STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume LIII, Number 1, 2008

EVOLUTIONARY OPTIMISATION OF KERNEL
FUNCTIONS FOR SVMS

LAURA DIOSAN, ALEXANDRINA ROGOZAN, AND JEAN-PIERRE PECUCHET

ABSTRACT. The kernel-based classifiers use one of the classical kernels,
but the real-world applications have emphasized the need to consider a
new kernel function in order to boost the classification accuracy by a bet-
ter adaptation of the kernel function to the characteristics of the data. Our
purpose is to automatically design a complex kernel by evolutionary means.
In order to achieve this purpose we develop a hybrid model that combines
a Genetic Programming (GP) algorithm and a kernel-based Support Vec-
tor Machine (SVM) classifier. Each GP chromosome is a tree encoding
the mathematical expression of the kernel function. The evolved kernel
is compared to several human-designed kernels and to a previous genetic
kernel on several datasets. Numerical experiments show that the SVM
embedding our evolved kernel performs statistically better than standard
kernels, but also than previous genetic kernel for the considered classifica-
tion problems.

Key words: Support vector machines, Evolutionary optimisation, Ge-
netic programming.

1. INTRODUCTION

The general problem of Machine Learning is to search a, usually very large,
space of potential hypotheses to determine the one that will best fit the data
and any prior knowledge. In 1995, Support Vector Machines (SVMs) marked
the beginning of a new era in the paradigm of learning from examples. Rooted
to the Statistical Learning Theory and the Structural Risk Minimization prin-
ciple developed by Vladimir Vapnik at AT&T in 1963 [19, 20], SVMs gained
quickly attention from the Machine Learning community due to a number of
theoretical and computational merits.

SVMs are a group of supervised learning methods that can be applied to
classification or regression. SVMs arose from statistical learning theory; the
aim being to solve only the problem of interest without solving a more diffi-
cult problem as an intermediate step. SVMs are based on the structural risk

Received by the editors: September 10, 2007.
2000 Mathematics Subject Classification. 68T05,91E45.
1998 CR Categories and Descriptors. 1.2.6 [Learning]|: — Concept learning.

29

30 DIOSAN, ROGOZAN, AND PECUCHET

minimisation principle, closely related to regularisation theory. This princi-
ple incorporates capacity control to prevent over-fitting and thus is a partial
solution to the bias-variance trade-off dilemma.

One issue with SVMs is finding an appropriate positive definite kernel
(and its parameters) for the given data. A wide choice of kernels already ex-
ists. Many data or applications may still benefit from the design of particular
kernels, adapted specifically to a given task (i.e. kernels for vectors, kernels
for strings, kernels for graphs, Fisher kernels or rational kernels). There are
only some hints for working with one or another of these classic kernels, be-
cause there is no rigorous methodology to choose a priori the appropriate one
between them. Moreover, the kernel parameters influence the performance
of the SVM algorithm. The selection of the penalty error for an SVM (that
controls the trade-off between maximizing the margin and classifying without
error) is also critical in order to obtain good performances. Therefore, one has
to optimise the kernel function, the kernel parameters and the penalty error of
the SVM algorithm in order to guarantee the robustness and the accuracy of
an SVM algorithm. Chapelle [4] has proposed to denote the kernel and SVM
parameters as hyper-parameters.

On the other hand, the evolutionary algorithms are able to search in a
continuous space without respecting some conditions (requirements) as those
regarding the differentiable of the score function. We do not have the certitude
that the solution provided by an EA is the optimal one, but it is very close to
the optimal one. The solutions proposed by an evolutionary algorithm allow
for better SVM performances.

Therefore, we choose to use the evolutionary framework in order to discover
the optimal expression of a new kernel and its parameters for several classi-
fication problems. The best (adapted) kernel is learnt by the algorithm itself
by using the data of a particular problem. For this aim the Genetic Program-
ming (GP) technique [12] is combined with an SVM algorithm [6, 11, 19, 15]
within a two-level hybrid model. The GP-kernel is involved into a standard
SVM algorithm to be trained in order to solve a particular classification prob-
lem. The optimal expression of a kernel is discovered by involving a guided
search process based on genetic operations: the selection has to provide high
reproductive chances to the fittest kernels, the crossover has to enable kernel-
children to inherit quickly beneficial characteristics of their kernel-parents and
the mutation has to ensure the diversity of the population and the exploration
of the search space. After an iterative process, which runs more generations,
an optimal evolutionary kernel (eK) is provided.

The paper is organized as follows: Section 2 outlines the theory behind
SVM classifiers with a particular emphasis on the kernel functions. Section 3
describes the hybrid technique used in order to evolve the SVM kernels. This

EVOLUTIONARY OPTIMISATION OF KERNEL FUNCTIONS FOR SVMS 31

is followed by a special section (Section 4) where the results of the experiments
are presented. Section 5 describes some related work in the field of automated
generation of kernel functions. Finally, Section 6 concludes our paper.

2. SUPPORT VECTOR MACHINE

2.1. Generalities. Initially, SVM algorithm has been proposed in order to
solve binary classification problems [19]. Later, these algorithms have been
generalized for multi-classes problems. Consequently, we will explain the the-
ory behind SVM only on binary-labelled data.

Suppose the training data has the following form: D = (x;, y;) i—T7m» Where

z; € R? represents an input vector and each y;, y; € {—1, +1}, the output label
associated to the item x;. SVM algorithm maps the input vectors to a higher
dimensional space where a maximal separating hyper-plane is constructed [19].
Learning the SVM means (implies) to minimize the norm of the weight vector
(w in Eq. (1)) under the constraint that the training items of different classes
belong to opposite sides of the separating hyper-plane. Since y; € {—1,+1}
we can formulate this constraint as:

(1) yi(wlz +b) > 1, Vie {1,2,...,m},

where the primal decision variables w and b define the separating hyper-plane.

The items that satisfy Eq. (1) with equality are called support vectors
since they define the resulting maximum-margin hyper-planes. To account
for misclassification, e.g. items that do not satisfy Eq. (1), the soft margin
formulation of SVM has introduced some slack variables & € R [5].

Moreover, the separation surface has to be nonlinear in many classification
problems. SVM was extended to handle nonlinear separation surfaces by using
a feature function ¢(z). The SVM extension to nonlinear datasets is based
on mapping the input variables into a feature space F of a higher dimension
and then performing a linear classification in that higher dimensional space.
The important property of this new space is that the data set mapped by ¢
might become linearly separable if an appropriate feature function is used,
even when that data set is not linearly separable in the original space.

Hence, to construct a maximal margin classifier one has to solve the convex
quadratic programming problem encoded by Eq. (2), which is the primal
formulation of it:

minimisew,b,géwTw +C eril &
(2) subject to: yi(w'¢(zi) +b) > 1 &,
&>0,¥ie{1,2,...,m}.

Lyhere v” represent the transpose of v

32 DIOSAN, ROGOZAN, AND PECUCHET

The coefficient C' (usually called penalty error or reqularization parameter) is
a tuning parameter that controls the trade off between maximizing the margin
and classifying without error. Larger values of C' might lead to linear functions
with smaller margin, allowing to classify more examples correctly with strong
confidence. A proper choice of this parameter is crucial for SVM to achieve
good classification performance.

Instead of solving Eq. (2) directly, it is a common practice to solve its
dual problem, which is described by Eq. (3):

maximisegecgpm Zzil a; — % Zzljzl aiajyz'yj¢(fﬁi)T¢(ij)
(3) subject to 1", a;y; = 0,
0<a;<CVie{l,2,...,m}

In Eq. (3), a; denotes the Lagrange variable for the it" constraint of Eq.

(2).

The optimal separating hyper-plane f(x) = w - ¢(z) + b, where w and b
are determined by Eq. (2) or Eq. (3) is used to classify the un-labelled input
data xp:

(4) ye = sign [> aid(ai) é(zr) +b |,

T, €S

where S represents the set of support vector items x;.
We will see in the next section that is more convenient to use a kernel
function K (x, z) instead of the dot product ¢(x)7¢(2).

2.2. Kernel formalism. The original optimal hyper-plane algorithm pro-
posed by Vapnik in 1963 was a linear classifier [19]. However, in 1992, Boser,
Guyon and Vapnik [2] have suggested a way to create non-linear classifiers by
applying the kernel trick. Kernel methods work by mapping the data items
into a high-dimensional vector space JF, called feature space, where the sepa-
rating hyper-plane has to be found [2]. This mapping is implicitly defined by
specifying an inner product for the feature space via a positive semi-definite
kernel function: K(z,z) = ¢(x)T¢(2), where ¢(x) and ¢(z) are the trans-
formed data items x and z [16]. Note that all we required is the result of such
an inner product. Therefore we do even not need to have an explicit repre-
sentation of the mapping ¢, neither to know the nature of the feature space.
The only requirement is to be able to evaluate the kernel function on all the
pairs of data items, which is much easier than computing the coordinates of
those items in the feature space.

The kernels that correspond to a space embedded with a dot product
belong to the class of positive definite kernels. This has far-reaching con-
sequences. The positive definite and symmetric kernels verify the Mercer’s

EVOLUTIONARY OPTIMISATION OF KERNEL FUNCTIONS FOR SVMS 33

theorem [13] - a condition that guarantees the convergence of training for dis-
criminant classification algorithms such as SVMs. The kernels of this kind
can be evaluated efficiently even though they correspond to dot products in
infinite dimensional dot product spaces. In such cases, the substitution of the
dot product with the kernel function is called the kernel trick [2].

In order to obtain an SVM classifier with kernels one has to solve the
following optimization problem:

maximiseqepm Y ooy i — % Z%Zl a;a;yy; K (i, x;)
(5) subject to Y " a;y; =0,
0<a; <CVie{l,2,...,m}.

In this case, Eq. (4) becomes:

(6) e = sign | Y aiK(zi,x) +b |,
;€S

where S represents the set of support vector items x;.

There are a wide choice for a positive definite and symmetric kernel K from
Eq. (6). The selection of a kernel has to be guided by the problem that must
be solved. Choosing a suitable kernel function for SVMs is a very important
step for the learning process. There are few if any systematic techniques to
assist in this choice. Until now, different kernels for vectors have been proposed
[18]; the most utilised of them by an SVM algorithm are listed in Table 1.

TABLE 1. The expression of several classic kernels.

Name Expression Type
Sigmoid Kgig (v,2) =tanh(ox -2 + 1) projective
RBF Kgrpr(z,2) = exp(—ol|r — z|?) radial

Polynomial Kpy (,2) = (27 -2+ coef)? projective

3. EVOLVED KERNELS

This section describes our approach for automatic design of kernels. The
model’s idea was initially proposed in [8] and here we try to detail it and
to performed a more deeply analysis of the new evolved kernels. The model
is a hybrid one: it uses GP [12] to construct positive and symmetric kernel
functions, and optimizes a fitness function by using an SVM classifier (see
Figure 1). A GP chromosome provides the analytic expression of such evolved
kernels. The model we describe actually seeks to replace the expert domain

34 DIOSAN, ROGOZAN, AND PECUCHET

knowledge concerning the design of the SVM’s kernel function with a GP
algorithm.

Population
of evolved
kernels

@ Valid
- eK((x,z) quality k— Validation
with [= data set

quality

SVM model Learning

data set
%"
quality SVM
GP - iteration i Chromosome evaluation

FiGure 1. Sketch of the hybrid approach

Our hybrid model is structured on two levels: a macro level and a mi-
cro level. The macro level algorithm is a standard GP [12], which is used to
evolve the mathematical expression of a kernel. The steady-state evolutionary
model [17] is involved as an underlying mechanism for the GP implementa-
tion. A steady state algorithm is much more tolerant of poor offspring than a
generational one. This is because in most implementations, the best individ-
uals from a given generation will always be preserved in the next generation,
giving themselves another opportunity to be selected for reproduction. The
best individuals are therefore given more chances to pass on their successful
traits. The GP algorithm starts by an initialisation step of creating a random
population of individuals (seen as kernel functions). The following steps are
repeated until a given number of iterations are reached: two parents are se-
lected using a binary selection procedure; the parents are recombined in order
to obtain an offspring O; the offspring is than considered for the mutation;
the new individual O* (obtained after mutation) replaces the worst individual
W in the current population if O* is better than W.

The micro level algorithm is an SVM classifier. It is taken from LIBSVM
[3] library. The original implementation of the SVM algorithm proposed in [3]
allows using several well-known kernels (Polynomial, RBF and Sigmoid — see
Table 1). In the numerical experiments, a modified version of this algorithm,
which is based on the evolved kernel (eK) is also used. The quality of each GP
individual is determined by running the SVM algorithm, which uses the eK
encoded in the current chromosome (Kjiering that corresponds to the indth
individual from the population during the itert” iteration). The accuracy rate

EVOLUTIONARY OPTIMISATION OF KERNEL FUNCTIONS FOR SVMS 35

estimated by the classifier (on the validation set) represents the fitness of the
GP chromosome.

3.1. Kernel representation. In our model, the GP chromosome is a tree
encoding the mathematical expression of the kernel function. Unlike a classic
GP tree, our model uses a particular category of trees that can contain two
types of nodes: scalar nodes and vectorial nodes. The terminal set is composed
only by vectors from R%: VTS = {z|z € R} (which correspond to the input
data). Since a kernel function operates only on two samples the resulting
terminal set VT'S contains only two vector elements: x and z.

The function set (FS) contains two types of operations: scalar operations
and vectorial ones. The scalar function set (SFS) contains several well-known
binary (4, —, x, /) and unary (sin, cos, exp, log) operators. The vectorial
function set VFES (see Table 2) contains two types of primitive functions:
operators that transform the initial multi-dimensional space into an R space
(known as norm functions) and operators that preserve the dimensionality of
the initial space. We also include several element-wise operations (EWOs) in
this last function category.

TABLE 2. The vectorial function set - VF'S: the norms and
the element-wise operations

Type Elements Definition

EN EN(z,2) =30 (2 — 2)?
Norms SP SP(x,z) =L, 2z

GN GN(z,z) = e~ (@imz)?
r@z=v,v,=x;+ 2, 1= 1,d
rOz=v,v,=x;— 2, 1=1,d
TRz=v,0, =x; %2, 1=1,d

EWOs

QX O &

Starting with a bottom-up tree reading, the functions operate in this way:

e the element-wise operations transform the d-dimensional space of input
instances into another d-dimensional space.

e the norms (e.g., Euclidean, Gaussian, Scalar Product) transform the
d-dimensional space into an one-dimensional space. The norms link
the vector space with the scalar space in our GP tree.

e the scalar operations are used to combine the outputs of different
norms.

Note that these EWOs are performed in a manner that preserves a valid
dimension for the resulted vector. Our vectorial multiplication operation ®

36 DIOSAN, ROGOZAN, AND PECUCHET

is an element-wise operation; it is different from the cross product, which is
a geometrical vector multiplication. The cross product performs the transfor-
mation (B9, R4) — R? x R, or in our model we must have a transformation
(R4, 1Y) —s R

An example of a GP chromosome is depicted in Figure 2. The nodes that
contain scalar symbols form a connex region. The rest of the nodes form one
or more connex sub-regions.

FI1GURE 2. Example of a chromosome - the nodes designed by
only a circle contain scalar symbols and the nodes designed by
two circles contain vectorial symbols (functions and terminals).
The vectors x and z, representing two data items, are the kernel
inputs.

The grow method [1], which is a recursive procedure, is used to initialize a
GP individual. This initialisation method is well known in the literature for
its robustness. The root of each GP tree must be a function from F'S. If a
node contains a function, then its children are initialized either with another
function or with a terminal. The initialization process is stopped when is
attained a leaf node or at the maximal depth of the tree (the nodes from the
last level will be initialised by terminals). Moreover, the maximal depth of a
GP chromosome has to be large enough in order to assure a sufficient search
space for the optimal expression of our evolutionary kernel.

3.2. Genetic Operations.

3.2.1. Selection. The selection operator chooses from the current population
which individuals will act like parents in order to create the next generation
of kernels. Selection has to provide high reproductive chances to the fittest
kernels but, at the same time, it has to preserve the exploration of the search
space. The choice of which kernels are allowed for reproducing determines
which regions of the search space will be visited next. Indeed, achieving equi-
librium between the exploration and the exploitation of the search space is
very important for an evolutionary algorithm. When performing selection for

EVOLUTIONARY OPTIMISATION OF KERNEL FUNCTIONS FOR SVMS 37

recombination, the kernels are compared by means of a fitness function that
evaluates how good a potential solution is for the given problem.

3.2.2. Crossover. The crossover operator assures the diversity of the kernels
and is performed in a tree-structure preserving way in order to ensure the
validity of the offspring: first as a mathematical expression and second as a
Mercer’s kernel. The idea behind crossover is that the new chromosome may
be better than both of the parents if it takes the best characteristics from each
of the parents.

The model we describe uses an one-cutting point crossover [12]. Having
two parent trees, we randomly choose a cutting point in the first parent,
another cutting-point in the second parent and then, we exchange the subtrees
rooted to these points. This crossover type has been used because it is able to
guarantee a quite quickly convergence of the GP algorithm.

The cutting-point in the first parent is chosen randomly, but the other
cutting-point is constrained by the position of the first one. Thus, if the first
cutting-point is chosen right above a node that contains a scalar operator,
then the other cutting point must be chosen above another scalar node (from
the second parent). A similar procedure must be applied if the first cutting
point is chosen right above a node that contains a vector operator.

Why we need this restriction? Because if we choose the first cutting point
between a scalar function and a norm, then we must replace the sub-tree whose
root is the norm with a sub-tree from the other parent. If the cutting-point in
the second parent is chosen right above a node that contains a scalar function,
then there are two possibilities: the R function from the first parent acts on a
sub-tree rooted by a scalar function or on a sub-tree rooted by a norm. These
two possibilities are correct and they ensure a valid offspring. If the second
cutting-point is chosen right above a node that contain a vector operator, then
it is possible that scalar function from the first parent act on a vector (which
is an impossible operation).

3.2.3. Mutation. The purpose of the mutation operator is to create new in-
dividuals by small and stochastic perturbations of a chromosome. Mutation
operator aims to achieve some stochastic variability of an evolutionary al-
gorithm in order to get a quicker convergence. Furthermore, the mutation
operator aims to produce diversity of the population of candidate solutions
and to reconsider the lost genetic material of the population. Mutation is
therefore responsible for exploring new promising regions of the search space
and not for exploiting those already discovered. This genetic operation, also
as the crossover, preserves the syntactical validity of the new individual. For a
G P-based kernel, a cutting point is randomly chosen: the sub-tree belonging
to that point is deleted and a new sub-tree is grown there by applying the same

38 DIOSAN, ROGOZAN, AND PECUCHET

random growth process that was used to generate the initial population. Note
that the maximal depth allowed for the GP trees limits the growth process.

3.3. Fitness Assignment. We must provide several information about the
datasets, before to describe the chromosome evaluation. The data sample
was randomly divided in two disjoint sets: a training set (80%) - for models
building - and a testing set (20%) - for performances evaluation. The training
set was than randomly partitioned into learning (2/3) and validation (1/3)
parts.

The SVM algorithm kernel uses the learning subset to construct the SVM
model and the validation subset for the evolved kernel performance assign-
ment. The quality of an evolved kernel, which is the current GP chromosome,
can be measured by the classification accuracy rate computed on the valida-
tion data set. The accuracy rate represents the number of correctly classified
items over the total number of items. Note that we deal with a maximization
problem: greater accuracy rates are, better evolved kernels are.

In order to evaluate the quality of a GP tree, it is also necessary to take into
account if the expression encoded into the current chromosome is a valid kernel
or not. We must verify therefore if the current expression satisfies the Mercer
conditions [5] regarding the positivity and the symmetry of the Gram matrix
associated to a kernel function. We have used the penalty method to involve
these restrictions in the evaluation process. More exactly, two important steps
are performed:

e (1) kernel positivity and symmetry verification - if a GP tree does
not satisfy these conditions then the fitness of the GP tree will be 0;
otherwise, we can go to step 2.

e (2) SVM algorithm running - there are two stages in this run: in the
first stage the SVM algorithm embedding the evolved kernel is con-
structed by using the learning data; in the second stage, the SVM
algorithm with the evolved kernel classifies the items from the valida-
tion set. The accuracy rate estimated on this subset will represent the
quality of the GP chromosome.

4. NUMERICAL EXPERIMENTS

In this section, several numerical experiments about evolving kernel func-
tions for different classification problems are detailed. After evolving it on the
validation set, the kernel is embedded into an SVM classifier, which is run
on the test dataset. The SVM algorithm based on the classical kernels are
also used to classify the test data set. Finally, the performances of different
classifiers are compared.

EVOLUTIONARY OPTIMISATION OF KERNEL FUNCTIONS FOR SVMS 39

Four data sets [9] are used in thee experiments. All the data sets contain
information about the real-world problems (D.S; and D.S; — classification task
is to determine whether a person makes over $50K /year or not, DS3 and DSy
— classifying whether a web page belongs to a category or not). A binary
classification problem must be solved in each of these cases. The structure of
the problems is presented in Table 3.

TABLE 3. The structures of the data sets - each dataset is split
into training set and testing set. For each of these two subsets
it is specified: the total number of items, the number of items
from the first class and the number of items from the second
class, respectively

Data Training Testing

set Total 1 class 2" class Total 1 class 2" class
ala 1604 395 1209 30995 7446 23549
a2a, 2264 572 1692 30295 7269 23026
wla 2477 2404 73 47272 45864 1408
w2a 3470 3362 108 46279 44906 1373

The steady-state model [17] is used for the GP algorithm. A population
of 50 individuals is evolved during 50 iterations, which is a reasonable limit to
assure the diversity of our eKs. The maximal depth of a GP tree is limited
to 10 levels, which allows encoding till 2!° combinations. This maximal depth
was fixed by tacking into account the bloat problem (the uncontrolled growth
of programs during GP runs without (significant) return in terms of fitness
[14]). Furthermore, several empirical tests indicated that the efficient kernel-
trees do not expand to more than 10 levels. A binary tournament selection,
a probabilistic crossover, and a probabilistic mutation are performed in order
to obtain a new generation of chromosomes. The values of the crossover and
mutation probabilities (p. = 0.8 and p,,, = 0.3) are chosen in order to assure a
sufficient diversity of the population. The values used for the population size
and for the number of generations have been empirically chosen based on the
best results computed on the validation set. The soft margin hyper-parameter
C, which weights the misclassification errors, has been set to 1 for all the
classifiers used in our experiments.

4.1. Experiment 1. New kernel functions are evolved in this experiment.
As we already mentioned, there are two different stages in this experiment: in
the first stage the kernel expression is learnt and in the second stage the best
evolved kernel function is tested.

40 DIOSAN, ROGOZAN, AND PECUCHET

We obtain various expressions of the kernel function, during different runs,
all of them having a similar complexity.

Figure 3 depicts the evolution of the quality for the best evolved kernels
along the number of iterations (for all the problems on the validation data
sets). Only the values corresponding to the first 20 generations are depicted
in this graphic for a better visualisation. Small improvements can be observed
in the chromosomes quality (or in the accuracy rate) after the first 15 GP
generations. This aspect is very important and it proves that the proposed
model can discover an efficient kernel in only a few generations.

100 ~
90 A
80
70 4
60 -
50
—+—Ds1
40 —o—DS2
30 4 ——DS3
——DS4
O e e e s B e e N
1 2 3 4 5 6 7 8 9 1011121314151617181920

FIGURE 3. Evolution (on the validation set) of the best evolved
kernel for all the problems.

Table 4 presents the accuracy rates estimated on the test data for each of
the problem and the expression of the best evolved kernel (provided by the
training process).

TABLE 4. The accuracy rates obtained on test datasets with an
SVM algorithm that involves the best kernel expression learnt
during the training stage.

Problem Acc Kernel Expression

DS, 7243 Kj(z,z) =GN(z,26z2) X GN(z,z © x)
Ki(x,2) = e i [(@i—2)] o=y Ty [mi— (2i—w))?
DSy 79.60 Ki(z,z)=SP(z,2® z® x)
K3(x,2) = Z? Zilwi(zi + @i)]
DSs 89.39 Kj(z,2) = GN(.CE z) —i—SP(z 3:)
Ki(x,z)=e = i (wi—z)? + Z 1 %i%;
DS, 90.27 Kj(z,z) = SP(z,z® z ® 1)
Ki(z,2) = Yimy #ilwi(zi + 24)]

EVOLUTIONARY OPTIMISATION OF KERNEL FUNCTIONS FOR SVMS 41

4.2. Experiment 2. This experiment serves our purpose to compare the best
evolved kernels to three commonly used kernels (the sigmoid kernel, the poly-
nomial kernel and the radial basis function (RBF) kernel, respectively) and to
the genetic kernel (GK') proposed in [10].

The SVM algorithm is run by the same error penalty as that from the
evolving stage, but using the sigmoid kernel, the polynomial kernel, and the
RBF kernel, respectively. For the Sigmoid kernel the parameter values are
o = 0.01 and r = 0, for the Polynomial kernel the degree d is set to 2 and
for the RBF kernel the bandwidth value o is 0.01. These values have been
optimised by a parallel grid search method.

The results obtained by running the SVM with our evolved kernel (the
second column), the Polynomial kernel, the RBF kernel, the Sigmoid kernel
(the next three columns) and the evolved kernel described in [10] (the last
column), respectively, are presented in Table 5.

The accuracy rate reflects the classification performance of the SVM al-
gorithm in a confidence interval. The confidence intervals associated to the
performances of the systems must be computed in order to decide if a system
outperforms another system. If these intervals are disjoint, then one system
outperforms the other ones. A confidence interval of 95% is used in order to
perform a statistical examination of the results. Therefore, the probability
that the accuracy estimations are not in the confidence interval is 5% (see
Equation (7)).

Acc(100 — A
(7) Al = 1.96 x \/ cel 0](1, ey,

where N represents the number of test examples. In addition, Table 5 displays
the corresponding confidence intervals (on the test set of each problem).

TABLE 5. The accuracy rates and their confidence intervals for
each test data set using different kernel expressions.

Dataset eK Kpol KRBF K.S'ig GK
DS, 72.43+£0.50 73.40£0.49 71.2840.50 71.284+0.50 75.62+0.48
DSy 79.60£0.45 78.194+0.47 77.664+0.47 78.72+£0.46 76.00£0.48
DS3 89.39£0.28 74.244+0.39 84.47+0.33 37.12+0.44 88.25+0.29
DSy 90.27+£0.27 88.11+0.29 86.494+0.31 83.78+0.34 88.11+0.29

Table 5 shows that the accuracy rates computed by our hybrid approach
are globally better than those computed by an SVM classifier that involves
the classic kernels and also than the GK method proposed in [10] (in 3 cases
out of 4). These results prove that evolving a new kernel adapted to the

42 DIOSAN, ROGOZAN, AND PECUCHET

classification problem is more promising than computing the results by using
several well-known fixed kernels and picking the best. However, more extended
experiments are need in order to validate our hybrid approach. Furthermore,
it is clear (Table 5) that the evolved kernels perform better (from a statistically
point of view) than the simple ones (the corresponding confidence intervals are
disjointed) for three problems (out of four).

5. RELATED WORK AND DISCUSSIONS

Evolutionary techniques have been used in the past in order to evolve
complex functions in different domains. For instance, the expression of the
crossover operator used by the genetic algorithms for function optimization
[7] is only an example.

Although several methods [4, 21] have been proposed for optimizing the
parameters of the kernel functions, to our knowledge, only one attempt, per-
formed by Howley and Madden [10], yields of evolving the kernel function.
The authors [10] have tried to find an optimal kernel function by using the
genetic programming technique also. There are several and important differ-
ences between their approach and the model we describe. These differences
regard: the function set, the terminal set and the Mercer conditions.

Howley and Madden have used only a few binary operators (+, —, x),
whereas we extend the function set by adding: several unary scalar operations
(exp, sin, cos, log); several norm functions (EN, SP, GN - that transform
the R¢ space into an R space and create the link between the GP tree part
reserved for the B¢ space and the GP tree part reserved for the i space) and
several element-wise operations (€, ©, ®). Moreover, they have used the same
function set for both type of operations (scalar and vectorial). The model we
develop uses two different function sets: one for the scalar operations and one
for the vectorial ones.

The terminals can be either vectors, or scalar values in the model proposed
in [10]. Our approach uses only vectors as terminals in the GP tree. By
contrast a trick has been used in [10]: the model decides the type of operators
(scalar or vectorial) based on the type of arguments (if both arguments are
scalar then the function is a scalar one and if at least one operand is a vector,
then the vectorial meaning for the operator is used) - a bottom-up approach.
The current model is a top-down one: it decides the type of operands based
on the type of functions.

In the model we describe, the set of functions contains both scalar and
vector operators which are used in order to generate valid kernel expressions
(starting by the initialization stage and continuing by the crossover and muta-
tion steps); this is different to the Howley’s approach [10] were the correctness

EVOLUTIONARY OPTIMISATION OF KERNEL FUNCTIONS FOR SVMS 43

of the kernel is imposed after the construction stage. The positivity and the
symmetry of the evolved kernels learnt by our approach are verified when a
kernel is evaluated (the expressions that do not satisfy these constraints are
penalized). Unlike to this, in [10] the authors have first evaluated the kernel
encoded into a GP tree on two samples x and z. These samples have been
swapped and the kernel has been evaluated again. The dot product of these
two evaluations has been returned as the kernel output. In this manner, the
obtained kernels are symmetric, but there is no guarantee that they obey Mer-
cer’s theorem. Moreover, the dot-product operation has increased the kernel
complexity.

Comparing to the standard SVM with a fixed kernel, the hybrid model we
describe involves certainly more computations because of the additional GP
step, which is needed in order to evolve an optimal kernel function. However,
more computations are performed only for the training stage, whereas our
hybrid model may give better accuracy when classifying the unlabelled data.

6. CONCLUSION AND FURTHER WORK

A hybrid technique for evolving kernel functions has been described in this
paper. The model has been used in order to discover and adapt (optimise) the
mathematical expressions of the kernel function involved in an SVM algorithm
used for binary classification problems.

We have performed several numerical experiments in order to compare
our evolved kernel to others kernels (human designed or not). The numerical
experiments have shown that the evolved kernels perform slightly better than
the standard kernels (the sigmoid, the polynomial and the RBF kernels) or
the genetic kernels proposed by Howley and Madden [10]. However, for a
more pertinent conclusion regarding that the proposed method is a good one,
it should be supported by a stronger statistical analysis and by a new set of
experiments (especially for large data sets).

Further work will be focused on evolving better kernel functions, by taking
into account different initialization strategies in order to improve the quality
of the selected kernels and/or by using a multiple kernel approach.

REFERENCES

[1] BANZHAF, W. Introduction. Genetic Programming and Evolvable Machines 6, 1 (2006),
5-6.

[2] BOSER, B. E., GUYON, 1., AND VAPNIK, V. A training algorithm for optimal margin
classifiers. In COLT (1992), pp. 144-152.

[3] CHANG, C.-C., AND LIN, C.-J. LIBSVM: a library for SVM, 2001. Software available
at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

44

DIOSAN, ROGOZAN, AND PECUCHET

[4] CHAPELLE, O., VAPNIK, V., BOUSQUET, O., AND MUKHERJEE, S. Choosing multiple

[12

[13

[14

[15
[16

]

]

[17]

18

19
20
21

parameters for SVM. Machine Learning 46, 1/3 (2002), 131-159.

CoRTES, C., AND VAPNIK, V. Support-vector networks. Machine Learning 20 (1995),
273-297.

CRISTIANINI, N.; AND SHAWE-TAYLOR, J. An Introduction to Support Vector Machines.
Cambridge University Press, 2000.

D10sAN, L., AND OLTEAN, M. Evolving the structure of the particle swarm optimization
algorithms. In EvoCOP 2006 (2006), J. Gottlieb and et al., Eds., vol. 3906 of LNCS,
Springer, pp. 25-36.

D10gaN, L., ROGOZAN, A., AND PECUCHET, J.-P. Evolving kernel functions for SVMs
by Genetic Programming. In JCMLA’07, Ohio, USA (2007).

D.J. NEwMAN, S. HETTICH, C. B., AND MERZ, C. UCI repository of machine learning
databases, 1998.

HowLEY, T., AND MADDEN, M. G. The genetic kernel SVM: Description and evalua-
tion. Artif. Intell. Rev 24, 3-4 (2005), 379-395.

JoacHivs, T. Making large—scale SVM learning practical. In Advances in Kernel Meth-
ods — Support Vector Learning (1999), B. Scholkopf, C. J. C. Burges, and A. J. Smola,
Eds., MIT Press, pp. 169-184.

Koza, J. R. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, 1992.

MERCER, J. Functions of positive and negative type and their connection with the
theory of integral equations. Philosophical Transactions of the Royal Society 209 (1909),
415-446.

Pori, R., Lancepon, W. B., AnxD McPHEE, N. F. A field guide to ge-
netic programming. Published via http://lulu.com and freely available at
http://wuw.gp-field-guide.org.uk, 2008.

SCHOELKOPF, B.; AND SMOLA, A. J. Learning with Kernels. The MIT Press, 2002.
ScHOLKOPF, B. The kernel trick for distances. In NIPS (2000), T. K. Leen, T. G.
Dietterich, and V. Tresp, Eds., MIT Press, pp. 301-307.

SYSWERDA, G. A study of reproduction in generational and steady state genetic al-
gorithms. In Proceedings of FOGA Conference (1991), G. J. E. Rawlins, Ed., Morgan
Kaufmann, pp. 94-101.

TAYLOR, J. S., AND CRISTIANINI, N. Kernel Methods for Pattern Analysis. Cambridge
University Press, 2004.

VAPNIK, V. The Nature of Statistical Learning Theory. Springer, 1995.

VAPNIK, V. Statistical Learning Theory. Wiley, 1998.

WESTON, J., MUKHERJEE, S., CHAPELLE, O., PONTIL, M., PoGc10, T., AND VAPNIK,
V. Feature selection for SVMs. In NIPS (2000), T. K. Leen, T. G. Dietterich, and
V. Tresp, Eds., MIT Press, pp. 668-674.

LITIS, EA - 4108, INSA, ROUEN, FRANCE AND COMPUTER SCIENCE DEPARTMENT,

BABES BoLyAl UNIVERSITY, CLUJ NAPOCA, ROMANIA

E-mail address: lauras@cs.ubbcluj.ro

LITIS, EA - 4108, INSA, ROUEN, FRANCE
E-mail address: arogozan@insa-rouen.fr

LITIS, EA - 4108, INSA, ROUEN, FRANCE
E-mail address: pecuchet@insa-rouen.fr

	1. Introduction
	2. Support Vector Machine
	2.1. Generalities
	2.2. Kernel formalism

	3. Evolved Kernels
	3.1. Kernel representation
	3.2. Genetic Operations
	3.3. Fitness Assignment

	4. Numerical experiments
	4.1. Experiment 1
	4.2. Experiment 2

	5. Related Work and Discussions
	6. Conclusion and Further Work
	References

