
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 1, 2008

INTRODUCING A NEW FORM OF PARAMETRIC
POLYMORPHISM IN OBJECT ORIENTED PROGRAMMING

LANGUAGES

IANCU MIHAI CĂPUTĂ AND SIMONA MOTOGNA

Abstract. Nowadays software development tools have to provide effec-
tive means of data manipulation with minimal development time. As types
represent the meaning of raw data, this paper focuses upon taking types
to another level in an object oriented dynamically type-safe programming
language, in order to increase language flexibility and productivity.

Key words: Object-oriented programming, parametric polymorphism

1. Introduction

Mainstream object oriented programming languages, such as .NET lan-
guages or Java, support both kind of type-checks (static and dynamic).

Static type checking or static typing means that the typechecker, which
may or may not be part of the compiler, performs an analysis over the source-
code at compile time to ensure that certain type-constraints are not being
violated.

In C#, for instance, static type checks are made when resolving the over-
loading of methods, or when performing an upcast (casting from derived type
into base type). Dynamic type checking (also known as runtime type check-
ing) characterizes a dynamically typed programming language which is one
where type constraints are being checked at runtime. In C#, dynamic type
checks are made when a downcast (casting from base type into a derivate
type) is performed, in order to ensure that the backing object, that is cast
into the derivate type, is an instance of the derivate type or of another type
that derives from that derivate type. This check can only be done at runtime,
except some scenarios in which a smart compiler can figure out that the cast
is possible.

By taking the dynamically-typing even further, productivity can be in-
creased considerably. This can be achieved by introducing the concept of

Received by the editors: May 5, 2008.
2000 Mathematics Subject Classification. 68N15, 68N19.
1998 CR Categories and Descriptors. D.3.3 [Language Constructs and Features]:

Data types and structures, Polymorphism.

97

98 IANCU MIHAI CĂPUTĂ AND SIMONA MOTOGNA

Type-unbound variables which induces a new form of parametric polymor-
phism. We propose a programming language prototype, called X Language
or shortly X, that will incorporate this new form of parametric polymorphism
with clear benefits in productivity. It targets the .NET framework 2.0 and
the syntax is almost identical to C# 2.0s. This language is under develop-
ment. We will often make references to C#, which is very popular amongst
developers, but these references are traceable in most of the OOPL on the
mainstream. (Java, Delphi.NET, C++.NET etc.)

This paper is organized as follows: The second paragraph is introducing
the notion of type unbound variables, and then in paragraph three we discuss
its relation with parametric polymorphism, describing in several examples the
role of type unbound variables in implementing paramatric polymorphism.
Section 4 discusses different aspects that should be taken into consideration
when introducing this feature in a programming language. Paragraph 5 refers
to some details regarding the implementation of type unbound variables, tar-
geting a virtual machine, and in the end some ideas for our future work on
this langauge.

2. Introducing type unbound variables

In C#, when you declare a variable, you must specify its type. This is a
hint for the compiler so that it will be able to enforce type-safety. That variable
will be bound to its type throughout its entire scope. This means that you
wont be able to change its type at runtie. Please note that eventhough a
variable of type B can have a backing object of type D, which is a derivate
of B, conceptually speaking that variable is of type B (from a compilers point
of view). Type unbound variables refer to variables that arent bound to a
certain type. At the moment i of execution the variable has the type Ti and
at the moment i + 1 it can have any other type, Ti+1 which is not necessarily
ad-hoc polymorphic with Ti.

In almost every object oriented programming language, there are system
classes used to manipulate the concept of Type, such that information about
types (system or user defined ones) is accessible at runtime throughout in-
stances of this classes. In C# there are mechanisms (such as reflection [4]) for
creating objects based on information held by these instances.

This is the common way to create instances of a variable type at runtime.
Sometimes this turns to be quite tedious and the usage of System.Type class
in order to do that does not intervene to the programmer in a natural manner.
This class hints us more to a class schema or an object runtime inspector rather
than to a usable type.

In the X language, which implements the concept of type unbound vari-
ables, the behavior of System.Type class instances is similar to the one of
a type identifier. We can use an instance of the System.Type class (which

A NEW FORM OF PARAMETRIC POLYMORPHISM 99

holds meta-informations about a type) just as if it was a type, as shown in the
following example:

Example 1: Usage of a type unbound variable (a)
System.Type T;
T = int;
T a = 10; //a is a valid integer with the value of 10

3. Type unbound variables and parametric polymorphism

Polymorphism is a programming language feature that allows values of
different data types to be handled using a uniform interface. Christopher Stra-
chey identified in 1967, two fundamentally different kinds of polymorphism:
ad-hoc and parametric [3].

Ad-hoc polymorphism is when the range of actual types that can be used
is finite, and the combinations must be specified individually prior to use.
In object-oriented programming this is implemented through class-inheritance
(objects of different types can be handled uniformly through an interface or a
common base class called superclass).

Parametric polymorphism enables a function or a data type to be written
generically so that it can handle values identically without depending on their
type[1], such that it increases the expresiviness of the language.

Firstly introduced in ML (1967), and then inherited in several other lan-
gauges, parametric polymorphisim still remains a desirable feature in a pro-
gramming langauge, due to its benefits. Recently, Java and C# introduced
”generics” as a form of parametric polymorphism.

Cardelli and Wegner [1] introduced in 1985 ”bounded parametric polyor-
phism”, which imposes some bounds on the parameters, such as to be subtypes
of a given type.

For example, in C++ parametric polymorphism is implemented with tem-
plates or in C# with generics, as presented in Example 2.

Example 2: C# Generics
List<int> myList = new List<int>();
myList.Add(1);
myList.Add(2);
myList.Add(3);
This kind of parametric polymorphism is resolved statically at compile

time: ”In .NET 2.0, generics have native support in IL (intermediate lan-
guage) and the CLR itself. When you compile generic C# server-side code,
the compiler compiles it into IL, just like any other type. However, the IL only
contains parameters or place holders for the actual specific types. In addition,
the metadata of the generic server contains generic information. The client-
side compiler uses that generic metadata to support type safety. When the
client provides a specific type instead of a generic type parameter, the client’s

100 IANCU MIHAI CĂPUTĂ AND SIMONA MOTOGNA

compiler substitutes the generic type parameter in the server metadata with
the specified type argument. This provides the client’s compiler with type-
specific definition of the server, as if generics were never involved. This way
the client compiler can enforce correct method parameters, type-safety checks,
and even type-specific IntelliSense”[2].

In the following, we propose some use cases and present some examples
that show how type unbound variables are introduced and what improvements
they have on the written code.

Use case 1: In C# the abstract data type List is available as a generic
type. When you use the class List to specify the type of a variable, or to
derive from it, you have to specialize it by telling the compiler what kind of
elements this list will handle. Parametric polymorphism comes inherently in
X Language when using an instance of System.Type class as a type identifier
for a methods return type, a methods argument or class member, as illustrated
below.

Example 3:
class GenericList
{ protected System.Type itemType;

public ItemType
{

get { return this.itemType;}
set {this.itemType = value;}

}
public GenericList(System.Type itemType)
{

ItemType = itemType;
}
public void Add(ItemType item)
{//... }
public void Remove(ItemType item)
{ //...}
public ItemType operator [](int index)
{//...}
. . .
}

In the above example notice that the property ItemType, that represents
the type of one item from the GenericList, is used in Add, Remove method
declaration, and in [] operator declaration. Parametric polymorphism comes
from the fact that by changing the ItemType of the GenericList instance, it
will handle different lists of items, without having to change any code.

When specializing this kind of genericity (by supplying a valid System.Type
instance for each Type variable in the class), you will not create a new type,

A NEW FORM OF PARAMETRIC POLYMORPHISM 101

but a new behavior. This approach makes the definition of generic lists more
naturally.

Use case 2: Another situation in which type unbound variables can be
useful is the following: Suppose that we have a class, named MyClass, written
by a third party, leaving out of posibilities of modifying this class. We want
to create a proxy for MyClass, named MyClassProxy which delegates all the
methods calls to a Remote method call server (this illustrates the design pat-
tern Proxy, and is often used in RMI - Remote Method Invocation, and RPC
- Remote Procedure Call). MyClassProxy looks identical in terms of method
signatures to MyClass, but those types are not ad-hoc polymorphic since in-
stances of these types cannot be treated uniformly through an interface or a
base class that exposes their methods. Suppose that we have to write down
code that dynamically decides whether it uses objects of MyClass or objects
of MyClassProxy and does a certain task. In order to achieve that, in C# 2.0,
well either have to write the code that does the job, twice, firstly for MyClass,
and secondly for MyClassProxy, or as an alternative we will have to extract
that code into a generic method, but that is a bit intrusive, and sometimes it
is not quite straight-forward.

In X programming language the solution comes from the usage of the
parametric polymorphism in the form of type-unbound variables. We declare
a variable of type System.Type, and we fill it with MyClass or MyClassProxy
accordingly. Then we use that variable to declare the instances of the class
MyClass/MyClassProxy, and operate with them just as if we dont have to
decide whether to use MyClass or MyClassProxy. Example 4 shows how this
approach is taken in X.

Example 4:
System.Type T;
if (bUseProxy) //we need to use the proxy class
{

T = MyClassProxy;
}
else
{

T = MyClass;
}
T obj; // crete an instance of MyClass or MyClassProxy

depending on the previous decision
// use obj no matter what type underlies it

Example 5: Dynamic casting - Suppose that we have a variable T of
type Type. A cast will be performed at runtime from int to the value of the
T variable (which is a type).

int a;

102 IANCU MIHAI CĂPUTĂ AND SIMONA MOTOGNA

Type T;
T b;
//read a value for a;
if (a>0)
{

b = float;
}
else
{

b = double;
}
b = (T)a; //a dynamic cast is performed from int to float or

// double, depending on the runtime value of T.

4. Implications of type unbound variables

When implementing this new form of parametric polymorphism several
aspects must be kept in mind regarding: type safety, strong typing, threads
safety and limitations of type unbound variables.

4.1. Type safety. For each variable that is about to be used, at the mo-
ment of execution, the underlying type must be known, otherwise a runtime
exception will be thrown.

4.2. Strong Typing.
• Whenever a method argument is a type unbound variable, that meth-

ods overloading resolution must be done at runtime
• Member access of a type unbound variable is resolved at runtime hence

all the validations upon that member must be done at runtime
• Method calls of type unbound variables are late bound
• Each operator is subject to all the constraints the methods are subject

to
• When changing the underlying type of a type-unbound variable, a

policy regarding the current value of the variable needs to be adopted:
Since every type has a default value, the value of the variable will be
reset to this default value.

4.3. Limitations. We have identified three restrictions that must be imposed:
• Variable types (variables of type System.Type) cannot be used in class

hierarchies definition (cannot be used as base types)
• Variable types cannot be used to define delegate types (function pointer

types), as pointed out below.
class D {...}
class A

A NEW FORM OF PARAMETRIC POLYMORPHISM 103

{
Type typeVar = D;
class C:typeVar { ...} //this is not allowed
delegate typeVar myDelegate(D b, A a) ;// not allowed
delegate int myDelegate(typeVar b, A a);//not allowed

}
• Type instances cannot be used to define entities (variables/members)

of a larger domain of visibility, as in the following sequence
class C
{

private Type memberType;
public memberType member1; //not allowed: member1

// has a larger domain of visibility than memberType
protected memberType member2; //not allowed: member2

//has s larger domain of visibility than memberType
}

4.4. Thread safety. System.Type instances can be regarded as shared re-
sources once they were used to create instances of a type. The problem of
thread safety arises here.

Suppose that a type-unbound variable V is used by thread Th1, and thread
Th2 wants to change the underlying type of V. The system should expose a
mechanism through which the programmer could be able to ensure thread-
safety.

In order to ensure this, the System.Type class from X, exposes a variable
counter, which indicates the number of type unbound variables of that type.
When the variable counter is 0, the type can be changed without causing any
havoc. Please note that this variable counter is different than the reference
counter which indicates how many instances of that type are being referenced
at a moment of execution.

In a compiler implementation, the type-variables could be copied into the
thread local storage (with a compiler directive the programmer is able to
modify this implicit behaviour) so the programmer wont have to interogate
the variable counter before changing the value of the type variable.

4.5. Lifetime and variable storage. The lifetime of a type-unbound vari-
able is not determined by the lifetime of the type instance that was used to
define it. Consider the sequence:

{
Type T;
T a = new T();
StartThread(a); //start a thread and pass ’a’ as parameter

}

104 IANCU MIHAI CĂPUTĂ AND SIMONA MOTOGNA

When T runs out of scope, the instance that was passed to the thread
doesnt get garbage collected. In the storage of variable a, a reference to the
value of T will be held. When variable T runs out of scope, its reference
counter gets decremented, but it will not reach down to 0 because the instance
referenced by a, will be passed to a thread, hence incremented.

The type-unbound variable storage is subjected to all the policies, that
the type-bound variables (the regular ones) are subjected to.

5. Implementation details

When implementing such a feature in a programming language, several
aspects should be taken into consideration. Firstly, type-unbound variables
are not syntactic sugar. In order to implement this feature several extensions
must be supported by the core of the virtual machine and covered by the
design of the compiler.

There are plenty of ways to implement such a feature, and many performance-
related policies can be applied. These implementation details aim a virtual
machine that will support type-unbound variables.

The compiler will not be able to fully handle the usage of variables, because
their type might be unknown at compile time. This implies that the virtual
machine will provide mechanisms to handle variables (such as member function
call, member access, etc) as instructions built within its core. In the sequence
of code below, well try to exemplify how one can implement this feature. The
code is written in C++, and covers only the surface of the concept: how to
implement instructions in the virtual processor, that provide method invoking
and member access of type-unbound variables.

The idea behind the implementation can be understood from the defini-
tions of the structures and the functions.

The structure Method holds metainfo about a method. These kind of
metainfo are also usefull for reflecting upon a method. The structure Type
holds metainfo about a type, in which the methods and the type contains can
be organized as a dictionary that maps a method hash to a Method. The
structure Instance contains information about an instance of a class. If the
type member of this structure can be chagned, we are talking about a type
unbound variable.

The function call() represents the call instruction supported by the vir-
tual processor. The function OverloadingResolution() resolves the collision of
methodes that have same methodHash. Two methodes have same methodHash
if they have same name.

The function xcall represents the extended call instruction suported by
the virtual processor. It perfoms a dynamic call.This means that the method
cannot be determined at compile time, and it has to be searched through the
methods of the underlying type, by the methodHash. This hash is determined

A NEW FORM OF PARAMETRIC POLYMORPHISM 105

at compile time by applying some sort of a hash function on the method name.
methodAddress represents the method address that needs to be determined. If
the type does not contain a definiton for that method, then an exception will
be thrown. If the method is virtual, then we need to lookup its address into
the virtual function table, still by its hash, and if the method is not virtual
then its address is the one held by the methodInfo structure returned by the
method overloading.

The xMemberAccess function provides access to a member returning its
address from a specific variable storage. It will perform a look-up by the
memberHash, into the Type of Instance, to find the address of the member
into the Instance storage. This access is type checked, which means that if
the Type does not contain a definiton for the specified member, an exception
will be thrown.

struct Method
{

void* address; //address of method, determined at load-time
bool isVirtual; //whether or not the method is virtual
//... //any other metainfo

};
struct Type
{

Method** methodes;
};
struct Instance
{

Type* type; //the type of the instance
void* vft; //virtual function table
void* storage; //data storage
//...//other related info

};
void call(void* method) { }
Method* OverloadingResolution(Type* type, unsigned long methodHash,

Instance** params)
{ }
void xcall(Instance* this, unsigned long methodHash,

Instance** params, unsigned int paramCount)
{

void* methodAddress = 0;
Method* methodInfo = OverloadingResolution(this→type,
methodHash, params);
if (methodInfo==0)

throw new Exception();
if (methodInfo→IsVirtual)
{

106 IANCU MIHAI CĂPUTĂ AND SIMONA MOTOGNA

methodAddress = this→vft[methodInfo];
}
else
{

methodAddress = methodInfo→address;
}
push(this);
for (int i=0;i<paramCount;++i)
{

push(params[i]);
}
call(methodAddress);

}
void* xMemberAccess(Instance* this, unsigned long memberHash) { }

6. Future work

The fully development of the X Language, will illustrate this concept.
We also intend to describe the complete definition of type constraints that will

allow the static type-checker to resolve some validations which are currently done by
the runtime type-checker.

Also the intellisense of the development environment X Language will integrate
in, would be developed so that it will work in the case of type-unbound variables and
variable types.

7. References

[1] L. Cardelli and P. Wagner: On Understanding Types, Data Abstraction and
Polymorphism, Technical Report CS-85-14, Brown University, Department of Com-
puter Science, 1985

[2] Juval Lowy: An Introduction to C# Generics, Visual Studio 2005 Technical
Articles, 2005, http://msdn2.microsoft.com/en-us/library/ms379564(vs.80).aspx

[3] C. Strachey, Fundamental concepts in programming languages. Lecture notes
for International Summer School in Computer Programming, Copenhagen, August
1967

[4] T.L. Thai, Hoang Lam - .NET Framework Essentials, O’Reilly Programming
Series, 2001

Department of Computer Science, Faculty of Mathematics and Computer
Science, Babeş-Bolyai University, 1 M. Kogălniceanu, Cluj-Napoca 400084, Ro-
mania

E-mail address: ci29836@scs.ubbcluj.ro

E-mail address: motogna@cs.ubbcluj.ro

