
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 1, 2008

A METHOD FOR MINING FUNCTIONAL DEPENDENCIES
IN RELATIONAL DATABASE DESIGN USING FCA

KATALIN TUNDE JANOSI RANCZ AND VIORICA VARGA

Abstract. Formal Concept Analysis (FCA) is a useful tool to explore
the conceptual knowledge contained in a database by analyzing the formal
conceptual structure of the data. In this paper, we present a new method
to optimize and extend a previous research on FCA and databases, by
analyzing the functional dependencies in order to correctly build database
schemata. Our method intends to mine functional dependencies in a rela-
tional database table. The novelty of our method is that it builds inverted
index files in order to optimize the construction of the formal context of
functional dependencies.

Key words: Formal concept analysis, Functional dependencies, Rela-
tional databases.

1. Introduction

From a philosophical point of view a concept is a unit of thoughts consisting
of two parts, the extension, which are objects and the intension consisting of
all attributes valid for the objects of the context. Formal Concept Analysis
(FCA) introduced by [7] gives a mathematical formalization of the concept
notion. A detailed mathematic foundation of FCA can be found in [3]. Formal
Concept Analysis is applied in many different realms like psychology, sociology,
computer science, biology, medicine and linguistics.

Formal Concept Analysis has been proved to be a valuable tool to repre-
sent the knowledge contained in a database, for instance logical implications
in datasets. The subject of detecting functional dependencies in relational ta-
bles was studied in detail with different mathematical theories. Hereth (2002)
presents the relationship between FCA and functional dependencies. He in-
troduces the formal context of functional dependencies. In this context, impli-
cations hold for functional dependencies. Baixeries (2004) gives an interesting
framework to mine functional dependencies using Formal Context Analysis.
Detecting functional dependencies seems to be an actual theme, see [8].

Received by the editors: April 8, 2008.
2000 Mathematics Subject Classification. 03G10.
1998 CR Categories and Descriptors. H.2.4 [Database Management]: Systems – Re-

lational databases.

17

18 KATALIN TUNDE JANOSI RANCZ AND VIORICA VARGA

This paper presents how some basic concepts from database theory trans-
late into the language of Formal Concept Analysis and attempts to develop
the functional dependencies.

We optimize an existing method introduced by [4], which provides a direct
translation from relational databases into the language of power context fam-
ilies and calculates the functional dependencies in a relational table. In order
to generate the tuple pairs necessary to build the formal context of functional
dependencies we build inverted index files for the values of every attribute,
because in the context of functional dependencies we need the tuple pairs,
where at least one of the attribute values are common. In order to make the
algorithm faster we reduce the size of the context file, which leads to fewer
concepts in the lattice with useless dependencies.

2. Functional dependencies

The most used database model is the relational model. To give the struc-
ture of data [1] presents the unnamed and named perspective. The data is
stored in data tables, which have attributes as columns and tuples as rows.
In the named perspective the attributes are given by names, in the unnamed
perspective they are given only by position. The operations on the relational
model are based on algebra or on logic. The data integrity constraints of the
model appear as functional dependencies.

We give the definition of a relational database from the unnamed perspec-
tive.

Definition 1. We define a relational database to be a tuple D := (dom,N)
with dom being the domain of the database and N being the set of named
data tables in the database. A data table is any element T ∈ ∪i∈N0P

(
domi

)
.

The arity of T is i ∈ N0 such that T ∈ P
(
domi

)
and is written arity(T). For

a tuple t ∈ T we write t [j] with 1 ≤ j ≤ arity (T) to denote the j-th value of
the tuple.

Example 1. In database implementations the named perspective is used. The
database scheme is composed of the table names with their attribute names.
The example gives the relational scheme of a university database. Students are
divided in groups; there can be many groups in one specialization. Students
are marked at different disciplines.

Specialization [SpecID, SpecName, Language]
Groups [GroupID, SpecID]
Students [StudID, GroupID, StudName, Email]
Disciplines [DiscID, DName, CreditNr]
Marks [StudID, DiscID, Mark]

In this example N is composed of the named data tables: Specialization,
Groups, Students, Disciplines, Marks, dom is the set of all attribute’s values

MINING FUNCTIONAL DEPENDENCIES 19

of the tables. In case of each table the arity is the number of its attributes,
so Groups table has arity 2, Students has 4. Let t be a tuple (row) of table
Students, than t[1] is the value of tuple t for StudID, t[2] is the value of
GroupID in the corresponding row, so on.

In relational database design the normalization theory is used to avoid
redundancy. Normal forms use the notion of functional dependencies. The
following definition uses the projection relational operator, see any database
theory book [1], [6]. In the following definition we use the unnamed perspec-
tive, so the attributes are given by there number.

Definition 2. Let T be a data table and X,Y ⊆ N0. Then, T fulfills the
functional dependency D : X → Y , if for all tuples s, t ∈ T πX (s) = πX (t)
implies that also πY (s) = πY (t).

Example 2. Let be the next relational table:
StudentInfos [StudID, StudName, Email, GroupID, SpecName]

For all tuples s, t ∈ StudentInfos for which πGroupID (s) = πGroupID (t)
implies that πSpecName (s) = πSpecName (t).

So, the following functional dependencies hold:

GroupID → SpecName

This means, we repeat for every student from a group the specialization
name.

In the same manner we can see that:

StudID → StudName,Email,GroupID, SpecName

Email→ StudID, StudName, SpecName,GroupID

In order to define the functional dependencies in a formal context, we need
the notion of Power Context Family.

Definition 3. (Power Context Family). A power context family
−→
K :=

(Kn)n∈K0
is a family of formal contexts Kk := (Gk,Mk, Ik) such that Gk ⊆

(G0)k for k = 1, 2, The formal contexts Kk with k ≥ 1 are called relational
contexts. The power context family

−→
K is said to be limited of type n ∈ N0 if−→

K = (K0,K1, ...,Kn), otherwise, it is called unlimited.

The following definition from [4] gives the method to construct the power
context family resulting from a relational database.

Definition 4. The power context family
−→
K (D) resulting from the canonical

database translation of the relational database D = (dom, N) is constructed
in the following way: we set K0 := (dom, ∅, ∅) and, for k ≥ 1, let Gk be the
set of all k-ary tuples and Mk ⊆ N be the set of all named data tables of arity
k. The relation Ik is defined by (g,m) ∈ Ik :⇔ g ∈ m.

20 KATALIN TUNDE JANOSI RANCZ AND VIORICA VARGA

K2 Groups
(531, I) X
(532, I) X
(111, M) X
(...) ...

Table 1. K2 for Example 1

K3 Specialization Disciplines Marks
(M, Mathematics, German) X
(I, Informatics, English) X
(...) ...
(11, Databases, 6) X
(22, Algebra, 6) X
(...) ...
(101, 22, 9) X
(157, 22, 8) X
(...) ...

Table 2. K3 for Example 1

Example 3. Let us construct the power context family of our Example 1. K0

has no attributes, because we haven’t any 0-ary relation. K2 has in his one
attribute table Groups, this is the only table with arity 2, objects are tuples
from this table, see Table 1. The attributes of K3 are the tables with arity 3,
objects are rows from these tables, the incidence relation shows which tuple
to which table belongs (Table 2). K4 has one attribute, Students table name,
see Table 3.

The formal context of functional dependencies is defined in the following
way in [4].

Definition 5. Let
−→
K be a power context family, and let m ∈ Mk be an at-

tribute of the k-th context. Than the formal context of functional dependencies
ofm with regard to

−→
K is defined as FD

(
m,
−→
K
)

:=
(
mIk ×mIk , { 1, 2, ..., k}, J

)
with ((g, h) , i) ∈ J :⇔ πi (g) = πi (h) with g, h ∈ mIk and i ∈ { 1, 2, ..., k}.

Example 4. Let us construct the formal context of functional dependencies
for table StudentInfos of Example 2 notated by FD

(
StudentInfos,

−→
K(Uni)

)
.

This is a relation from database with name Uni. It has arity 5, so it is an
attribute of the K5 from the corresponding power context family

−→
K(Uni).

MINING FUNCTIONAL DEPENDENCIES 21

K4 Students
(101, 531, Irene Cates, IreneCates@email.com) X
(157, 111, Maria Jillian,MariaJillian@yahoo.com,) X
(234, 532, Frank Orlando,FrankOrlando@email.com) X
(...) ...

Table 3. K4 for Example 1

The attributes of FD
(
StudentInfos,

−→
K(Uni)

)
are the attributes of table

StudentInfos, the objects are pairs of tuples from this table. The incidence
relation of the context shows that the attribute is common to the tuple pair
from the row, see Fig. 1. We give short names to students and emails, in order
to fit the picture in page.

Figure 1. FD
(
StudentInfos,

−→
K(Uni)

)
In order to mine functional dependencies in the context defined in defini-

tion 5, we need the following proposition (see [4]).

Proposition 1. Let D be a relational database and m a k-ary table in D.
For two sets X,Y ⊆ { 1, ..., k} we have the following equality: The columns

22 KATALIN TUNDE JANOSI RANCZ AND VIORICA VARGA

Y are functionally dependent from the columns X if and only if X → Y is an
implication in FD

(
m,
−→
K (D)

)
.

Example 5. Let us construct the concept lattice for

FD
(
StudentInfos,

−→
K(Uni)

)
using the Concept Explorer (ConExp) from site http://sourceforge.net, see
Fig. 2. We can see the implication in the context of functional dependencies,
the software shows us too:

GroupID → SpecName

This is a transitive functional dependency, so the table isn’t in 3NF. The
software also find the following functional dependencies:

StudID → StudName,Email,GroupID, SpecName

Email→ StudID, StudName, SpecName,GroupID

where the right hand side (StudID and Email) are candidate keys of the table
StudInfos.

3. Method description

This section presents how our method constructs the context of functional
dependencies of a database table.

In the first step, we introduce the structure of the table to be designed and
some significant tuples. It is not necessary to use all the rows of a database
table, but it is important to select varied tuples, with different styles of data,
in order to get as many conclusions as possible. Using definitions 3, 4, 5
we construct the formal context of functional dependencies to find existing
functional dependencies as implications in the constructed table. In order to
optimize the construction of the formal context, we build inverted index files
for the values of every attribute. With inverted indexes the number of rows
in the data file of formal context resulted by our method is half of the same
value resulted using Hereth’s method in [4]. In the consequence we can reduce
the time to build the concept lattice for functional dependencies and we can
eliminate useless dependencies.

An inverted index (or inverted file) is an index data structure, a sequence
of (key, pointer) pairs where each pointer points to a record in a database
which contains the key value in some particular field. The inverted index
is a central component of a typical search engine indexing algorithm. For
databases in which the records may be searched based on more than one field,
multiple indices may be created.

MINING FUNCTIONAL DEPENDENCIES 23

Figure 2. Conceptual lattice for FD (StudentInfos,−→(Uni))

Value Row numbers

v1j rnr11j , rnr
2
1j , ...

v2j rnr12j , rnr
2
2j , ...

...
vmj rnr1mj , rnr

2
mj , ...

Table 4. Inverted index InvIndj

We use the following notations for the j-th inverted file, which contains
the different values of the attribute aj : v1j , v2j , ..., vmj and for each value the
row numbers, where the corresponding attribute value appears, see Table 4.

24 KATALIN TUNDE JANOSI RANCZ AND VIORICA VARGA

Rownrs StudID StudName GroupID SpecName Email
1 1 a 531 Info aa
2 2 b 531 Info bb
3 3 c 531 Info cc
4 4 d 532 Info dd
5 5 e 631 Mathe ee
6 6 f 631 Mathe ff
7 7 a 631 Mathe a2

Table 5. Table StudentInfos

StudID
value row nrs

1 1
2 2
3 3
4 4
5 5
6 6
7 7

StudName
value row nrs

a 1,7
b 2
c 3
d 4
e 5
f 6

GroupID
value row nrs
531 1,2,3
532 4
631 5,6,7

SpecName
value row nrs
Info 1,2,3,4

Mathe 5,6,7

Email
value row nrs

aa 1
bb 2
cc 3
dd 4
ee 5
ff 6
a2 7

Table 6. Inverted index files for table StudentInfos

The context of functional dependencies being constructed, we build the
concept lattice. In the top of the concept lattice will be tuple pairs, in which
are no common values of the corresponding attributes, so we can omit to
generate these pairs of tuples. Pairs of form (t, t), where t is a tuple of the
table, have all attributes in common, these objects will arrive in the bottom
of the lattice, so they can be omitted too, because they don’t change the
implications in the context. Finally from the resulted context we generate the
functional dependencies.

MINING FUNCTIONAL DEPENDENCIES 25

Example 6. There is a simple example on how to build inverted index file.
Let be the following rows in table StudentInfos and the inverted index files
for every attribute, see Table 5 and 6.

The previous considerations alow us to formulate the next algorithm to
build the context of functional dependencies, inverted index files being con-
structed in the same time.

Algorithm
for each inserted row in table T do

begin
let k be the number of row
let ek1, ek2, ..., ekn be the attribute values of row k
for j:=1 to n do // for every attribute value

begin
search ekj in the j-th inverted index file //search the attribute

// value in the corresponding inverted file
if find, let vlj be the value in the inverted file

such that ekj = vlj then
begin // k is added to the list of row numbers for value vlj

build the array list alkj = {rnr1lj , rnr2lj , ...}
add k in alkj

add k in the j-th inverted index in the list of row numbers
for value vlj

end
else //value ekj doesn’t exist in the corresponding inverted index

//we insert it, k is the first row with value ekj of attribute j
insert new line in the j-th inverted index file with values (ekj , k)

end
// In order to insert tuple pairs as rows in the cex file:

build alk =
n⋃

j=1

alkj //alk contains the row numbers,

// which have attributes in common with row k
//if alk is empty, no row will be inserted in cex file
if alk 6= ∅ then

for s = 1 to count(alk) do
insert in cex file tuple (k, alk(s))

end

Example 7. Let be the next table:

StudMarks [StudID, StudName, GroupID, Email, SpecID,
SpecName, Language, DiscID, DName, CreditNr, Mark]

26 KATALIN TUNDE JANOSI RANCZ AND VIORICA VARGA

Figure 3. Conceptual lattice for FD
(
StudMarks,

−→
K(Uni)

)
with 92 rows in the table StudMarks

In Fig. 3 is the concept lattice of the functional dependencies context for
the table StudMarks with 92 rows. The implications in this lattice, which are
functional dependencies in the table can be seen as follows: the concept with
label GroupID is a subconcept of concept with labels SpecID and SpecName.
This means, in every tuple pair where the GroupID field has the same value, the
specialization ID and name is the same. So we have the following implications,
which are functional dependencies:

GroupID →SpecID, SpecName
In the same manner the following functional dependencies can be read

from the concept lattice:
DiscID →CreditNr
DName →CreditNr

MINING FUNCTIONAL DEPENDENCIES 27

Figure 4. Implications, namely functional dependencies in
the table StudMarks

SpecID →Language
SpecName →Language
StudID →StudName
Email →StudName

The implications in this lattice given by Conexp can be seen in Fig. 4.

4. Conclusions and further research

This paper presents a method to optimize and to reduce the workload
of the users in the process of mining functional dependencies in a relational
database. Our method proves that FCA visualization makes easier to manage
database schemata and normal forms.

Our goal for further research is to develop an FCA exploration software
based on this method to be a front-end to relational database of any content.
This software would read any type of database table and construct the con-
text of functional dependencies, this way would not be necessary to introduce
the tuples by hand. As a part of this solution, we would use the resulted
implications to propose the structure of the database tables.

References

[1] Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases. Addison-Wesley, Reading
- Menlo - New York (1995)

[2] Baixeries, J.: A formal concept analysis framework to mine functional dependencies,
Proceedings of Mathematical Methods for Learning, (2004).

[3] Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer,
Berlin-Heidelberg-New York. (1999)

28 KATALIN TUNDE JANOSI RANCZ AND VIORICA VARGA

[4] Hereth, J.: Relational Scaling and Databases. Proceedings of the 10th International
Conference on Conceptual Structures: Integration and Interfaces LNCS 2393, Springer
Verlag (2002) 62–76

[5] Priss, U.: Establishing connections between Formal Concept Analysis and Relational
Databases. Dau; Mugnier; Stumme (eds.), Common Semantics for Sharing Knowledge:
Contributions to ICCS, (2005) 132–145

[6] Silberschatz, A., Korth, H. F.,Sudarshan, S.: Database System Concepts, McGraw-Hill,
Fifth Edition, (2005)

[7] Wille, R. : Restructuring lattice theory: an approach based on hierarchies of concepts.
In: I.Rival (ed.): Ordered sets. Reidel, Dordrecht-Boston, (1982) 445–470

[8] Yao, H., Hamilton, H. J.: Mining functional dependencies from data, Data Mining and
Knowledge Discovery, Springer Netherlands, (2007)

[9] Serhiy A. Yevtushenko: System of data analysis ”Concept Explorer”. (In Russian). Pro-
ceedings of the 7th National Conference on Artificial Intelligence KII-2000, p. 127-134,
Russia, 2000.

Sapientia University, Tg-Mures, Romania
E-mail address: tsuto@ms.sapientia.ro

Babes-Bolyai University, Cluj, Romania
E-mail address: ivarga@cs.ubbcluj.ro

