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EVOLVING NETWORK TOPOLOGIES FOR CELLULAR
AUTOMATA
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Abstract. The problem of evolving network topologies for celular au-
tomata has been approached by means of circular evolutionary algorithms.
This application is based on Watts proposal to consider small-world topolo-
gies for CAs. He has shown that small-world networks could give a better
performance for problems like the density task, compared to the perfor-
mance obtained when considering regular lattices for CAs. The circular
evolutionary algorithm proposed in this paper has been successfully ap-
plied for evolving network topologies for the density task.

Key words: Cellular automata, Heuristic methods, Evolutionary op-
timization

1. Introduction

A new class of evolutionary techniques called Circular Evolutionary Algo-
rithms (CEA) is proposed. The main feature of these evolutionary algorithms
is a new selection scheme according to which each individual is recombined.
The philosophy behind this new model is a gradual propagation of the fittest
genetic material into the population. This goal is achieved by considering and
interpreting both a time dimension and a space dimension for the algorithm.

CEA selection and recombination take place asynchronously, which allows
an improvement of the individuals during the process of selection and recom-
bination in one generation. The circular settlement of all the individuals from
the population according to their fitness allows us to define a new notion of
neighborhood, recombination taking place only between individuals belonging
to the same neighborhood. The problem of evolving networks topologies for
cellular automata is addressed by using the proposed model.

Received by the editors: May 2, 2008.
2000 Mathematics Subject Classification. 68T20, 68Q80.
1998 CR Categories and Descriptors. I.2.8 [Artificial Intelligence]: Problem solving,

Control methods, and Search – Heuristic methods; F.1.1 [Computation by Abstract
Devices ]: Models of Computation – Automata.

45



46 ANCA GOG

Numerical experiments reported in this paper are just preliminary results
referring to the performance of obtained networks. Their study and classifica-
tion is the subject of future work.

The paper is organized as follows. The new circular search model is de-
scribed in the second section. The problem of evolving network topologies
for cellular automata and existing methods are described in the third section.
Results obtained after applying a circular evolutionary algorithm for this prob-
lem are presented in the fourth section. Conclusions are presented in the last
section of the paper.

2. Circular Search Model

A new evolutionary model is proposed in what follows. A new way of
understanding the role of the selection process is the foundation of this model.
A new population topology and an asynchronous application of the search
operators are the main features that arise from this new philosophy of select-
ing individuals for recombination. The aim of the proposed technique is to
ensure a good exploitation of the good genetic material already obtained by
the search process, but in the same time to allow the increase of diversity in
the population. This aim is achieved by transferring to all individuals from
the population genetic material that is believed to be relevant for the search
process in a step by step manner that will be exhaustively explained in what
follows.

Let us suppose that P (t) is the current population at the time step t. The
size of the population is fixed during all stages of the algorithm and is chosen
to be a square number, in order to allow a certain topology of the population.
Let n2 be the size of the population (n is an even number). The algorithm ends
after a certain number of generations, given as parameter of the algorithm.

2.1. Space Dimension. All the individuals from the population are sorted
according to their fitness relative to the problem to solve. They will be dis-
tributed over n

2 concentric circles following the next constraint: the fittest
individuals will be placed on the smallest circle, while the less fit individuals
will be placed on the larger circle. Moreover, the number of individuals placed
on circle i(i = 0, n

2−2) is 4(n−2i−1). This means that the individuals belong-
ing to the concentric circles can be easily transposed into a two-dimensional
grid. Figure 1 describes proposed topology using both concentric circles and
the corresponding two-dimensional grid.

Let us suppose that we obtain the sorted population P (t) = x1, x2, . . . , xn2 ,
where x1 is the fittest individual and xn2 is the worst individual in the popula-
tion. On the smallest circle are placed the fittest four individuals (x1, x2, x3, x4)
from the population (their order does not matter). The next circle will hold
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Figure 1. Concentric circles topology of the population and
the corresponding two-dimensional grid topology

12 individuals (x5, . . . , x16), the individuals with the next best fitness values.
The largest circle will have the less fit individuals from the population, and
their number depends on the size of the population.

First of all, the individuals from the smallest circle (the fittest individuals
of the population) will always be copied in the next population just as they
are. This elitist choice is very suitable especially for algorithms that are using
a relative fitness that is slightly different for each generation, because copying
the best individuals in the next generation will mean that these individuals
will be then tested again but using a different fitness function and they will
survive only if they have a very good quality in this generation as well.

Each individual from the population will get the chance of being improved
by involving it in a recombination process. The diversity will be thus increased,
because considering each individual for recombination means to use genetic
material of both very fit individuals and less fit individuals. The selection
scheme will therefore decide the second parent involved in each recombination,
and this is where the exploitation of the search space is pursued.

Therefore, for each individual except the best four that will be copied in
the next generation, the selection scheme will choose its mate in the following
way. Let us number the concentric circles on which the individuals are placed,
so that the most exterior circle will have the value 0, and the most interior
circle will have the biggest value. For a population size of n2 (n even number),
we will obtain n

2 circles, therefore the value n
2 − 1 will be assigned to the most

interior circle. For one individual belonging to circle i, i = 0, n
2 − 2, we will

always choose a mate from the circle i+1. Because of the way individuals are
placed on the circles, according to their fitness, this means that each individual
from the population will be recombined with a better individual, but still close
to it regarding the fitness value. This means that individuals from the smallest
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circle, even if they are not directly involved in recombination, will be chosen
as mates for the individuals belonging to circle n

2 − 2. We therefore have a
so-called local selection that refers to the fact that individuals are selected
only from a certain circle.

The local selection is done by using one of the existing selection operators
like proportional selection, tournament selection and so on. A tournament
selection scheme (Dumitrescu, 2000) is considered for all the experiments per-
formed in this paper.

Once we have selected a pair of individuals, they will be recombined by
using an existing recombination scheme, depending on their encoding (Back,
1997).

2.2. Time Dimension. The entire process described before takes place asyn-
chronously, which is another distinctive and strong feature of the proposed
search scheme. Both selection and recombination are done asynchronously.
First, individuals from the circle n

2 − 2 are considered for recombination. For
each of them, an individual from the circle n

2 − 1 is chosen according to a
local selection and the two individuals will be recombined. The best offspring
obtained after recombination will be mutated and the resulting individual will
be accepted only if it has a better quality. The offspring, mutated or not, will
then replace the first parent if it has a better quality. The elitist scheme that
allows only better individuals to replace the first parents is counteracted by
the fact that all individuals from the population are involved in recombination.

From the improved individuals of the circle n
2 − 2 we will then choose

mates for individuals belonging to the circle n
2 −3, according to the same local

selection scheme. The process that results from the described scheme is a
propagation process where the good genetic material of the fittest individuals
will be first transferred to the closest fit individuals, and they will transfer
it, together with their good genetic material, to the next fit individuals, and
so on, from close to close, until the good genetic material collected from the
entire population will reach the less fit individuals from the population.

2.3. Circular Evolutionary Algorithm. The algorithm that results from
the proposed search scheme is called Circular Evolutionary Algorithm and is
described in what follows.

Circular Evolutionary Algorithm
begin

t := 0
Initialize P (t)
while (not stop-criteria) do
begin
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Evaluate P (t)
CircularSort P (t)
for each circle c (c := n

2 − 2, 0)
begin

for each individual i from c
begin

j :=LocalSelection(c-1)
k :=Recombination (i, j)
Mutation(k)

end
end
t := t + 1

end
end

3. Evolving Network Topologies for Cellular Automata

The density-classification task is a prototypical distributed computational
task for CAs defined as follows. We denote by ρ0 the fraction (the density) of
1s in the initial configuration. The task requires deciding whether ρ0 > 1

2 . If
so, then the CA must go to a fixed-point configuration of 1s, otherwise it must
go to a fixed-point configuration of 0s. The lattice size is chosen to be odd
in order to avoid the case ρ0 = 1

2 . Because finding the density of the initial
configuration is a global task, and CA only relies on local interactions, this
task is not trivial.

Due to the similarities between the ring lattice where each cell is linked
to its r neighbors on each side and a graph where each node is connected
to a limited number of nodes, even if not in the topological neighborhood,
Watts proposed the use of a small-world graph instead of a ring lattice for
CAs (Watts, 1999). He computed the performance of hand-constructed small-
world graphs for the density task, and he obtained performance values bigger
than 0.8, while the best performances of a cellular automaton based on a ring
lattice topology were around 0.76. In order to obtain a different topology, he
fixed the rule to a majority rule which states that a node will receive the state
of the majority of its neighbors in the graph. Therefore, the problem that
arises from Watts proposal is to evolve small-world networks topologies for
the density task of CAs.

Besides the hand-constructed small-world networks proposed in (Watts,
1999), an evolutionary technique for evolving small-world networks for the
density task has been proposed in (Tomassini, 2005). The authors used a cel-
lular evolutionary algorithm (Alba, 2002) and they obtained topologies with
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a performance around 0.8, similar to the hand-constructed small-world net-
works of Watts. Moreover, this performance was obtained in most of the runs
of the algorithm, while a good performance of ring lattice topology is diffi-
cult to obtain. When evolving small-world networks, they have started both
from regular lattices and from random networks, and have studied the results
obtained for both cases.

4. Detecting network configuration for density task using CEA

The proposed circular search model is applied for evolving network topolo-
gies for cellular automata, for the density task. The resulting algorithm is
called Circular Evolution of Network Topologies (CENTA) and is described in
what follows.

Encoding and Population Model
A potential solution of the problem represents an undirected graph de-

scribing the network topology. A two-dimensional grid is used to encode it.
The fixed number of individuals from a population are distributed over the
two-dimensional square grid. An array of integers represents all the nodes of
the graph, and for each node we have an array of nodes connected to it.

The initial population consists of randomly generated regular lattices of
size N =149, with a radius of 3, meaning that each node is connected to
3 nodes on both sides. One node in a graph can have a maximum of max
connections, max being a parameter of the algorithm. The set of initial con-
figurations is generated anew for each generation of the algorithm.

Fitness Assignment
The fitness function is a real-valued function f : X → [0, 1] , where X de-

notes the search space of the problem. f(x) represents the fraction of correct
classifications over 100 initial configurations randomly generated but with a
uniformly distributed density (Das, 1994).

Selection Operator
For each individual belonging to circle i(i = 0, n

2 −2) a mate will be chosen
from the circle i + 1. Because of the way individuals are placed on the circles,
according to their fitness, this means that each individual from the population
will be recombined with a better individual, but still close to it regarding the
fitness value. The local selection used for choosing a mate from the circle
i + 1 is a tournament scheme with a tournament size of 2(n − 2i − 1), where
4(n − 2i − 1) represents the number of individuals that belong to the circle
i(i = 0, n

2 − 2). The selection for recombination is performed asynchronously,
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starting with the individuals belonging to circle n
2 − 2 and continuing until we

select mates for the individuals belonging to circle 0.

Recombination Operator
Once we have selected two individuals for recombination, a two-point

crossover is used for our experiments. We start with the recombination of
the fittest individuals from the population, thus giving them the opportunity
to improve their fitness before they will be recombined with less fit individuals.

Mutation Operator
The individual resulted after each recombination will be mutated similar

to the mutation proposed in (Tomassini, 2005), only that they consider a dif-
ferent scheme of choosing the individuals that will be subject of mutation.
Each node of a graph that represents a possible solution for the problem will
be mutated with a certain probability, parameter of the algorithm. For a node
chosen for mutation we will either add or remove a link to another randomly
chosen node, with a given probability.

Selection for Replacement and Survival
The replacement of the first parent with the best offspring obtained after

recombination and mutation takes place asynchronously, due to the asynchro-
nous selection and recombination scheme. The offspring will replace the first
parent only if it has a better fitness.

The circular evolutionary algorithm is applied for evolving network topolo-
gies for CAs, for the density task. The parameters of the algorithm are written
in Table 1.

Table 1. CENTA algorithm parameters

Population size 100
Probability of mutation 0.5
Max 30
Probability of adding a new link to
node

0.5

Number of generations 100

The algorithm successfully evolves, in most of the runs, networks with
performances around 0.8 for the density task. These results confirm the hy-
pothesis of Watts regarding the fact that network topologies seem to be a
better environment for local interactions that lead to a global behavior for



52 ANCA GOG

the density task. On the other hand, the results could be interpreted as an
indicator for the efficiency of the new proposed evolutionary technique.

Future work will investigate several static structural properties of obtained
networks, such as degree distribution, clustering coefficient and average path
length. The results will indicate the nature of evolved networks.

5. Conclusions

A new evolutionary search model has been proposed in this paper. The
main features of the proposed model are a new population topology, which is
distributed over concentric circles, according to the fitness of the individuals
and an asynchronous selection and recombination of the individuals, which
allows involving in recombination individuals that improve their quality, their
adaptation to the environment from close to close.

The algorithm is applied for evolving network topologies for cellular au-
tomata, for the density task. The results obtained have been compared with
the results reported by the authors of other techniques for these problems, and
they can be considered as a proof for the efficiency of the proposed circular
evolutionary model. The study of obtained networks will be the subject of a
future paper.
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