
KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2007
Cluj-Napoca (Romania), June 6–8, 2007, pp. 346–352

APPLYING TRANSITION DIAGRAM SYSTEMS IN
DEVELOPMENT OF INFORMATION SYSTEMS DYNAMIC

PROJECTS

NICOLAE MAGARIU

Abstract. The model of complex software development based on the

applying of transition diagrams systems is considered in this paper. This

model provides the minimization of elaboration time, improving the quality,
and raising the technological level of the software.

1. The problem

The necessity of intensification of human society economical development on the
one hand, and advanced performances of modern computers on the other hand,
force automation of the most complex Information Handling Processes (IHP) in
the field of economics. This automation can be realized by means of Complex
Information System (CIS) [1]. CIS elaboration needs big intellectual efforts of a
group of developers in the course of several years. In the context of CIS elabora-
tion a special attention is given to CIS design phase, especially to CIS dynamic
aspects design: components and subcomponents behavior specification, correlation
of system’s static and physic aspects with its dynamic aspects, etc. One of the well
known means, which is applied to specify dynamic aspects of simple programs, is
the transition diagram [2, 3]. An attempt to specify dynamic aspects of a CIS
with the help of single transition diagram causes serious difficulties. Applying a
set of transition diagrams to specify CIS dynamic aspects can be a solution of the
posed problem. In this paper a model of applying Systems of Transition Diagrams
(STD) in CIS dynamic projects elaboration is proposed.

2. Preliminary

STD had been used for the first time in 1963 by American scientist Melvin E.
Conway when he had elaborated a separable compiler [4]. Conway had specified

2000 Mathematics Subject Classification. 68N30, 68N99.
Key words and phrases. Dynamic project, Systems of Transition Diagrams, Complex In-

formation System, diagrammer.

c©2007 Babeş-Bolyai University, Cluj-Napoca

346



TRANSITION DIAGRAM SYSTEMS IN INFORMATION SYSTEMS 347

the syntax of COBOL language - a Symbolic Programming Language (SPL) -
utilizing STD, and had proposed an original algorithm of compilation which he
had named Diagrammer.

A diagram defines the syntactical structure of an SPL construction and has
a name, which identifies this construction. The diagram consists of nodes and
edges, where nodes represent states and edges define transitions from one state to
another. Edges can bee marked by terminal symbols of the SPL or by name of a
diagram. The method of interlinking between diagrams characterizes a STD. The
STD includes a main diagram - ”program”. Every edge can be associated with
a program unit, which is executed when the corresponding edge is passed. The
diagrammer analyzes a program (an input line) and identifies the program con-
struction using one of the diagrams from STD. The diagrammer starts the input
line analysis from the initial state (node) of the main diagram and recognizes pro-
gram constructions in nondeterministic way - with returns in input line. Conway
determines the possibility of STD and diagramer application for other languages
compilation.

The American specialist, David Bruce Lomet, had studied the Conway dia-
grammer and had proved diagrammer’s equivalence to a restricted Deterministic
PushDown Acceptor (DPDA) called a nested DPDA [5]. He had established that
the class of nested DPDA’s is capable of accepting all deterministic context-free
languages.

The author has been studied Conway’s diagrammer independently of D. B.
Lomet. A new version of diagrammer that functions in deterministic way was
elaborated by him [6]. It was applied in the elaboration of APL interpreter.

The syntax of APL language constructions is very simple [7]. User variables
are dynamic and they can obtain as a value a numerical array or an array of
char type with arbitrary number of dimensions. APL operations can be nullary,
unary or binary. Operands of the operations can be some expressions, evaluated
to arrays, with arbitrary number of dimensions. Semantics of the APL operations
is very consistent and can be described in C language using tens or hundreds
of instructions. Almost all operations in APL have equal priority (with small
exceptions). User Defined Functions (UDF) prototypes have the structure similar
to the APL basic operators structure. The UDF can be made up from expression
instructions or branching instructions. Jumps can be made inside UDF only.
A UDF can’t be defined inside another UDF. All UDFs necessary for solving a
problem or a class of problems are stored in a Work Space. An expression can
contain invocations of UDF. To solve a problem by means of APL system, one
needs to compose the set of UDF and the APL expression. The execution of this
expression leads to execution of UDFs, which are invoked directly or indirectly
from this expression.

So, the SDT of the APL expression defines the behavior of a UDF system.
The APL expression represents a control message to realize functionality, which



348 NICOLAE MAGARIU

is necessary for a user. The diagrammer controls the order of execution of UDF
(program units). In such way, the author came to the idea about using the SDT
in designing of CIS [8]. In this case the SDT represents a dynamical project
and an input line represents a sequence of control symbols for the diagrammer.
Diagrammer takes control symbols from input line and executes corresponding
program units of the project.

3. Diagrammer functions

The STD uses two disjoint vocabularies: Σ – terminal symbols vocabulary
(control symbols), N – nonterminal symbols vocabulary (diagrams names).

The author proposed the set of formal notation for STD and defined some
diagram structure limitations. These limitations provide the deterministic dia-
grammer work. The following notations were introduced:
Σ – terminal symbols of vocabulary;
N – nonterminal symbols of vocabulary;
IL – input line;
di – the name of i-th diagram of the STD (i ≥ 0), di ∈ N ;
Σij – the set of terminal symbols, which mark edges going from j-th node of i-th
diagram;
Nij – the set of diagram names, which mark edges going from j-th node of i-th
diagram;
F (di) – the set of terminal symbols which are the first symbols of the sentences
that can be read on passing di diagram (i = 0..n− 1).

The construction method of F (di) set:

F (di) = Σi0 ∪ (F (dl)), for all dl ∈ Ni0

The limitations for STD diagrams:
1) N 6= ∅;
2) Σ and N vocabularies don’t contain inaccessible symbols;
3) STD diagrams don’t contain unmarked edges;
4) there can’t be two edges, outgoing from the same node and marked with

the same symbol;
5) for every dl diagram (dl ∈ Nij) the intersection Σij and F (dl) is empty;
6) for 2 diagrams di and dl, (di, dl ∈ Nij) the intersection F (di) and F (dl)

is empty set.
The sets F (di) for concrete STD can be calculated before diagrammer starts

execution.
If STD diagrams satisfy enumerated limitations, then in every state the dia-

grammer can choose only one possible transition. So, the diagrammer functions
in deterministic way.

The determinate diagrammer executes the following actions:



TRANSITION DIAGRAM SYSTEMS IN INFORMATION SYSTEMS 349

A1. Work state of the diagrammer is determined: i = 0; j = 0;.

A2. The contents of the input line IL is determined; k = 1; //k – the index of a
symbol from the IL.

A3. If ILk ∈ Σij , then: {
– Program unit associated with the edge, marked with ILk is executed;
– Transition through the edge, marked with ILk is realized and the value

of j variable is modified;
– k = k + 1;
– Go to A5;}

A4. If ILk ∈ F (dl) for dl which belongs to Nij , then: {
– The current state (the number of the current diagram and the current

node number of this diagram) of the diagrammer is memorized in stack;
– It is fixed as current state the state corresponding to initial one of dl

diagram and respectively modifies values of i and j variables.}
If Nij doesn’t contain a dl diagram for which ILk ∈ F (dl), then an error is
detected in input line and the diagrammer stops.

A5. If the current node is the final node of the main diagram then the diagrammer
stops.
If the current node is the final node of a diagram that differs from the main
diagram then: {

– The information on the top of the stack is deleted;
– The state from the top of the stack is determined as the current state;
– The transition through the edges, marked with the name of the passed

diagram, is made;}
Go to A3; //Or accepts an event after which goes to A3.

4. The applying of STD and diagrammer in the development of
information system’s dynamic project

When a STD represents a dynamic project of a software product (SP), we can
naturally assume, that input line is always correct and so it is always accepted by
diagrammer.

If the dynamic project is represented by a single transition diagram and this
program realizes a single functionality, which doesn’t need an intense dialog with
the user, then we can consider the applying of the diagrammer less efficient.

If the IHP execution requires an intensive interaction with the user or other
actors, then applying the diagrammer is efficient enough. In this case the dia-
grammer can work in conditions of accepting messages.

Depending on the way of interaction between user and CIS, elaborated on basis
of diagramer, there can be used three modes of driving the diagrammer’s work:



350 NICOLAE MAGARIU

Figure 1. Main diagram of the SDT

(1) Any functionality of a CIS is defined preliminarily by a constant sequence
of the control symbols. This constant is placed in input line of the
diagrammer after selecting the corresponding option from a menu.

(2) Control symbols are generated as a result of the events produced by
users or some other actors. The diagrammer waits the appearance of an
event from the given set of events.

(3) Diagrammer’s work is partially driven by constants - sequences of the
control symbols, and partially by events.

Diagrammers functioning can be adapted in correspondence with the exploiting
requirements of a CIS.

The CIS’s dynamic project representation by means of STD correlates very
well with top-down design of software systems. Top-down design of the complex
program systems recommends initially elaborating a general structure of a system
- its components (subsystems), and after that it recommends detailed modeling of
these components. In this case a dynamic project can be represented by a STD,
which contains a main diagram named ”CIS”. This diagram specifies the behavior
of program system’s components. The STD also must contain at least one diagram
for every component.

Let us consider an example of a generalized project of complex software sys-
tem, which consists of components c1, c2, c3, c4, c5. Let these components realize
the following functionalities, necessary to user: c1 – initializations, adaptations,
c2 – calculations according to methodology M1, c3 – calculations according to
methodology M2, c4 – comparative analysis of the calculation results, c5 – report
generation. Suppose that c1, c2 and c3 components need an intensive interaction
with the user. Suppose that the behavior of the components is specified by the
main diagram ”CIS”, shown in Figure 1. Symbols ”another problem”, ”repeat”
and ”exit” are terminal symbols (events).

Suppose that the diagram, which corresponds to c1 component, has structure,
shown in Figure 2. In this diagram e0, e1, e2, . . . , eN are the terminal symbols
(events). The names of the program units associated with edges of the diagram
are not shown on diagrams. On appearing of the event the diagrammer starts



TRANSITION DIAGRAM SYSTEMS IN INFORMATION SYSTEMS 351

Figure 2. Transition diagram for component c1

the execution of the program unit, associated with the corresponding edge of this
diagram. The transition is done after execution of program unit.

The transition diagrams for other components (c2, c3, c4, c5) of the CIS are
constructed similarly.

It is easy to observe that the modifying of the software system needs the STD
modifying only, but the diagrammer remains the same.

5. Conclusions

We can mention that the application of STD in software system development
offers some important advantages:

1. Application of STD and determinate diagrammer represents a more sys-
tematized method of modeling complex software system’s behavior and
construction than known analogical methods. It permits the effective
distribution of work among developers and permits fast assembling of
software system.

2. The diagrammer represents an invariant part of a software system. There-
fore it can be constructed once and reused in developing of other CIS.
This fact provides the possibility to expand the quality of software sys-
tems and reduces time of their construction.

3. The structure of a software system can be modified and extended fast
and easy.

4. The automation of the STD creation reduces time of CIS construction.
5. Deterministic STDs and diagrammer represent an efficient mechanism

for elaborating event-driven software systems.
To construct quickly the compound software system, the instrumental frame-

work may be constructed using the stated results in this paper.
CIS design by means of STD is based on functional refinement of the project.

To improve effectiveness of this type of modeling it needs to be completed with an
adequate systematic method of data design.



352 NICOLAE MAGARIU

6. References

1. A. Stepan , Gh. Petrov , V. Iordan , Fundamentele proiectării şi realizării
sistemelor informatice, Ed. MIRTON, Timişoara, 1995, 282 p.

2. Ciubotaru C.S., Magariu N.A., Organizaţyia lexicescogo analiza
(Metodicescaia razrabotca). /RIO CGU, Chişinău, 1984, 28 s.
(In Russian)

3. http://yourdon.com/strucanalysis/wiki/index.php?title=Chapter 13
#STATE- TRANSITION DIAGRAM NOTATION

4. Melvin E. Conway, Design of a separable transition-diagram compiler.
//Communications of the ACM, Volume 6, Issue 7 (July 1963),
pp. 396–408.

5. David Bruce Lomet, A Formalization of Transition Diagram Systems.
//Journal of the ACM (JACM) V. 20 , Issue 2 (April 1973),
pp. 235–257.

6. Magariu N.A. Ispolizovanie diagram perehoda pri realizaţii dialogovoi
sistemi programmirovania. //Matematiceschie issledovania AN MSSR,
v̂ıpusc 107. Teoria i practica programmirovania. Chişinău, Ştiinţa, 1989,
ss. 100–110.(In Russian)

7. Magariu N.A., Iaẑıc prorammirovania APL. /Radio i sviazi, Moscva,
1983, 87 s. (In Russian)

8. Magariu N., Utilizarea diagramelor de tranziţie la construirea sistemelor
de prelucrare a informaţiei, Materialele conferinţei republicane
”Informatică şi tehnică de calcul”, Chişinău, 1993, pp.61–62.

State University of Moldova, Chişinău

E-mail address: magariu@usm.md


