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MINIMUM FLOW ALGORITHMS. DYNAMIC TREE
IMPLEMENTATIONS

ELEONOR CIUREA, OANA GEORGESCU, AND MIHAI IOLU

Abstract. We present augmenting path algorithms for minimum flows

with dynamic tree implementations. The time bounds for augmenting

path for minimum flows automatically improve when the algorithms are

implemented with dynamic tree.
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1. Introduction

The computation of a maximum flow in a graph has been an important
and well studied problem, both in the fields of computer science and operations
research. Many efficient algorithms have been developed to solve this problem,
see, e.g., [1], [3]. Sleator and Tarjan [7] developed the dynamic tree data
structure and used it to improve the worst-case complexity of Dinic’s algorithm
from O(n2m) to O(nmlogn). Since then, researchers have used this data
structure on many occasions to improve the performance of a range of network
flow algorithms. Using the dynamic tree data structure, Goldberg and Tarjan
[6] improved the complexity of the FIFO preflow-push algorithm from O(n3)
to O(nmlog(n2/m)), and Ahuja, Orlin and Tarjan [2] improved the complexity
of the excess scalling algorithm and several of its variants.

The computation of a minimum flow in a network has been investigated by
Ciurea and Ciupala [4]. The algorithms for minimum flows with dynamic tree
implementations were not treated. In this paper we present the augmenting
path algorithms for minimum flows with dynamic tree implementations.

In the presentation to follow, we assume familiarity with flow problems
and we omit many details. The reader interested in further details is urged
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to consult the books [1, 3] for maximum flow problem and the paper [4] for
minimum flow problem.

2. Terminology and Preliminaries

We consider a capacitated network G = (N, A, b, c, s, t) with a nonnegative
capacity c(x, y) and with a nonnegative lower bound l(x, y) associated with
each arc (x, y) ∈ A. We distinguish two special nodes in the network G: a
source node s and a sink node t.

For a given pair of not necessarily disjoint subset X, Y of the nodes set N

of a network we use the notation:

(X, Y ) = {(x, y)|(x, y) ∈ A, x ∈ X, y ∈ Y }

and for a given function f on arcs set A we use the notation:

f(X,Y ) =
∑

(X,Y )

f(x, y)

A flow is a function f : A→ R+, satisfying the next conditions:

f(x, N)− f(N, x) =


v, x = s

0, x 6= s, t

−v, x = t

(2.1a)

l(x, y) ≤ f(x, y) ≤ c(x, y), ∀(x, y) ∈ A(2.1b)

for some v. We refer to v as the value of the flow f . The maximum (minimum)
flow problem is to determine a flow f̃(f̂) for which v is maximized (minimized).
A cut is a partition of the node set N into two subset S and T = N − S; we
represent this cut using the notation [S, T ]. We refer to a cut [S, T ] as a s− t

cut if s ∈ S and t ∈ T . We refer to an arc (x, y) with x ∈ S and y ∈ T as a
forward arc of the cut and an arc (x, y) with x ∈ T and y ∈ S as a backward
arc of the cut. Let (S, T ) denote the set of forward arcs in the cut and let
(T, S) denote the backward arcs.

For the maximum flow problem we define the capacity c̃[S, T ] of a s − t

cut [S, T ] as:

(2.2) c̃[S, T ] = c(S, T )− l(T, S)

and for the minimum flow problem, we define the capacity ĉ[S, T ] of a s − t

cut [S,T] as:

(2.3) ĉ[S, T ] = l(S, T )− c(T, S)
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We refer to a s − t cut where capacity c̃[S, T ] (capacity ĉ[S, T ]) is the
minimum (maximum) among all s− t cuts as a minimum (maximum) cut.

The maximum (minimum) flow problem in a network G = (N, A, l, c, s, t)
can be solved in two phases:

(P1) establishing a feasible flow f , if it exists;
(P2) from a given feasible flow f , establishing the maximum flow f̃

(minimum flow f̂)

Theorem 2.1. Let G = (N, A, l, c, s, t) be a network, [S, T ] a s− t cut and f

a feasible flow with value v. Then

v = f [S, T ] = f(S, T )− f(T, S)(2.4a)

and therefore, in particular,

ĉ[S, T ] ≤ v ≤ c̃[S, T ](2.4b)

Theorem 2.2. Let G = (N, A, l, c, s, t) be a network, [S̃, T̃ ] a minimum s− t

cut and [Ŝ, T̂ ] a maximum s− t cut. Denote the values of a maximum flow f̃

and a minimum flow f̂ by ṽ and v̂, respectively. Then

ṽ = c̃[S̃, T̃ ](2.5a)

and

v̂ = ĉ[Ŝ, T̂ ](2.5b)

By convention, if (x, y) ∈ A and (y, x) /∈ A then we add arc (y, x) to the set
of arcs A and we set l(y, x) = 0 and c(y, x) = 0. For the maximum (minimum)
flow problem, the residual capacity r̃(x, y)(r̂(x, y)) of any arc (x, y) ∈ A, with
respect to a given flow f , is given by r̃(x, y) = c(x, y)−f(x, y)+f(y, x)−l(y, x)
(r̂(x, y) = c(y, x) − f(y, x) + f(x, y) − l(x, y)). The network G̃(f) = (N, Â)
(Ĝ(f) = (N, Â)) consisting only of the arcs with r̃(x, y) > 0 (r̂(x, y) > 0)
is referred to as the residual network with respect to flow f for maximum
(minimum) flow problem.

There are two approaches for solving maximum flow problem [1]:

(1̃) using augmenting directed path algorithms from source node s to sink
node t in residual network G̃(f);

(2̃) using preflow-push algorithms starting from source node s in residual
network G̃(f).

There are three approaches for solving minimum flow problem [4]:
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(1̂) using decreasing directed path algorithms from source node s to sink
node t in residual network Ĝ(f);

(2̂) using preflow-pull algorithms starting from sink node t in residual
network Ĝ(f);

(3̂) using augmenting directed path algorithms from sink node t to source
node s or using preflow-push algorithms starting from sink node t in
residual network G̃(f).

In this paper we present the augmenting directed path algorithms from
sink node t to source nodes s with dynamic tree implementations for solving
minimum flow problems.

All the algorithms from Table 2.1 are augmenting path algorithms, i.e.
algorithms which determine augmenting directed path from source node s to
sink node t (by different rules) in residual network G̃(f) and then augment
flows along these paths.

We have n = |N |, m = |A|, c = max{c(x, y)|(x, y) ∈ A}.

Augmenting path algorithms Running time
General augmenting path algorithm O(nmc)
Ford-Fulkerson labelling algorithm O(nmc)
Gabow bit scaling algorithm O(nmlog(c))
Ahuja-Orlin maximum scaling algorithm O(nmlog(c))
Edmonds-Karp shortest path algorithm O(nm2)
Ahuja-Orlin shortest path algorithm O(n2m)
Dinic layered networks algorithm O(n2m)
Ahuja-Orlin layered networks algorithm

Table 2.1. Running times for augmenting path algorithms

Actually, any augmenting path algorithm terminates with optimal residual
capacities. From these residual capacities we can determine a maximum flow
by following expression:

f̃(x, y) = l(x, y) + max{0, c(x, y)− r̃(x, y)− l(x, y)}
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3. Augmenting path algorithms for minimum flows. Dynamic tree

implementations

A dynamic tree is an important data structure that researchers have used
extensively to improve the worst-case complexity of several network algo-
rithms. In this section we describe the use of this data structure for aug-
menting direct path algorithms from sink node t to source node s.

The dynamic tree data structure maintains a collection T of node-disjoint
rooted trees, each arc with an associated value. Each rooted tree is a directed
in-tree with a unique root. Each node x (except the root node) has a unique
predecessor, which is the next node on the unique path in the tree from that
node to the root. We store the predecessor of node x using a predecessor index
p(x). If y = p(x), we say that node y is the predecessor of node x and node x is
a successor of node y. These predecessor indices uniquely define a rooted tree
and also allow us to trace out the unique direct path from any node back to
the root. The descendants of a node x consist of the node itself, its successors,
successors of its successors and so on. We say that a node is an ancestor of all
of its descendants. Notice that, according to our definitions, each node is its
own ancestor and descendant.

This data structure supports the six operations obtained by performing
the following six procedures:
ROOT (x): finds the root of the tree containing node x;

V ALUE(x): finds the value of the tree arc leaving node x;

if node x is a root node, then it returns the value ∞;

ANCES(x): finds the ancestor u of x with the minimum value V ALUE(u);

in case of a tie, chooses the node u closest to the tree root;

CHANGE(x, w): adds a real number w to the value of every arc along the directed path from node

x to ROOT (x);

LINK(x, y, w): combines the tree containing tree root x and tree containing node y the predecessor

of node x and giving arc (x, y) the value w;

DELET (x): break the tree containing node x into two trees by deleting the arc joining node x to

its predecessor; we perform this operation when x is not a tree root;

The following important result lies at the heart of the efficiency of the
dynamic tree data structure[1].

Theorem 3.1. If q is the maximum number of nodes in any tree, a sequence of
k tree operations, starting with an initial collection of singleton trees, requires
a total of O(klog(k + q)) time.

The dynamic tree implementation stores the values of tree only implicitly.
Storing the values implicitly allows us to update the values in only O(logq)
time.
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Before describing the augmenting directed path algorithms for sink node t

to source node s with dynamic tree implementation for minimum flow problem,
we introduce some definitions. In the residual network G̃(f), the distance
function with respect to a given flow f is a function d̃′ : N → N from the set
of nodes N to the nonnegative integers N . We say that a distance function d̃′

is valid if it satisfies the following conditions:

d̃′(s) = 0(3.1a)

d̃′ ≤ d̃′(y) + 1 for every arc (x, y) ∈ Ã(3.1b)

We refer to d̃′ as the distance label of node x. We say that distance labels
are exact if for each node x, d̃′(x) equals the length of the shortest directed path
from node x to source node s in the residual network G̃(f). If d̃′(x) = d̃′(y)+1
we refer to arc (x, y) as an admissible arc, otherwise inadmissible. We refer
to a directed path from sink node t to source node s consisting entirely of
admissible arcs as an admissible directed path.

The following results are very important:

Theorem 3.2. An admissible directed path in the residual network G̃(f) is a
shortest directed path from the sink node t to the source node s.

Theorem 3.3. If d̃′(t) ≥ n, the residual network G̃(f) contains no directed
path from the sink node t to the source node s.

These theorems can be proved in a manner similar to the proof of distance
function d̃ for maximum flow problem [1] or similar to the proof of distance
function d̂ for minimum flow problem [4].

We can determine exact distance labels d̃′(x) for all nodes in O(m) time
by performing a backward breadth first search of the residual network G̃(f)
from node source s to node sink t.

How we might use the dynamic tree data structure to improve the com-
putational performance of augmenting directed path algorithms for sink node
t to source node s? Let us use the variant of Ahuja-Orlin shortest path al-
gorithm as an illustration. The following basic idea underlies the algorithmic
speed-up. In the dynamic tree implementation, each arc in the rooted tree is
an admissible arc. The value of an arc is its residual capacity.

Figures 3.1 and 3.2 give a formal statement of the algorithm.
The first two procedures, TADV and TRET, are straight forward, but the

TAUG procedure requires some explanation. If node u is an ancestor of sink
node t with the minimum value of V ALUE(u) and among such nodes in the
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(1) ALGORITHM TAP;

(2) BEGIN

(3) let f be a feasible flow in network G;

(4) determine the residual network G̃(f);

(5) compute the exact distance labels d̃′(x) in G̃(f);

(6) let T̃ be the collection of all singleton nodes;

(7) x:=t;

(8) WHILE d̃′(t) < n DO

(9) BEGIN

(10) IF exists admissibile arc (x,y) in G̃(f)

(11) THEN TADV(x)

(12) ELSE TRET(x);

(13) IF x=s

(14) THEN TAUG;

(15) END;

(16) END.

Figure 3.1. Dynamic tree implementation for the variant of
Ahuja-Orlin shortest path algorithm.

directed path, it is closest to the source node s, then value V ALUE(u) gives
the residual capacity of the augmenting path.

The procedure CHANGE(t,−w) implicitly updates the residual capaci-
ties of all the arcs in the augmenting directed path. This augmentation might
cause the capacity of move than one arc in the directed path to become zero.
The WHILE loop identifies all such arcs, one by one and deletes them from
the collection of rooted trees T .

Theorem 3.4. The TAP algorithm correctly computes a minimum flow.

Proof. The TAP algorithm is same as the variant of Ahuja-Orlin short-
est path algorithm except that it performs the procedures TADV, TRET and
TAUG differently using trees. Notice that, knowing a feasible flow, we deter-
mine a minimum flow from the source node s to the sink node t by establishing
a maximum flow from the sink node t to the source node s [4].

Theorem 3.5. The TAP algorithm solves the minimum flow problem in
O(nmlogn) time.

Proof. Using simple augments, we can show that the algorithm performs
each of the six tree operations O(nm) times. It performs each tree operations
on a tree of maximum size n. The use of Theorem 3.1 establishes the result.
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(1) PROCEDURE TADV(x);

(2) BEGIN

(3) LINK(x,y,r̃(x, y));

(4) x:=ROOT(y);

(5) END;

(1) PROCEDURE TRET(x);

(2) BEGIN

(3) d̃′(x) := min{d̃′(y) + 1|(x, y) ∈ Ã};
(4) FOR (z, x) ∈ T̃ DO

(5) DELET(z);

(6) x:=ROOT(t);

(7) END;

(1) PROCEDURE TAUG;

(2) BEGIN

(3) u:=ANCES(t);

(4) w:=VALUE(u);

(5) CHANGE(t,-w);

(6) WHILE VALUE(u)=0 DO

(7) BEGIN

(8) DELET(u);

(9) u:=ANCES(t);

(10) END;

(11) x:=ROOT(t);

(12) update the residual network G̃(f);

(13) END;

Figure 3.2. Procedures of TAP algorithm

4. Example

Consider the network G = (N, A, l, f, c, s, t) given in figure 4.1 with s = 1
and t = 4, which shows the lower bounds, feasible flows and capacities next to
the arcs. The residual network G̃(f) is shown in figure 4.2, which represents
the distance labels next to the nodes and residual capacities next to the arcs.

Figure 4.1 Figure 4.2
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Figure 4.3 shows the collection of singleton nodes T̃ . The algorithm starts
with the singleton tree containing only the sink node 4. Suppose that algo-
rithm selects admissible arc (4, 2) and it performs the procedure TADV (x)
for x = 4, x = 2. The algorithm obtains a rooted tree that contains both the
sink and source nodes (see figure 4.4).

Figure 4.3 Figure 4.4

The procedure TAUG determines the collection T̃ of node-disjoint rooted
trees from figure 4.5, x = 2 and residual network G̃(f) from figure 4.6. But
node 2 has no outgoing admissible arc; so the algorithm performs the procedure
TRET (2), which increases the distance label of node 2 to 2 (d̃′ = (0, 2, 1, 2)),
determines the rooted trees T̃ from figure 4.3 and x = 4.

Figure 4.5 Figure 4.6

Figure 4.7 shows the last residual network G̃(f) and figure 4.8 shows the
lower bounds, minimum flows and capacities next to the arcs.
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