
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 1, 2008

A SEARCH BASED APPROACH FOR IDENTIFYING
DESIGN PATTERNS

GABRIELA ŞERBAN AND ISTVÁN GERGELY CZIBULA

Abstract. Software design patterns are well-known and frequently reused
micro-architectures: they provide proved solutions to design recurring
problems with certain contexts. In restructuring legacy code it is use-
ful to introduce a design pattern in order to add clarity to the system and
thus facilitate further program evolution. That is why the problem of de-
sign patterns identification is very important. Automating the detection
of design pattern instances could be of significant help to the process of
reverse engineering large software systems. The aim of this paper is to
introduce a new search based approach for identifying instances of design
patterns in a software system. We provide an experimental evaluation of
our approach, emphasizing its advantages.

Key words: Design patterns, Pattern recognition, Clustering.

1. Introduction

Design patterns have attracted significant attention in software engineering
in the last period. An important reason behind this is that design patterns are
potentially useful in both development of new, and comprehension of existing
object-oriented design, especially for large legacy systems without sufficient
documentation. The design patterns introduced by Gamma et al. [3] capture
solutions that have developed and evolved over time. Each design pattern
indicates a high level abstraction, encompasses expert design knowledge, and
represents a solution to a common design problem. A pattern can be reused as
a building block for better software construction and designer communication.

In restructuring legacy code is useful to introduce a design pattern in order
to add clarity to the system and thus facilitate further program evolution.
That is why the problem of design patterns identification is very important.

Received by the editors: December 4, 2007.
2000 Mathematics Subject Classification. 68N99, 62H30.
1998 CR Categories and Descriptors. D.2.7 [Software Engineering]: Distribution,

Maintenance, and Enhancement –Restructuring, reverse engineering, and reengineering ;
I.5.3 [Computing Methodologies]: Pattern Recognition – Clustering .

3

4 GABRIELA ŞERBAN AND ISTVÁN GERGELY CZIBULA

Automating the detection of design pattern instances could be of significant
help to the process of reverse engineering large software systems.

From a program understanding and reverse engineering perspective, ex-
tracting information from a design or source code is very important, the com-
plexity of this operation being essential. Localizing instances of design patterns
in existing software can improve the maintainability of software. Automatic
detection of design pattern instances is probably a useful aid for maintenance
purposes, for quickly finding places where extensions and changes are most
easily applied.

It would be useful to find instances of design patterns especially in designs
where they were not used explicitly or where their use is not documented. This
could improve the maintainability of software, because larger chunks could be
understood as a whole.

The presence of patterns in a design should be reflected also in the cor-
responding code: being able to extract pattern information from both design
and code is fundamental in identifying traceability links between different doc-
uments, explaining the rationale of the chosen solution in a given system and
thus simplifying the activity of building its conceptual model.

The main contributions of this paper are:
• To introduce an original search based approach for identifying in-

stances of design patterns in a software system.
• To emphasize the advantages of the proposed approach in comparison

with existing approaches.
The rest of the paper is structured as follows. Section 2 presents some ex-

isting approaches in the field of automatic design patterns identification. The
theoretical model of our search based approach for identifying design patterns
is introduced in section 3. Section 4 presents our approach and Section 5 con-
tains an experimental evaluation of it. An analysis of the proposed approach
is made in Section 6. Section 7 presents some conclusions of the paper and
future research directions.

2. Related Work

We will briefly present, in the following, the most significant results ob-
tained in the literature in the field of automatic design patterns identification.

Different approaches, exploiting software metrics, were used in previous
works to automatically detect design concepts and function clones [6, 7] in
large software systems. An approach for extracting design information directly
from C++ header files and for storing them in a repository is proposed in [7].
The patterns are expressed as PROLOG rules and the design information is
translated into facts. A single Prolog query is then used to search for all

A SEARCH BASED APPROACH FOR IDENTIFYING DESIGN PATTERNS 5

patterns. The disadvantage of this approach is that handles a small number
of design patterns (only the structural design patterns – Adapter, Bridge,
Composite, Decorator and Proxy) and the precision obtained in recognition is
small (40%).

A multi-stage approach using OO software metrics and structural proper-
ties to extract structural design patterns from object oriented artifacts, design,
or code, is introduced in [1]. The drawback of this approach is that only few
pattern families (the structural design patterns - Adapter, Bridge, Composite,
Decorator and Proxy) are considered.

In [8] the authors have developed an iterative semiautomatic approach to
design recovery using static analysis on the source code level of a system. The
approach facilitates a rule-based recognition of design pattern instances. It is
a highly scalable process which can be applied to large real world applications
with more than 100,000 LOC. The approach has been enhanced by fuzzyfied
rules to provide the reverse engineer with accuracy information about the
analysis results [9]. Fuzzyfied rules have a credibility value expressing how
much design pattern candidates identified by the rule are real design pattern
instances. The reverse engineer adapts the accuracy values of the results which
are then used to calibrate credibility values of the rules [4].

For a precise design pattern recognition, a static analysis is not sufficient.
The behavioral aspects of a pattern are an important factor. Dynamic analyses
can be used to analyze the runtime behavior of a system. A sole dynamic
analysis is not feasible since the amount of data gathered during runtime is
too big. A combination of static and dynamic analysis techniques is proposed
in [13]. The static analysis identifies candidates for design pattern instances.
These candidates form a significantly reduced search space for a subsequent
dynamic analysis that confirms or weakens the results from static analysis.

3. Theoretical model

Let S = {s1, s2, ..., sn} be a software system, where si, 1 ≤ i ≤ n may
be an application class, a class method or a class attribute. We will refer an
element of the software system S as an entity.

Let us consider that:

• Class(S) = {C1, C2, . . . , Cl}, Class(S) ⊂ S, is the set of applications
classes in the initial structure of the software system S.

• Each application class Ci (1 ≤ i ≤ l) is a set of methods and attributes,
i.e., Ci = {mi1,mi2, . . . ,mipi , ai1, ai2, . . . , airi}, 1 ≤ pi ≤ n, 1 ≤ ri ≤
n, where mij (∀j, 1 ≤ j ≤ pi) are methods and aik (∀k, 1 ≤ k ≤ ri)
are attributes from Ci.

6 GABRIELA ŞERBAN AND ISTVÁN GERGELY CZIBULA

• Meth(S) =
l⋃

i=1

pi⋃

j=1

mij , Meth(S) ⊂ S, is the set of methods from all

the application classes of the software system S.

• Attr(S) =
l⋃

i=1

ri⋃

j=1

aij , Attr(S) ⊂ S, is the set of attributes from the

application classes of the software system S.
Based on the above notations, the software system S is defined as follows:

(1) S = Class(S)
⋃

Meth(S)
⋃

Attr(S).

A given design pattern p from the software system S can be viewed as a
pair p = (Cp,Rp), where

• Cp = {Cp
1 , Cp

2 , . . . , Cp
ncp} is a subset from Class(S), Cp ⊂ Class(S),

and represents the set of classes that are components of the design
pattern p. ncp represents the number of classes from the pattern p.

• Rp = {rp
1, r

p
2, . . . , r

p
nrp} is a set of constraints (relations) existing among

the classes from Cp, constraints that characterize the design pattern p.
Consequently, each constraint rp

i , ∀1 ≤ i ≤ nrp from Rp is a relation
defined on a subset of classes from Cp, and nrp represents the number
of constraints characterizing the design pattern p.

We mention that all the constraints from Rp can be expressed as binary
constraints (there are two classes involved in the constraint). That is why,
in the following, we will assume, without loosing generality, that all the con-
straints from Rp are binary.

Let us denote by cmin the minimum number of binary constraints from
Rp that a class from Cp can satisfy, as indicated by equality (2).

(2)
cmin = mini=1,ncp |{j, |1 ≤ j ≤ nrp, ∃1 ≤ k ≤ ncp, k 6= i s.t. Cp

i rp
j Cp

k ∨ Cp
k rp

j Cp
i }|

4. Our search-based approach

In this section we are focusing on identifying all the instances of a given
design pattern p in a given design (software system).

Based on the theoretical model defined in Section 3, it can be easily seen
that the problem of identifying all instances of the design pattern p in the
software system S is a constraint satisfaction problem [10], i.e., the problem
of searching for all possible combinations of ncp classes from S such that all
the constraints from Rp to be satisfied.

A SEARCH BASED APPROACH FOR IDENTIFYING DESIGN PATTERNS 7

It is obvious that a brute force approach for solving this problem would
lead to a worst case time complexity of O(lncp). The main goal of the search
based approach that we propose in this section in order to find all instances of
a design pattern p is to reduce the time complexity of the process of solving
the analyzed problem.

The main idea of our approach is to obtain a set of possible pattern can-
didates (by applying a preprocessing step on the set Class(S)) and then to
apply a hierarchical clustering algorithm in order to obtain all instances of the
design pattern p.

Our search-based approach for identifying instances of design patterns in
a software system consists of the following steps:

• Data collection: The existing software system is analyzed in order
to extract from it the relevant entities: classes, methods, attributes
and the existing relationships between them.

• Preprocessing: From the set of all classes from S we eliminate all
the classes that can not be part of an instance of pattern p. This
preprocessing step will be explained later.

• Grouping: The set of classes obtained after the Preprocessing step
are grouped in clusters using a hierarchical clustering algorithm. The
aim is to obtain clusters with the instances of p (each cluster contain-
ing an instance) and clusters containing classes that do not represent
instances of p.

• Design pattern instances recovery: The clusters obtained at the
previous step are filtered in order to obtain only the clusters that
represent instances of the design pattern p.

In the following we will give a descriptions of the above enumerated steps.

4.1. Data collection. During this step, the existing software system is an-
alyzed in order to extract from it the relevant entities: classes, methods, at-
tributes and the existing relationships between them. In order to verify the
constraints Rp of the design pattern p, we need to collect from the system
information such as: all interfaces implemented by a class, the base class of
each class, all methods invoked by a class, all possible concrete types for a
formal parameter of a method, etc.

In order to express the dissimilarity degree between any two classes relat-
ing to the considered design pattern p, we will consider the distance d(Ci, Cj)
between two classes Ci and Cj from S given by the number of binary con-
straints from Rp that are not satisfied by classes Ci and Cj . It is obvious
that as smaller the distance d between two classes is, as it is more likely that
the two classes are in an instance of the design pattern p. The distance is
expressed as in formula (3).

8 GABRIELA ŞERBAN AND ISTVÁN GERGELY CZIBULA

(3)

d(Ci, Cj) =
{

1 + |{k |1 ≤ k ≤ nrp s.t. ¬(Ci rp
k Cj ∨ Cj rp

k Ci)}| i 6= j
0 i = j

.

Based on the definition of d given above it can be simply proved that d is
a semimetric function.

4.2. Preprocessing. After the Data collection step was performed and the
needed data was collected from the software system in order to compute the
distances between the classes (3), a preprocessing step is performed in order
to reduce the search space, i.e, the set of possible pattern candidates.

In order to significantly reduce the search space, we eliminate from the
set of all classes Class(S) those classes that certainly can not be part of an
instance of the design pattern p. By applying this filtering, we will obtain a
set of possible pattern candidates, denoted by PatCand(S). More specifically,
the following filtering step is performed:

• We eliminate from the set of all classes those classes that satisfy less
than cmin binary constraints from Rp. The idea is that based on the
definition of cmin given by (2), in order to be in an instance of design
pattern p, a class has to satisfy at least cmin constraints from Rp.
After the filtering step, the set of pattern candidates becomes:

PatCand(S) = Class(S)− {Cj |1 ≤ j ≤ l s.t.

l∑

i=1,i 6=j

(1 + nrp − d(Cj , Ci)) < cmin}

After applying the previous filtering step, the set PatCand(S) of possible
pattern candidates is significantly reduced in comparison with the set of all
classes from S. Let us denote by nc the number of possible pattern candidates,
i.e, the cardinality of the set PatCand(S).

4.3. Grouping. After the grouping step we aim to obtain a partition K =
{K1,K2, ..., Kv} of the set PatCand(S) such that each instance of the design
pattern p to form a cluster. Based only on the distance semimetric d (3), it is
possible that two classes would seem to be in an instance of the design pattern
(a so called “false positive” decision), even if they are not cohesive enough in
order to take this decision. That is why we need a measure in order to decide
how cohesive are two classes.

We will adapt the generic cohesion measure introduced in [12] that is
connected with the theory of similarity and dissimilarity. In our view, this
cohesion measure is the most appropriate to our goal. We will consider the
dissimilarity degree (from the cohesion point of view) between any two classes

A SEARCH BASED APPROACH FOR IDENTIFYING DESIGN PATTERNS 9

from the software system S. Consequently, we will consider the dissimilarity
diss(Ci, Cj) between classes Ci and Cj as expressed in (4).

(4) diss(Ci, Cj) =

{
1− |p(Ci)∩p(Cj)|

|p(Ci)∪p(Cj)| if p(Ci) ∩ p(Cj) 6= ∅
∞ otherwise

,

where p(C) defines a set of relevant properties of class C and it consists of the
application class itself, all attributes and methods defined in the class C, all
interfaces implemented by C and the base class of C.

We have chosen the dissimilarity between two classes as expressed in (4)
because it emphasizes the idea of cohesion. As illustrated in [2], “Cohesion
refers to the degree to which module components belong together”. The dis-
similarity measure defined in Equation (4) highlights the concept of cohesion,
i.e., classes with low dissimilarities are cohesive, whereas classes with higher
distances are less cohesive.

Based on the definition of diss (4), it can be easily proved that diss is a
semimetric function.

In the original paper [11] a theoretical validation of the semimetric dis-
similarity function diss is given. It is proved that diss highlights the concept
of cohesion, i.e., classes with low distances are cohesive, whereas classes with
higher distances are less cohesive.

Consequently, the dissimilarity semimetric diss can be used in order to
decide how cohesive are two classes. We will use diss in the Grouping step
of our approach in order to decide if two classes are cohesive enough in order
to be part of an instance of the design pattern.

In order to obtain the desired partition K, we introduce a hierarchical
agglomerative clustering algorithm (HAC).

In our approach the objects to be clustered are the classes from the set
PatCand(S) and the distance function between the objects is given by the
semimetric d (3). We use complete-link [5] as linkage metric between the
clusters, because it is the most appropriate linkage metric to our goal. Con-
sequently, the distance dist(k, k′) between two clusters k ∈ K and k′ ∈ K
(k 6= k′) is given as in (5).

(5) dist(k, k′) = maxe∈k,e′∈k′d(e, e′)

In the hierarchical clustering process, the dissimilarity semimetric diss
will be used in order to decide how cohesive are two classes, i.e, if they will be
merged or not in the same cluster. That is why we will consider the dissimilar-
ity between two clusters k ∈ K and k′ ∈ K (denoted by dissimilarity(k, k′))
as the maximum dissimilarity between the objects from the clusters:

10 GABRIELA ŞERBAN AND ISTVÁN GERGELY CZIBULA

(6) dissimilarity(k, k′) = maxe∈k,e′∈k′diss(e, e′)

The main steps of HAC algorithm are:

• Each class from PatCand(S) is put in its own cluster (singleton).
• The following steps are repeated until the partition of classes remains

unchanged (no more clusters can be selected for merging):
– Select the two most similar clusters from the current partition,

i.e, the pair of clusters that minimize the distance from (5). If
this selection is nondeterministic (there are several pair of clus-
ters with the same minimum distance between them), we will
choose the pair (Ki, Kj) that has the minimum associated dis-
similarity value (dissimilarity(Ki,Kj)). Let us denote by dmin
the distance between the most similar clusters Ki and Kj .

– If dmin < 1 + nrp (nrp is the number of constraints imposed by
the design pattern p), then clusters Ki and Kj will be merged,
otherwise the partition remains unchanged. The idea of this step
is that two clusters will not be merged if their most distant classes
can not be part of an instance of the design pattern p (they in-
validate all the constraints that must hold).

We give next HAC algorithm.
Algorithm HAC is

Input: - the set of possible pattern candidates PatCand(S),

- the semimetric d,

- the semimetric diss,

- the number nrp of imposed constraints.

Precondition: - l ≥ 2.

Output: - the partition K = {K1, K2, ..., Kv}.
Begin

v ← |PatCand(S)| //the number of possible pattern candidates

For each C ∈ PatCand(S) do

Ki ← {C} //each possible candidate is put in its own cluster

endfor

K ← {K1, . . . , Kv} //the initial partition

change ← true

While change do //while K changes

//the most similar clusters are chosen for merging

dmin ←∞ //the minimum distance between clusters

dissmin ←∞ //the minimum dissimilarity between clusters

For i∗ ← 1 to v-1 do //the most similar clusters are chosen

A SEARCH BASED APPROACH FOR IDENTIFYING DESIGN PATTERNS 11

For j∗ ← i∗ + 1 to v do

d ← dist(Ki∗ , Kj∗) //the distance between the clusters

If d < dmin then

dmin ← d

i ← i∗

j ← j∗

else

If d = dmin then

dss ← dissimilarity(Ki∗ , Kj∗) //the dissimilarity between the clusters

If dss < dissmin then

dissmin ← dss

i ← i∗

j ← j∗

endif

endif

endif

endfor

endfor

If dmin < 1 + nrp then

Knew ← Ki ∪Kj

K ← (K \ {Ki, Kj}) ∪ {Knew}
v ← v − 1

else

change ← false //the partition remains unchanged

endif

endwhile

//K = {K1, K2, ..., Kv} is the output partition

End.

4.4. Design pattern instances recovery. The partition K obtained after
the Grouping step will be filtered in order to obtain only the clusters that
represent instances of the design pattern p. A cluster k from the partition K
is consider an instance of design pattern p iff the classes from k verify all the
constraints from Rp (the set of constraints imposed by the design pattern p).

5. Experimental Evaluation

In our experiment, we are focusing on identifying instances of Proxy de-
sign pattern using the search based approach that we have introduced in the
previous section.

12 GABRIELA ŞERBAN AND ISTVÁN GERGELY CZIBULA

Figure 1. Proxy design pattern.

5.1. The Proxy design pattern. The class diagram of the Proxy [3] design
pattern is given in Figure 1.

A Proxy pattern constitutes use of proxy objects during object interaction.
A proxy object acts as a substitute for the actual object Provide a surrogate
or placeholder for another object to control access to it

Proxy is a structural design pattern that provides a surrogate or place-
holder for another object to control access to it. Use of proxy objects is preva-
lent in remote object interaction protocols (Remote proxy): a local object
needs to communicate with a remote process but we want to hide the de-
tails about the remote process location or the communication protocol. The
proxy object allows to access remote services with the same interface of local
processes. In fact, when an Operation is required to the proxy object, it dele-
gates the implementation of the required operation to the RealSubject object.
Being both Proxy and RealSubject subclasses of Subject, this guarantees that
they export the same interface for Operation. To be able to call RealSubject
methods, Proxy needs an association to it.

According to the considerations from Section 3, the design pattern proxy
can be defined as the pair proxy = (Cproxy,Rproxy), where:

• Cproxy = {C1, C2, C3}, and ncproxy = 3 (the number of classes involved
in the design pattern proxy is 3).

• Rproxy = {r1, r2, r3}, nrproxy = 3 (the number of constraints imposed
by the design pattern proxy is 3), and the constraints are:

A SEARCH BASED APPROACH FOR IDENTIFYING DESIGN PATTERNS 13

Figure 2. The example design S.

– r1(C1, C2) represents the relation “C2 extends C1”.
– r1(C1, C3) represents the relation “C3 extends C1”.
– r1(C2, C3) represents the relation “C2 delegates any method in-

herited from a class C to C3, where both C2 and C3 extend C”.

Considering the above, the minimum number of binary constraints cmin
from Rp that a class from Cp can satisfy (as indicated in (2)) is 2.

5.2. Example. Let us consider as a case study the simple design illustrated
in Figure 2.

For the analyzed design S, the set of classes is Class(S) = {C1, C2, C3, C4,
C5, C6, C7, C8} and the number of classes is l = 8.

After performing the Data collection step from our approach, the matrix
D(8, 8) (where a line i corresponds to class Ci and a column j corresponds to
class Cj) of distances between the classes from Class(S) is:

(7) D =

0 3 3 4 4 4 4 4
3 0 3 3 4 4 4 4
3 3 0 4 4 4 4 4
4 3 4 0 4 4 3 4
4 4 4 4 0 3 3 4
4 4 4 4 3 0 3 4
4 4 4 3 3 3 0 4
4 4 4 4 4 4 4 0

14 GABRIELA ŞERBAN AND ISTVÁN GERGELY CZIBULA

After the Preprocessing step, the set of possible pattern candidates is
computed, PatCand(S) = {C1, C2, C3, C4, C5, C6, C7} and the number of pos-
sible pattern candidates is nc = 7. At this step, class C8 is eliminated because
it does not satisfy any constraint from the set of all constraints imposed by
the Proxy design pattern.

Now the Grouping step will be performed and first the matrix DISS(7, 7)
(where a line i corresponds to class Ci and a column j corresponds to class
Cj) of dissimilarities between the classes from PatCand(S) will be computed:

(8) DISS =

0 0.87 0.83 ∞ ∞ ∞ ∞
0.87 0 0.75 0.88 ∞ ∞ ∞
0.83 0.75 0 ∞ ∞ ∞ ∞
∞ 0.88 ∞ 0 ∞ ∞ 0.87
∞ ∞ ∞ ∞ 0 0.87 0.85
∞ ∞ ∞ ∞ 0.87 0 0.77
∞ ∞ ∞ 0.87 0.85 0.77 0

After applying HAC clustering algorithm, the obtained partition of
PatCand(S) is K = {K1,K2,K3}, where K1 = {C4}, K2 = {C3, C1, C2} and
K3 = {C5, C6, C7}.

We mention that without using the dissimilarity matrix DISS, the class
C7 would have been grouped with the class C4, instead of being grouped with
classes C5 and C6 and an instance of the design pattern Proxy would have
been missed.

Now we analyze the obtained partition K in order to identify instances of
Proxy design pattern, and the identified instances are correctly reported: K2

and K3.

6. Analysis of our approach

In the following we will make a time complexity analysis of our search
based approach for identifying instances of design patterns in a given software
system S. Let us consider that n is the number of entities from S and l is the
application classes from S.

Usually, the number nrp of constraints in a design pattern p is a small
constant (as 3 for the Proxy design pattern), that is why we will ignore it in
the worst time complexity asymptotic analysis.

Analyzing the steps performed in order to identify the instances of design
patterns in a given software system (as indicated in Section 4) we can compute
their worst time complexity. The results are given in Table 1.

A SEARCH BASED APPROACH FOR IDENTIFYING DESIGN PATTERNS 15

Step Worst time complexity
Data collection O(n)
Preprocessing O(l2)

Grouping O(l3)
Design pattern instances recovery O(l3)

Table 1. Complexity asymptotic analysis.

Based on the results from Table 1, we can conclude that the overall worst
time complexity of our approach is O(max{n, l3}). As, in a large real software
system, usually l3 > n, the overall complexity is O(l3).

As a conclusion, we can summarize the advantages of the search based
approach proposed in this paper in comparison with existing approaches:

• The overall worst time complexity (O(l3)) of our approach is reduced in
comparison with the worst time complexity of a brute force approach
(O(lncp)) (as the number of classes ncp of classes contained in a design
pattern p is greater or equal to 3).

• Our approach is not dependent on a particular design pattern. It may
be used to identify instances of various design patterns, as any design
pattern can be described according to the theoretical model introduced
in Section 3.

• Our approach may be used to identify both structural and behavioral
design patterns, as the constraints can express both structural and
behavioral aspects of the application classes from the analyzed software
system.

7. Conclusions and future work

We have introduced in this paper a search based approach for identifying
instances of design patterns in existing software systems. We have emphasized
the advantages of our approach in comparison with existing approaches in the
field.

Further work can be done in the following directions:
• Improving the Preprocessing and Grouping steps from our ap-

proach.
• Applying the proposed approach on real software systems.
• Extending the proposed approach towards identifying several design

patterns.
• Extending the proposed approach towards introducing design patterns

in existing software systems.

16 GABRIELA ŞERBAN AND ISTVÁN GERGELY CZIBULA

References

[1] G. Antoniol, R. Fiutem, and L. Cristoforetti, Using metrics to identify design patterns
in object-oriented software, Proc. of the Fifth International Symposium on Software
Metrics - METRICS’98, 1998, pp. 23–34.

[2] James M. Bieman and Byung-Kyoo Kang, Measuring design-level cohesion, Software
Engineering 24 (1998), no. 2, 111–124.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design patterns:
Elements of reusable object oriented software, Addison-Wesley Publishing Company,
USA, 1995.

[4] M. Meyer, J. Niere, and L. Wendehals, User-driven adaption in rule-based pattern recog-
nition, Technical Report TR-RI-04-249 (2004), University of Paderborn, Paderborn,
Germany.

[5] A. K. Jain, M. N. Murty, and P. J. Flynn, Data clustering: a review, ACM Computing
Surveys 31 (1999), no. 3, 264–323.

[6] Kostas Kontogiannis, Renato de Mori, Ettore Merlo, M. Galler, and Morris Bernstein,
Pattern matching for clone and concept detection, Automated Software Engineering 3
(1996), no. 1/2, 77–108.

[7] Christian Kramer and Lutz Prechelt, Design recovery by automated search for structural
design patterns in object-oriented software, WCRE ’96: Proceedings of the 3rd Working
Conference on Reverse Engineering (WCRE ’96), 1996, pp. 208–215.

[8] Jörg Niere, Wilhelm Schäfer, Jörg P. Wadsack, Lothar Wendehals, and Jim Welsh,
Towards pattern-based design recovery, ICSE ’02: Proceedings of the 24th International
Conference on Software Engineering, 2002, pp. 338–348.

[9] Jörg Niere, Jörg P. Wadsack, and Lothar Wendehals, Handling large search space in
pattern-based reverse engineering, IWPC ’03: Proceedings of the 11th IEEE Interna-
tional Workshop on Program Comprehension, 2003, pp. 274.

[10] Elaine Rich and Kevin Knight, Artificial intelligence, 2nd ed., McGraw Hill, New York,
1991.

[11] G. Serban and I.G. Czibula, On evaluating software systems design, Studia Universitatis
“Babes-Bolyai”, Informatica LII (2007), no. 1, 55–66.

[12] Frank Simon, Silvio Loffler, and Claus Lewerentz, Distance based Cohesion Measuring,
Proceedings of the 2nd European Software Measurement Conference (FESMA), 1999,
pp. 69–83.

[13] L. Wendehals, Improving Design Pattern Instance Recognition by Dynamic Analysis,
Proc. of the ICSE 2003 Workshop on Dynamic Analysis (WODA), 2003, pp. 29–32.

Department of Computer Science, Babeş-Bolyai University 1, M. Kogălniceanu
Street, 400084, Cluj-Napoca, Romania,

E-mail address: gabis@cs.ubbcluj.ro

Department of Computer Science, Babeş-Bolyai University, 1, M. Kogălniceanu
Street, 400084, Cluj-Napoca, Romania,

E-mail address: istvanc@cs.ubbcluj.ro

