
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 1, 2008

SIGNEDINTERSECTION - A NEW ALGORITHM FOR
FINDING THE INTERSECTION OF TWO SIMPLE

POLYGONS

ANDREEA SABAU

Abstract. The operation of determining the intersection of two poly-
gons is one of the most important operations of computational geometry.
This paper presents a new algorithm called SignedIntersection which
founds the intersection of two simple polygons, convex or concave, without
holes, in two steps. The first step is using a sweep line in order to find the
intersection points and segments that form the polygons’ intersection. This
data is enriched with additional values that indicate the way the sweep line
traverse the segments, if the vertexes are given in counter-clockwise order.
Such an additional value is a sign, positive or negative. The final step
consists in building the result using the data determined by the previous
step. The result of the intersection of two (possible) non-convex polygons
may be empty or may consist of one or more polygons, convex or concave.

Key words: Computer graphics, Polygons intersection, Convex poly-
gons

1. Introduction

Determining the intersection of two polygons (in the 2D space) is one of
the basic operations of the computational geometry. This operation is usually
used within spatial data systems (like GIS), CAD and computer graphics.

The algorithms that determine the intersection of two polygons usually
receive as input data two convex polygons [4, 6], or two polygons such as
at least one of them is not convex (it is concave) [2, 3]. More, there are
also algorithms that can handle polygons which may have holes [8]. The
algorithms from the first category are easier to implement, based on simpler
computations. The one presented in [6] is based on computing the convex hull
of the two input polygons. The convex hull of the two polygons contains two
segments that do not belong to any of the two polygons; starting with one of

Received by the editors: May 1, 2008.
2000 Mathematics Subject Classification. 68U05.
1998 CR Categories and Descriptors. I.3.5. [Computing Methodologies]: Computer

Graphics – Computational Geometry and Object Modeling .

83

84 ANDREEA SABAU

them, the vertexes (and the edges) of the polygons are traversed toward the
other convex hull’s considered segment in order to determine the intersection
(which is also a convex polygon). Some algorithms belonging to the second
category are splitting the input polygons into convex parts and apply a method
for convex polygons [1, 7] (usually - trapezoids), followed by the reunion of
the intermediate results. The paper [8] describes an algorithm that runs in
three steps in order to find the intersection of two polygons, possibly with
holes. First, the intersection points of the two input polygons are found using
a sweep line. Some navigational data (numerical data) is associated with each
intersection point during the second step. The last part of the algorithm
determines the intersection by traversing the polygon edges and intersection
points.

This paper presents another algorithm that determines the intersection
of two simple (non-self-intersecting) polygons, convex or concave. The next
section presents the data structures used by the algorithm and the algorithm
itself.

2. The SIGNEDINTERSECTION Algorithm

An algorithm called SignedIntersection that builds the intersection
of two simple, convex or concave, polygons is presented in this section. This
algorithm is original, according to the author’s knowledge, in the way it pro-
cesses and analyzes data, the used data structures, and the manner in which
the result is determined. This algorithm was implemented in order to be used
within the 3SST relational data model [5]. Therefore this algorithm works
with data stored within relations on a Microsoft SQL-Server [5] and it is writ-
ten in the Transact-SQL language.

The algorithm’s input data is given by two simple polygons, convex or
concave. According to the 3SST relational data model, a polygon P is repre-
sented by the list of its vertexes, given in the counter-clockwise order.

Let R and Q be the two polygons considered as input data, where R =
(R1, R2, ..., Rn) and Q = (Q1, Q2, ..., Qm). Ri, i:=1..n, n≥3, are the R’s
vertexes, and Qj , j:=1..m, m≥3, are the Q polygon’s m vertexes. The two
coordinates of a vertex V will be noted as V.x, and V.y respectively.

The main step of the SignedIntersection algorithm consists in sweep-
ing the plane with a line (the sweep line) parallel with the Oy axis, beginning
with the R’s or Q’s vertex with the minimum x coordinate. If there are (at
least) two such points the whole ensemble can be rotated so that only one
vertex has the minimum x coordinate. As the sweep line is moving toward
the vertex with the maximum x coordinate, the segments that are forming

A NEW ALGORITHM THE INTERSECTION OF TWO POLYGONS 85

the intersection’s final result are determined. The last step of the presented
algorithm consists in analyzing the segments previously found and building
the intersection polygons (none, one or more such polygons).

2.1. The SignedIntersection Algorithm’s Data Structures. The
data structures used during the execution of the SignedIntersection al-
gorithm are arrays of which elements contain the following elements:

Points [PID, x, y, PgID]

• PID - one polygon’s vertex identifier (PID is the unique identifier in
Points table of the 3SST relational data model [5]),
• x, y - the coordinates of the point identified by PID,
• PgID - the identifier of the polygon of which one of the vertexes is
PID.

Segments [SgID, PID1, PID2]

• SgID - segment identifier,
• PID1, PID2 - the end-points of the segment given by SgID. PID1

is the start end-point and PID2 is the final end-point, in accordance
with the counter-clockwise order of the polygons’ vertexes.

Intersections [PID, x, y, SgID1, SgID2]

• PID - the identifier of an intersection point between two segments of
polygons R, and Q respectively,
• x, y - the coordinates of the point identified by PID,
• SgID1, SgID2 - the identifiers of the segments from whose intersec-

tion resulted PID.

Overlapping [PID1, PID2]

• PID1, PID2 - the identifiers of the end-points of the overlapping
between two segments or a vertex and a segment of the two polygons;
if the overlapping is given by a single point, then PID1 = PID2; PID1
and PID2 always represent polygon vertexes.

OrderPoints [PID]

• PID - the identifier of a point from Points or Intersections data
structures.

Stack [position, SgID, sgn, sw y]

• SgID - a segment identifier, from R or Q,
• sgn - the way the segment is swept according to the sweep line; if the

sweep line goes first through the start end-point of the segment, then
sgn = +1, else sgn = -1,

86 ANDREEA SABAU

• sw y - the y coordinate of the intersection between the segment and
the sweep line (the x coordinate of the intersection is given by the
position of the sweep line).

Results [SgID, sgn, PID1, PID2, checked]

• SgID - a segment identifier, from R or Q,
• sgn - the way the segment is swept according to the sweep line (this

value is taken from one Stack’s entry),
• PID1, PID2 - the end-points of the segment or of the part of the seg-

ment which is included in the final result of the polygons’ intersection,
• checked - a Boolean value, used in order to build up the final result;

indicates if the segment has already been analyzed or not.
In this point the following observation has to be made. The PID values

from the Points and Intersections lists are unique (such a value uniquely
identifies an intersection point or one of the polygons’ vertexes).

The OrderPoints and Stack lists are sorted. Without describing the
operations, any insertion or deletion in / from these lists is maintaining the
sorting order. The items of the OrderPoints structure are sorted according
to the x coordinate of the point identified by PID. The list OrderPoints
contains all the polygons’ vertexes and intersection points after the sweep line
completely swept both polygons. If there are two (or more) points having
the same value of their x coordinate, the sorting is made according to the y
coordinate. Specifically, the order in which the points of the OrderPoints
list are stored denotes the order in which the sweep line encounters the two
polygons’ vertexes. The segments of the Stack list are sorted in the ascending
order of the sw y values. The Stack list contains at a specific moment all
the two polygons’ segments which are currently intersected by the sweep line.
These segments’ order is given by the y coordinate of their intersection points
with the sweep line.

2.2. The SignedIntersection Algorithm. The algorithms that determine
intersection points or intersection surfaces usually use the sweep line tech-
nique. The novelty and the name of the presented algorithm come from the
importance of the way the polygon’s edges are traversed by the sweep line.
Also, there are identified four types of vertexes of a polygon and the segments
in the Stack list are managed according to these types. The types of vertexes
and the manner in which the segments are inserted, updated, or deleted in /
from Stack are outlined next.

Let R be a simple concave polygon given by the list of vertexes R = (R1,
R2, R3, R4, R5, R6, R7) (see figure 1) and a sweep line parallel with the Oy
axis. The order in which the vertexes are traversed by the sweep line is (R1,
R7, R2, R6, R4, R3, R5). The manner in which the edges of this polygon

A NEW ALGORITHM THE INTERSECTION OF TWO POLYGONS 87

are managed in Stack is exemplified next. R1 is called extreme left ver-
tex of the R polygon, in which case both segments that leave from R1 are
inserted in Stack: R1R2 is inserted with sgn=+1 because the way the sweep
line traverses it is from the initial end-point (R1) through the final end-point
(R2); R1R7 is inserted with sgn=-1 because the seep line traverses the seg-
ment as the vertexes would be taken in clockwise order (the segment R1R2

is inserted in Stack under the segment R1R7 because, even if R1 belongs to
both segments, R2 has a smaller y coordinate than R7). Next, R7 is called
transition point with negative sign, in which case the segment finished
by R7 is replaced with R7R6 in Stack (also with sgn=-1). R2 is called tran-
sition point with positive sign, in which case the segment finished by R2

is replaced with the segment that starts at R2 (the segment R1R2 is replaced
with the segment R2R3 with sgn=+1). R7R6 is replaced with R6R5 in Stack
when the vertex R6 is encountered. R4 is an other extreme left vertex of R,
therefore the segments R4R3 and R4R5 are inserted in Stack between R2R3

and R6R5. The vertex R3 is called extreme right vertex. This vertex indi-
cates the moment when the sweep line has just finished traversing the segments
R2R3 and R4R3, therefore they are deleted from Stack. R4R5 and R6R5 are
deleted from Stack when R5 is swept finally by the sweep line. Having two
polygons, their individual segments are managed within the list Stack in the
same manner as presented above.

Figure 1. The simple concave polygon R given by R = (R1,
R2, R3, R4, R5, R6, R7), where the vertex R1 has the minimum
x coordinate.

The operation of determining the intersection’s result is described in the
algorithm presented below. The algorithm also handles the case when two
segments of the two considered polygons are overlapping.

88 ANDREEA SABAU

The following functions are considered to exist, without specifying their
implementation details:

• no elem(L) - returns the number of elements of one of the list struc-
tures (L) used by the SignedIntersection algorithm,
• y int(SgID, SWL) - returns the y coordinate of the intersection

point between the segment identified by SgID and the sweep line SWL,
• coord x(PID) - determines the x coordinate of the point identified

by PID (from the list Points or Intersections),
• sgn(SgID) - returns the sign of the segment SgID during the sweep

line’s movement through the polygons’ vertexes.

Three routines are presented next: InitializeStructures initial-
izes the lists Points, Segments, Intersections, Stack, and Results;
SignedIntersection determines the intersection of the two given poly-
gons; ShowResults analyzes and prints the intersection’s result.

InitializeStructures(R, Q)
// Input:
// R, Q - polygons given by their vertexes lists,
// R = (R1, R2, ..., Rn) and Q = (Q1, Q2, ..., Qm),
// and identified by IdR, and IdQ respectively

// Initialize the lists Points, Segments, Intersections,
// Stack, Results
For each point Ri, i:=1..n, do
Insert the entry (Ri.PID, Ri.x, Ri.y, IdR) in Points
Insert the entry (Ri.PID) in OrderPoints
Let SgID be a new segment identifier
Insert the entry (SgId, Ri.PID, R(i+1) MOD n.PID) in
Segments

endfor
// The points Qi, i:=1..n, are handled in the same manner
// as the vertexes of R

end InitializeStructures

SignedIntersection(R, Q)
// Input:
// R, Q - polygons given by their vertexes lists,
// R = (R1, R2, ..., Rn) and Q = (Q1, Q2, ..., Qm),
// and identified by IdR, and IdQ respectively

A NEW ALGORITHM THE INTERSECTION OF TWO POLYGONS 89

InitializeStructures(R, Q)

crt pos:=1
// the position of the current point within OrderPoints

While crt pos < no elem(OrderPoints) do
SWL:=coord x(OrderPoints[crt pos].PID)
// SWL is the sweep line and its current position is
// given by the x coordinate of the current point
// (polygon vertex or intersection point)
For each i:=1..no elem(Stack) do
// Update the y coordinate of the intersection point
// between SWL and each segment within Stack
Stack[i].sw y:=y int(Stack[i].SgID, SWL)

endfor

If OrderPoints[crt pos].PID is in Points then
// This point is a polygon vertex
Let s1 be the identifier of the segment from Segments
for which OrderPoints[crt pos].PID is the initial
end-point

Let s2 be the identifier of the segment from Segments
for which OrderPoints[crt pos].PID is the final
end-point

Let Pg complem be the identifier of the polygon such as
OrderPoints[crt pos].PID is not its vertex

If (6 ∃ k such as Stack[k].SgID=s1) and
(6 ∃ l such as Stack[l].SgID=s2) then
// If neither the segment s1 nor s2 are in Stack
// then OrderPoints[crt pos].PID is extreme left
// vertex of the polygon
HandleExtremeLeftVertex(s1, s2, Pg complem)

else
If (∃ k such as Stack[k].SgID=s1) and
(∃ l such as Stack[l].SgID=s2) then
// If both segments s1, s2 are in Stack then
// OrderPoints[crt pos].PID is extreme right vertex of
// the polygon
Delete from Stack the entries where SgID in s1, s2
// The segments that have been "terminated" by the

90 ANDREEA SABAU

// current point are deleted from Stack
else
If (6 ∃ k such as Stack[k].SgID=s1) and
(∃ l such as Stack[l].SgID=s2) and
(6 ∃ m such as
Overlapings[k].PID1=OrderPoints[crt pos].PID) then
// The current point is transition point with positive
// sign and it is not an overlapping point
HandleTransitionPointPositiveSign(s1, s2)

else
If (∃ k such as Stack[k].SgID=s1) and
(6 ∃ l such as Stack[l].SgID=s2) and
(6 ∃ m such as
Overlapings[m].PID1=OrderPoints[crt pos].PID) then
// The current point is transition point with negative
// sign and it is not an overlapping point
HandleTransitionPointNegativeSign(s1, s2)

else
// The current point is a transition point and an
// overlapping point
If ∃ k such as
Overlapping[k].PID1=OrderPoints[crt pos].PID then
Let s1 and s2 be the segments of the two polygons
for which the current point is a right end-point
(maximum x coordinate) or an overlapping point

HandleInitialOverlappingPoint(s1, s2)
else
If ∃ k such as
Overlapping[k].PID2=OrderPoints[crt pos].PID
and Overlapping[k].PID1<>Overlapping[k].PID2 then
Let s1 and s2 the segments of the two polygons for
which the current point is a left end-point
(minimum x coordinate) or an overlapping point.
Consider s1.PID2.x<s2.PID2.x

HandleFinalOverlappingPoint(s1, s2)
endif; endif

endif; endif; endif; endif
CheckIntersections(Stack)

else // The current point is an intersection point
// and it is not an overlapping point

Let s1 and s2 be the segments that determined the

A NEW ALGORITHM THE INTERSECTION OF TWO POLYGONS 91

current intersection point
Invert the segments s1 and s2 in Stack
// The sweep line reached the intersection point of the
// two segments
HandleIntersectionInResults(s1)
HandleIntersectionInResults(s2)
CheckIntersections(Stack)

endif
crt pos:=crt pos+1

endwhile

If no elem(Results)>0 then
ShowResults(Results)

endif
End SignedIntersection

HandleExtremeLeftVertex(s1, s2, Pg complem)
// Input:
// s1, s2 - two segments that have as left end-point the
// current point
// Pg complem - the polygon that does not contain s1 and s2

Insert the entry (s1, +1, y int(s1, SWL)) in Stack
Insert the entry (s2, -1, y int(s2, SWL)) in Stack
If the point OrderPoints[crt pos].PID is inside the
Pg complem polygon then
// (inside the polygon) or (on the frontier and the
// other end-points of s1 and s2 are inside the
// polygon)
Let PID1, PID2 be the initial and final end-points of s1
Insert the entry (s1, +1, PID1, PID2) in Results
Let PID1, PID2 be the initial and final end-points of s2
Insert the entry (s2, -1, PID2, PID1) in Results

endif
end HandleExtremeLeftVertex

HandleTransitionPointPositiveSign(s1, s2)
// Input:
// s1, s2 - the segments for which the current point makes
// a transition with positive sign; the current point
// finishes the sweeping of s2 and starts the sweeping of

92 ANDREEA SABAU

// s1

// Replace s2 with s1 in Stack
Stack[k].SgID:=s1, where k such as Stack[k].SgID:=s2
If ∃ k such as Results[k].SgID=s2 and Results[k].PID2 is
the initial end-point of the s1 segment then
Let PID1, PID2 be the initial and final end-points of s1
// Insert s1 in Results
Insert the entry (s1, Stack[k].sgn, PID1, PID2) in
Results

endif
end HandleTransitionPointPositiveSign

HandleTransitionPointNegativeSign(s1, s2)
// Input:
// s1, s2 - the segments for which the current point makes
// a transition with negative sign; the current point
// finishes the sweeping of s1 and starts the sweeping of
// s2

// Replace s1 with s2 in Stack
Stack[k].SgID:=s2, where k such as Stack[k].SgID:=s1
If ∃ k such as Results[k].SgID=s1 and Results[k].PID2
is the final end-point of the s1 segment then
Let PID1, PID2 be the initial and final end-points of s2
// Insert s2 in Results
Insert the entry (s2, Stack[k].sgn, PID2, PID1) in
Results

endif
end HandleTransitionPointNegativeSign

HandleInitialOverlappingPoint(s1, s2)
// Input:
// s1, s2 - two segments that are overlapping; the current
// point represents the initial end-point of the
// overlapping segment

// Handle s1 and s2 as in the case when the point current
// is an intersection point
If ∃ k such as Results[k].SgID=s1 and
Results[k].PID2 is a polygon vertex then

A NEW ALGORITHM THE INTERSECTION OF TWO POLYGONS 93

Results[k].PID2:=OrderPoints[crt pos].PID
endif
If ∃ k such as Results[k].SgID=s2 and
Results[k].PID2 is a polygon vertex then
Results[k].PID2:=OrderPoints[crt pos].PID

endif
If Overlapping[k].PID1<>Overlapping[k].PID2 then
Delete from Stack the entries where SgID in s1, s2
Insert in Stack the segment determined by
Overlapping[k].PID1 and Overlapping[k].PID2

Insert in Results two entries corresponding to the two
segments that overlap, given by Overlapping[k].PID1
and Overlapping[k].PID2

endif
end HandleInitialOverlappingPoint

HandleFinalOverlappingPoint(s1, s2)
// Input:
// s1, s2 - two segments that are overlapping; the current
// point represents the final end-point of the overlapping
// segment

Insert in Stack two entries corresponding to the
segments s1 and s2

If sgn(s1)=+1 then
If sgn(s2)=+1 then
Insert in Results entries corresponding to s1 and s2

else
Insert in Results entry corresponding to s2

endif
else
If sgn(s2)=+1 then
// Insert no entry in Results

else
Insert in Results entry corresponding to s1

endif
endif

end HandleFinalOverlappingPoint

HandleIntersectionInResults(s)
// Input:

94 ANDREEA SABAU

// s - one of the two segments involved in an intersection;
// the current point is the corresponding intersection
// point

// Handle segment s in Results
If ∃ k such as Results[k].SgID=s and
Results[k].PID2 is a polygon vertex then
// The part of the segment s that belongs to the
// intersection is finished by the current point
Results[k].PID2:=OrderPoints[crt pos].PID

else
If (6 ∃ k such as Results[k].SgID=s) or
(∃ k such as Results[k].SgID=s1 and Results[k].PID2 is
an intersection point) then
Insert the entry
(s, Stack[l].sgn, OrderPoints[crt pos].PID, P) in
Results, where l such as Stack[l].SgID=s, and P is
the final end-point of s (if Stack[l].sgn=+1) or P
is the initial end-point of s1 (if Stack[l].sgn=-1)

endif
endif

end HandleIntersectionInResults

The CheckIntersections routine checks whether two neighbor seg-
ments in Stack intersect when they belong to different polygons. If a new
intersection point Pi is found, such as Pi is not an end-point, then it is in-
serted into list Intersections. If Pi is a polygon vertex such as it is the
final end-point of a segment s1 and the initial end-point of a segment s2, and
belongs to a segment’s interior of the other polygon (s) then Pi is inserted in
Overlapping as PID1. If s2 and s are overlapping then the pair of the two
points that determine the overlapping segment is inserted in Overlapping.

ShowResults(Results)
// Input:
// Results - the list of segments that determine the result
// of the two polygons’ intersection

While ∃ k such as Results[k].checked=false do
// Initiate the building of a new intersection polygon
Let P1 be the point PID1 or PID2 from Results which has
the minimum x coordinate and is an end-point of a

A NEW ALGORITHM THE INTERSECTION OF TWO POLYGONS 95

segment s’ with sgn=+1. Let l be the position of P1
in Results

Let P init:=P1
Let P2 be the other end-point of s’
While P init P2 do
Print P1, P2
Results[k].checked:=true
P1:=P2
Find l’ such as Results[l’].checked=false and
Results[l’].PID1=P1 or Results[l’].PID2=P1

endwhile
Show P1, P2

endwhile
end ShowResults

The SignedIntersection algorithm determines the intersection of two
simple polygons, where the intersection can be empty or can consists of one
or more simple polygons.

3. Conclusions and Future Work

In this paper a new approach to determine the intersection between two
simple polygons has been proposed. The presented algorithm uses the well-
known technique of the sweep line and assigns a special sign value to each of the
polygons’ edges in order to find the intersection result. Also, the sign of each
segment that belongs to the intersection’s frontier is used to build the polygons’
intersection. The SignedIntersection algorithm and the corresponding
data structures are easy to implement on top of the 3SST relational data
model.

It is intended to extend the SignedIntersection algorithm in order to
be able to determine the intersection of two polygons with or without holes.

References

[1] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, Computational
Geometry, Algorithms and Applications, Springer-Verlag, Berlin, 1997.

[2] A. Margalit, G. D. Knott, An Algorithm for Computing the Union, Inter-
section or Difference of Two Polygons, Computers & Graphics, Vol. 13 (2)
(1989), pp. 167-184.

[3] J. O’Rourke, Computational Geometry in C, Cambridge University Press,
1993.

[4] J. O’Rourke, C.B. Chien, T. Olson, D. Naddor, A New Linear Algorithm for
Intersecting Convex Polygons, Computer Graphics and Image Processing, No.
19 (1982), pp. 384-391.

96 ANDREEA SABAU

[5] A. Sabau, The 3SST Relational Model, Studia Universitatis ”Babes-Bolyai”,
Informatica, Vol. LII (1) (2007), pp. 77-88.

[6] G. T. Toussaint, A Simple Linear Algorithm for Intersecting Convex Polygons,
The Visual Computer, Vol. 1 (1985), pp. 118-123.

[7] B. Zalik, G. Clapworthy, A Universal Trapezoidation Algorithm for Planar
Polygons, Computers & Graphics, Vol. 23(3) (1999), pp. 353-363.

[8] B. Zalik, M. Gombosi, D. Podgorelec, A Quick Intersection Algorithm for
Arbitrary Polygons, SCCG98 Conf. on Comput. Graphics and it’s Applicat.
(1998), pp. 195-204.

Faculty of Mathematics and Computer Science

Babes-Bolyai University, Cluj-Napoca
E-mail address: deiush@cs.ubbcluj.ro

