There always must be a balance
between cost and the importance of reliability of the programs. But even
if the well educated people do not prove the correctness, their products are
more reliable than the products of those “programmers” who never studied
program correctness. Therefore, we consider that the students must listen,
and pay attention to the correctness of their products.

It is unbelievable that students are superficially taught the theory of pro-
gram correctness. As teachers, we must strive for a better education of the
new generations of programmers. As scientists, we must look for better tools.
The software development process must be based more on mathematical tech-
niques, the formal methods must be taught and used as much as possible.

112 DUMITRU RĂDOIU AND MILITON FRENŢIU

References

[1] Brooks, F.P., No Silver bullet: Essence and accidents of software engineering, IEEE
Comput. 20, 4(1987), 10-19.

[2] Ricky W.Butler, Sally C.Johnson, Formal Methods for Life-Critical Software, NASA
Langley Research Center, http://shmesh.larc.nasa.gov.

[3] Dromey, G., Program Derivation. The Development of Programs from Specifications,
Addison Wesley, 1995.

[4] Effy Oz, When Professional Standards are LAX. The CONFIRM Failure and its lessons,
Comm. A.C.M., 37(1994), 10, 29-36.

[5] M. Fagan, Design and Code Inspections to Reduce Errors in Program Development,
IBM Systems Journal, 15 (3), 1976.

[6] Tom Gilb and Dorothy Graham, Software Inspection, Addison-Wesley, 1993.
[7] Gibs W.W., Software’s Chronic Crisis, Scientific American, September, 1994.
[8] Gilb T., Software Inspection for the Internet Age: how to increase effect and radically

reduce the cost, 2001, www.Result-Planning.com
[9] Gries, D., The Science of Programming, Springer Verlag, Berlin, 1985.
[10] Mills H., M.Dyer, and R. Linger, Cleanroom Software Engineering, IEEE Software, 4

(1987), 5, 19-25.
[11] Carol Morgan, Programming from Specifications, Springer, 1990.
[12] Paulk M.C., B.Curtis, M.B.Chrissis, C.V.Weber, The Capability Maturity Model for

Software, Tech.Report, CMU/SEI-93-TR-25.
[13] Paulk M.C., B.Curtis, M.B.Chrissis, C.V.Weber, The Capability Maturity Model, Ver-

sion 1.1, IEEE Software, 10(1993), 4, 18-27.
[14] Schach S.R., Software Engineering, IRWIN, Boston, 1990.

[15] http://sas.sei.cmu.edu/pars/pars detail.aspx?a=9828 (retrieved 3rd of June 2008)
[16] The Standish Group Report: Chaos, http://www.scs.carleton.ca/∼bean/PM/ Standish-

Report.html
[17] ***. Computer Science Curricula at Babes-Bolyai University, www.cs.ubbcluj.ro
[18] Yourdon, E., Modern Software Analysis, Yourdon Press, Prentice Hall Buiding, New

Jersey 07632, 1989

Petru Maior University, 1 Nicolae Iorga St., Târgu Mureş, Romania
E-mail address: Dumitru.Radoiu@Sysgenic.com

Babeş Bolyai University, 1 Mihail Kogălniceanu St., Cluj-Napoca, Romania
E-mail address: mfrentiu@cs.ubbcluj.ro

